×

Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence. (English) Zbl 1228.76063

Summary: We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Oxford Univ. Press: Oxford Univ. Press Oxford, UK · Zbl 0990.76001
[2] Orszag, S. A.; Chen, H.; Succi, S.; Latt, J., J. Sci. Comput., 28, 213, 459 (2006)
[3] Chen, H.; Orszag, S. A.; Staroselsky, I.; Succi, S., J. Fluid Mech., 517, 301 (2004)
[4] Chen, H.; Succi, S.; Orszag, S. A., Phys. Rev. E, 59, R2527 (1999)
[5] Chen, H.; Orszag, S. A.; Staroselsky, I.; Succi, S., J. Fluid Mech., 519, 301 (2004)
[6] Girimaji, S. S., Phys. Rev. Lett., 99, 034501 (2007)
[7] Frish, U., Turbulence: The legancy of A.N. Kolmogorov (1995), Cambridge Univ. Press
[8] Shan, X.; Yuan, X.; Chen, H., J. Fluid Mech., 550, 413 (2006)
[9] Zhang, R.; Shan, X.; Chen, H., Phys. Rev. E, 74, 046703 (2006)
[10] Lätt, J.; Chopard, B., Math. Comput. Simul., 72, 165 (2006)
[11] Lätt, J.; Chopard, B.; Succi, S.; Toschi, F., Phys. A, 362, 6 (2006)
[12] Burattini, P.; Lavoie, P.; Agrawal, A.; Djenidi, L.; Antonia, R. A., Phys. Rev. E, 73, 066304 (2006)
[13] Shan, X.; He, X., Phys. Rev. Lett., 80, 65 (1998)
[14] Orlandi, P., Fluid Flow Phenomena: A Numerical Toolkit (1999), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0985.76001
[15] Mei, R.; Luo, L.; Lallemand, P.; d’Humiéres, D., Comput. Fluids, 35, 855 (2006)
[16] Yu, H.; Girimaji, S. S.; Luo, L., Phys. Rev. E, 71, 016708 (2005)
[17] Pope, S., Turbulent Flows (2000), Cambridge Univ. Press · Zbl 0966.76002
[18] McComb, W. D., The Physics of Fluid Turbulence (1990), Clarendon Press: Clarendon Press Oxford · Zbl 0748.76005
[19] Mansour, N. N.; Wray, A. A., Phys. Fluids, 6, 2, 808 (1994)
[20] Antonia, R. A.; Orlandi, P., J. Fluid Mech., 505, 123 (2004)
[21] Burattini, P.; Lavoie, P.; Antonia, R. A., Exp. Fluids, 45, 523 (2008)
[22] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers (2004), Oxford Univ. Press · Zbl 1061.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.