×

Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic. (English) Zbl 1437.94062

Summary: This paper proposes a new chaotic cryptosystem for the encryption of very high-resolution digital images based on the design of a digital chaos generator by using arbitrary precision arithmetic. This can be taken as an alternative to reduce the dynamic degradation that chaotic models present when they are implemented in digital devices and to increase the security of the cryptosystems. The obtained results show that when using high-precision arithmetic, the generated sequences provide good randomness and security during a greater number of iterations of the implemented chaotic maps in comparison with the generated sequences by using the standard of simple precision or double precision according to the IEEE 754 standard for floating-point arithmetic. The proposed method does not require high-cost hardware for increasing the numerical accuracy and security. As an advantage versus other recent works, using high precision, in relation to the methods that use simple precision or double precision, it awards an exponential increase in the key space. In this manner, it is demonstrated that using multiple-precision arithmetic, a key space of \(2^{33,268}\) or higher can be obtained, depending on the level of high precision configured. The security analysis confirms that the proposed chaotic cryptosystem is secure and robust against several known attacks, as well as statistical tests of NIST and TestU01, proving that high-precision arithmetic helps to enhance the security of the cryptosystems.

MSC:

94A60 Cryptography
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
68P25 Data encryption (aspects in computer science)

Software:

TestU01; Python; ASE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Morabito, R., Petrolo, R., Loscri, V., Mitton, N.: LEGIoT: a lightweight edge gateway for the internet of things. Fut. Gen. Comput. Syst. 81, 1-15 (2018)
[2] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347-2376 (2015)
[3] Ng, I.C.L., Wakenshaw, S.Y.L.: The internet-of-things: review and research directions. Int. J. Res. Mark. 34(1), 3-21 (2017)
[4] Kocamaz, U.E., Çiçek, S., Uyaroğlu, Y.: Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits Syst. Comput. 27(04), 1850057 (2018)
[5] Inzunza-González, E., Cruz-Hernández, C.: Double hyperchaotic encryption for security in biometric systems. Nonlinear Dyn. Syst. Theory 13(1), 55-68 (2013) · Zbl 1298.68082
[6] Ferreira, H.G.C., de Sousa Junior, R.T.: Security analysis of a proposed internet of things middleware. Cluster Comput. 20(1), 651-660 (2017)
[7] Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M.: Implementation of an improved chaotic encryption algorithm for real-time embedded systems by using a 32-bit microcontroller. Microprocess. Microsyst. 45, 297-309 (2016)
[8] Li, S., Mou, X., Cai, Y., Ji, Z., Zhang, J.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. Comput. Phys. Commun. 153(1), 52-58 (2003) · Zbl 1196.94057
[9] Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE Multimed. 25(4), 46-56 (2018)
[10] Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M., Bailey, D., Bass, S., Bhandarkar, D., Bhat, M., Bindel, D., Boldo, S., et al.: IEEE standard for floating-point arithmetic. IEEE Std. 754-2008, 1-70 (2008)
[11] Azzaz, M.S., Tanougast, C., Sadoudi, S., Bouridane, A.: Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2035-2047 (2013) · Zbl 1321.94035
[12] Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129-2151 (2006) · Zbl 1192.94088
[13] Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119-3151 (2005) · Zbl 1093.37514
[14] Deng, Y., Hu, H., Xiong, W., Xiong, N.N., Liu, L.: Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans. Syst. Man Cybern. Syst. 45(8), 1187-1200 (2015)
[15] Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M., Del Campo, OR A.: A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process. 109, 119-131 (2015)
[16] Li, C., Lin, D., Feng, B., Lü, J., Hao, F.: Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6, 75834-75842 (2018)
[17] García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 82(4), 2119-2131 (2015) · Zbl 1348.94047
[18] Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373-2391 (2016) · Zbl 1354.65012
[19] Dragan, L., Mladen, N.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90(1), 223-232 (2017)
[20] Murillo-Escobar, M.A., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407-425 (2017)
[21] Palacios-Luengas, L., Pichardo-Méndez, J.L., Díaz-Méndez, J.A., Rodríguez-Santos, F., Vázquez-Medina, R.: PRNG based on skew tent map. Arab. J. Sci. Eng. 1-14 (2018). https://doi.org/10.1007/s13369-018-3688-y
[22] Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723-744 (2018)
[23] National Institute of Standards and Technology: Security requirements for cryptographic modules. US Department of Commerce, National Institute of Standards and Technology (2017)
[24] Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L. et al.: SP 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology (2010)
[25] Deng, Y., Hanping, H., Xiong, N., Xiong, W., Liu, L.: A general hybrid model for chaos robust synchronization and degradation reduction. Inf. Sci. 305, 146-164 (2015) · Zbl 1360.93022
[26] Liu, L., Liu, B., Hanping, H., Miao, S.: Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 28(05), 1850059 (2018) · Zbl 1390.37058
[27] Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I: Reg. Pap. 63(3), 401-412 (2016) · Zbl 1469.94118
[28] Yu-Ming, X., Qiang, X., Bao, B.-C.: Grid-scroll hyperchaotic system based on microcontroller digital hardware implementation. Acta Physica Sinica 59(9), 5959-5965 (2010)
[29] Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1-3), 66-80 (2015) · Zbl 1457.37052
[30] François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 19(4), 887-895 (2014) · Zbl 1360.94308
[31] François, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number generator based on two chaotic maps. Informatica 24(2), 181-197 (2013) · Zbl 1360.94308
[32] Heidari-Bateni, G., McGillem, C.D.: A chaotic direct-sequence spread-spectrum communication system. IEEE Trans. Commun. 42(234), 1524-1527 (1994)
[33] Rodríguez-Orozco, E., García-Guerrero, E.E., Inzunza-Gonzalez, E., López-Bonilla, O.R., Flores-Vergara, A., Cárdenas-Valdez, J.R., Tlelo-Cuautle, E.: FPGA-based chaotic cryptosystem by using voice recognition as access key. Electronics 7(12), 414 (2018)
[34] Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., Rangel-Magdaleno, J.J., Cruz Nuñez-Perez, J.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879-1892 (2015) · Zbl 1441.94006
[35] Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A.: Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission. EURASIP J. Image Video Process. 2013(1), 43 (2013) · Zbl 1277.94069
[36] Azzaz, M.S., Tanougast, C., Sadoudi, S., Fellah, R., Dandache, A.: A new auto-switched chaotic system and its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1792-1804 (2013) · Zbl 1277.94069
[37] Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545-1551 (2014)
[38] IEEE Design Automation Standards Committee et al.: Std 1076-2008. IEEE standard VHDL language reference manual. IEEE, New York, NY, USA (2008)
[39] Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27(9), 1371-1381 (2009)
[40] Ping, P., Jinjie, W., Mao, Y., Feng, X., Fan, J.: Design of image cipher using life-like cellular automata and chaotic map. Signal Process. 150, 233-247 (2018)
[41] Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305-313 (2018)
[42] Lu, X., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17-25 (2016)
[43] Cao, C., Sun, K., Liu, W.: A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 143, 122-133 (2018)
[44] Pak, C., Huang, L.: A new color image encryption using combination of the 1D chaotic map. Signal Process. 138, 129-137 (2017)
[45] Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32(4), 1518-1529 (2007) · Zbl 1127.94004
[46] Wei, H., Guo, H., Geng, H., Zhang, K., Liu, J., Liu, X.: A novel design of software system on chip for embedded system. J. Signal Process. Syst. 86(2-3), 135-147 (2017)
[47] Larsen, A.H., Mortensen, J.J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C. et al.: The atomic simulation environment—a python library for working with atoms. J. Phys. Condens. Matter. 29(27), 273002 (2017)
[48] Smith, D.M.: Using multiple-precision arithmetic. Comput. Sci. Eng. 5(4), 88-93 (2003)
[49] Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT) 1(2), 31-38 (2011)
[50] Marinescu, D.C.: Classical and Quantum Information. Academic Press, Cambridge (2011) · Zbl 1496.81008
[51] Junod, P., Canteaut, A.: Advanced Linear Cryptanalysis of Block and Stream Ciphers (Cryptology and Information Security). IOS Press, Amsterdam (2011) · Zbl 1238.94003
[52] Siddavaatam, P., Sedaghat, R.: A novel architecture with scalable security having expandable computational complexity for stream ciphers. Facta Universitatis, Series: Electronics and Energetics 30(4), 459-475 (2017)
[53] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656-715 (1949) · Zbl 1200.94005
[54] Yuan, S., Jiang, T., Jing, Z.: Bifurcation and chaos in the tinkerbell map. Int. J. Bifurc. Chaos 21(11), 3137-3156 (2011) · Zbl 1258.37057
[55] Chen, L.-Q.: An open-plus-closed-loop control for discrete chaos and hyperchaos. Phys. Lett. A 281(5-6), 327-333 (2001) · Zbl 0984.37059
[56] Itoh, M., Yang, T., Chua, L.O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11(02), 551-560 (2001) · Zbl 1090.37520
[57] Verhulst, P.-F.: Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux mémoires de l’académie royale des sciences et belles-lettres de Bruxelles 18, 14-54 (1845)
[58] Hénon, M.: A two-dimensional mapping with a strange attractor. In: The Theory of Chaotic Attractors, pp. 94-102. Springer (1976)
[59] Moon, F.C., Linsay, P.S., Mallinckrodt, A.J., McKay, S.: Chaotic and fractal dynamics: an introduction for applied scientists and engineers. Comput. Phys. 8(1), 69 (1994)
[60] Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996) · Zbl 0868.94001
[61] L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS) 33(4), 22 (2007) · Zbl 1365.65008
[62] Li, J., Zheng, J., Whitlock, P.: Efficient deterministic and non-deterministic pseudorandom number generation. Math. Comput. Simul. 143, 114-124 (2018) · Zbl 1481.65015
[63] Yang, L., Xiao-Jun, T.: A new pseudorandom number generator based on complex number chaotic equation. Chin. Phys. B 21(9), 090506 (2012)
[64] Stoyanov, B., Kordov, K.: Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Adv. Stud. Theor. Phys. 9(9), 411-421 (2015)
[65] Adlam, E., Kent, A.: Deterministic relativistic quantum bit commitment. Int. J. Quantum Inf. 13(05), 1550029 (2015) · Zbl 1329.81157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.