Mikhailov, Alexander V.; Vanhaecke, Pol Commutative Poisson algebras from deformations of noncommutative algebras. (English) Zbl 07930028 Lett. Math. Phys. 114, No. 5, Paper No. 108, 51 p. (2024). Reviewer: Iakovos Androulidakis (Athína) MSC: 53D17 37J35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Takeuchi, Tsukasa; Yoshimi, Naoko; Yoshioka, Akira Star product deformation of gamma function. (English) Zbl 1547.46061 Mladenov, Ivaïlo M. (ed.), Geometry, integrability and quantization. Volume 26. Sofia: Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy. Geom. Integrability Quantization 26, 53-63 (2023). Reviewer: Angela Gammella-Mathieu (Metz) MSC: 46L65 46L52 33B15 × Cite Format Result Cite Review PDF Full Text: DOI
Pridham, Jonathan P. Quantisation of derived Lagrangians. (English) Zbl 1514.14005 Geom. Topol. 26, No. 6, 2405-2489 (2022). MSC: 14A30 14A22 14D23 14J33 53D55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Carpentier, Sylvain; Mikhailov, Alexander V.; Wang, Jing Ping Quantisations of the Volterra hierarchy. (English) Zbl 1511.37071 Lett. Math. Phys. 112, No. 5, Paper No. 94, 38 p. (2022). Reviewer: Danilo Latini (Rome) MSC: 37J70 37K60 37J37 81R12 81Q80 81S08 81S10 53D50 53D55 17B80 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Andersson, Assar; Merkulov, Sergei From deformation theory of wheeled props to classification of Kontsevich formality maps. (English) Zbl 1496.55012 Int. Math. Res. Not. 2022, No. 12, 9275-9307 (2022). Reviewer: Iakovos Androulidakis (Athína) MSC: 55P48 18G80 53D55 17B62 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Rembado, Gabriele Symmetries of the simply-laced quantum connections and quantisation of quiver varieties. (English) Zbl 1456.81272 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 103, 44 p. (2020). MSC: 81S10 53D55 81R12 81Q10 14D15 16G20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Pridham, J. P. Deformation quantisation for \((-1)\)-shifted symplectic structures and vanishing cycles. (English) Zbl 1454.14049 Algebr. Geom. 6, No. 6, 747-779 (2019). MSC: 14F08 14A20 18N50 32S30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Tosiek, Jaromir States in deformation quantisation: hopes and difficulties. (English) Zbl 1447.81146 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVI. Workshop and summer school, Białowieża, Poland, July 2–8, 2017. Selected papers of the 36th workshop (WGMPXXXVI) and extended abstracts of lectures given at the 6th “School of geometry and physics”. Cham: Birkhäuser. Trends Math., 139-146 (2019). MSC: 81S10 53D55 46L30 × Cite Format Result Cite Review PDF Full Text: DOI
Merkulov, Sergei; Willwacher, Thomas An explicit two step quantization of Poisson structures and Lie bialgebras. (English) Zbl 1404.53106 Commun. Math. Phys. 364, No. 2, 505-578 (2018). Reviewer: Iakovos Androulidakis (Athína) MSC: 53D17 53D50 17B63 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Pridham, J. P. Deformation quantisation for unshifted symplectic structures on derived Artin stacks. (English) Zbl 1423.14018 Sel. Math., New Ser. 24, No. 4, 3027-3059 (2018). Reviewer: Arvid Siqveland (Kongsberg) MSC: 14A22 53D55 14D23 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gwilliam, Owen; Haugseng, Rune Linear Batalin-Vilkovisky quantization as a functor of \(\infty \)-categories. (English) Zbl 1456.18018 Sel. Math., New Ser. 24, No. 2, 1247-1313 (2018). Reviewer: Julian Holstein (Hamburg) MSC: 18N40 18N60 18M75 14A30 53D55 81T70 14D15 17B55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ćaćić, Branimir A reconstruction theorem for Connes-Landi deformations of commutative spectral triples. (English) Zbl 1329.58002 J. Geom. Phys. 98, 82-109 (2015). MSC: 58B34 46L65 46L87 81R60 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Garay, Mauricio; de Goursac, Axel; van Straten, Duco Resurgent deformation quantisation. (English) Zbl 1342.81135 Ann. Phys. 342, 83-102 (2014). MSC: 81Q20 32C81 81R05 81S10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hurley, D. J.; Vandyck, M. A. A minimal framework for non-commutative quantum mechanics. (English) Zbl 1304.81106 Found. Phys. 44, No. 11, 1168-1187 (2014). MSC: 81S10 81R60 53D55 53D17 × Cite Format Result Cite Review PDF Full Text: DOI
Tosiek, J.; Brzykcy, P. States in the Hilbert space formulation and in the phase space formulation of quantum mechanics. (English) Zbl 1342.81027 Ann. Phys. 332, 1-15 (2013). MSC: 81P16 81S30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Biswas, Indranil Quantization of a symplectic manifold associated to a manifold with projective structure. (English) Zbl 1298.53095 J. Math. Phys. 50, No. 7, 072101, 8 p. (2009). MSC: 53D55 81S10 × Cite Format Result Cite Review PDF Full Text: DOI
Anastasiei, Mihai; Vacaru, Sergiu I. Fedosov quantization of Lagrange-Finsler and Hamilton-Cartan spaces and Einstein gravity lifts on (co) tangent bundles. (English) Zbl 1200.53082 J. Math. Phys. 50, No. 1, 013510, 23 p. (2009). MSC: 53D55 53C60 81S10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Racanière, Sébastien Examples of quantisation of Poisson manifolds. (English) Zbl 1108.46048 J. Geom. Phys. 56, No. 9, 1810-1836 (2006). MSC: 46L65 53D17 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kisil, Vladimir V. \(p\)-mechanics and field theory. (English) Zbl 1088.81067 Rep. Math. Phys. 56, No. 2, 161-174 (2005). Reviewer: Benjamin Cahen (Metz) MSC: 81S10 81R05 81R15 53D17 53D55 43A65 15A66 81T70 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bordemann, M.; Makhlouf, A.; Petit, T. Deformation by quantization and rigidity of enveloping algebras. (Déformation par quantification et rigidité des algèbres enveloppantes.) (English) Zbl 1099.17010 J. Algebra 285, No. 2, 623-648 (2005). MSC: 17B30 17B56 16E40 17B37 17B63 53D55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Natsume, Toshikazu \(C^*\)-algebraic deformation and index theory. (English) Zbl 1055.46045 Maeda, Yoshiaki (ed.) et al., Noncommutative differential geometry and its applications to physics. Proceedings of the workshop, Shonan, Japan, May 31–June 4, 1999. Dordrecht: Kluwer Academic Publishers (ISBN 0-7923-6930-0/hbk). Math. Phys. Stud. 23, 155-167 (2001). Reviewer: Daniel A. Dubin (Oxford) MSC: 46L65 58J20 × Cite Format Result Cite Review PDF
Landsman, N. P.; Ramazan, B. Quantization of Poisson algebras associated to Lie algebroids. (English) Zbl 1013.46053 Ramsay, Arlan (ed.) et al., Groupoids in analysis, geometry, and physics. AMS-IMS-SIAM joint summer research conference, University of Colorado, Boulder, CO, USA, June 20-24, 1999. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 282, 159-192 (2001). Reviewer: D.A.Dubin (Milton Keynes) MSC: 46L65 22A22 81S10 46L60 × Cite Format Result Cite Review PDF Full Text: arXiv
Duval, Christian; Lecomte, Pierre; Ovsienko, Valentin Conformally equivariant quantization: existence and uniqueness. (English) Zbl 0932.53048 Ann. Inst. Fourier 49, No. 6, 1999-2029 (1999). MSC: 53D50 81S10 53D55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Numdam EuDML
Karabegov, A. V. On the canonical normalization of a trace density of deformation quantization. (English) Zbl 0943.53052 Lett. Math. Phys. 45, No. 3, 217-228 (1998). Reviewer: M.Rajabov (Baku) MSC: 53D55 81S30 × Cite Format Result Cite Review PDF Full Text: DOI
Bloore, F. J.; Assimakopoulos, M. Quantisation as deformation theory. (English) Zbl 0392.53042 Group theor. Meth. Phys., 4th int. Colloq., Nijmegen 1975, Lect. Notes Phys. 50, 164-171 (1976). MSC: 53C80 53C15 81Q99 53D50 × Cite Format Result Cite Review PDF