Xiao, Mingcong; Wang, Zhibo; Mo, Yan An implicit nonlinear difference scheme for two-dimensional time-fractional Burgers’ equation with time delay. (English) Zbl 07746734 J. Appl. Math. Comput. 69, No. 4, 2919-2934 (2023). MSC: 65M06 35Q53 35R11 65M12 PDF BibTeX XML Cite \textit{M. Xiao} et al., J. Appl. Math. Comput. 69, No. 4, 2919--2934 (2023; Zbl 07746734) Full Text: DOI
Sharma, Nitika; Kaushik, Aditya A uniformly convergent difference method for singularly perturbed parabolic partial differential equations with large delay and integral boundary condition. (English) Zbl 07676697 J. Appl. Math. Comput. 69, No. 1, 1071-1093 (2023). MSC: 65Mxx 65Qxx 35Kxx PDF BibTeX XML Cite \textit{N. Sharma} and \textit{A. Kaushik}, J. Appl. Math. Comput. 69, No. 1, 1071--1093 (2023; Zbl 07676697) Full Text: DOI
Zhang, Yaoyao; Wang, Zhibo Numerical simulation for time-fractional diffusion-wave equations with time delay. (English) Zbl 1509.65080 J. Appl. Math. Comput. 69, No. 1, 137-157 (2023). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Wang}, J. Appl. Math. Comput. 69, No. 1, 137--157 (2023; Zbl 1509.65080) Full Text: DOI
Zarubin, A. N.; Chaplygina, E. V. The Tricomi problem for a difference-differential equation of mixed type in an unbounded domain. (English. Russian original) Zbl 1518.35510 Russ. Math. 66, No. 12, 53-61 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 12, 57-67 (2022). MSC: 35M12 35R10 PDF BibTeX XML Cite \textit{A. N. Zarubin} and \textit{E. V. Chaplygina}, Russ. Math. 66, No. 12, 53--61 (2022; Zbl 1518.35510); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 12, 57--67 (2022) Full Text: DOI
Adimy, Mostafa; Chekroun, Abdennasser; Kazmierczak, Bogdan Traveling waves for reaction-diffusion PDE coupled to difference equation with nonlocal dispersal term and time delay. (English) Zbl 1514.35081 Math. Model. Nat. Phenom. 17, Paper No. 17, 31 p. (2022). MSC: 35C07 35K58 35R09 92D30 PDF BibTeX XML Cite \textit{M. Adimy} et al., Math. Model. Nat. Phenom. 17, Paper No. 17, 31 p. (2022; Zbl 1514.35081) Full Text: DOI
Sequeira, Tiago F.; Lima, Pedro M. Numerical simulations of one- and two-dimensional stochastic neural field equations with delay. (English) Zbl 1494.65084 J. Comput. Neurosci. 50, No. 3, 299-311 (2022). MSC: 65M60 65M06 65N30 65T50 65R20 65M12 65Z05 35R09 92B20 92-08 35Q92 35R07 PDF BibTeX XML Cite \textit{T. F. Sequeira} and \textit{P. M. Lima}, J. Comput. Neurosci. 50, No. 3, 299--311 (2022; Zbl 1494.65084) Full Text: DOI
Zhong, Lin; Ma, Shufang; Joka, Dengata Lemu Meshless method for delay partial differential equations with piecewise continuous arguments. (Chinese. English summary) Zbl 1488.65530 Chin. J. Comput. Mech. 38, No. 2, 160-165 (2021). MSC: 65M70 65M22 65M12 65M06 65N35 65D05 65D12 35R07 PDF BibTeX XML Cite \textit{L. Zhong} et al., Chin. J. Comput. Mech. 38, No. 2, 160--165 (2021; Zbl 1488.65530) Full Text: DOI
Zarubin, A. N. The Tricomi problem for the Lavrent’ev-Bitsadze differential-difference equation. (English. Russian original) Zbl 1470.35241 Russ. Math. 65, No. 4, 61-71 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 4, 69-79 (2021). MSC: 35M12 35R10 PDF BibTeX XML Cite \textit{A. N. Zarubin}, Russ. Math. 65, No. 4, 61--71 (2021; Zbl 1470.35241); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 4, 69--79 (2021) Full Text: DOI
Göttlich, Simone; Iacomini, Elisa; Jung, Thomas Properties of the LWR model with time delay. (English) Zbl 1469.35145 Netw. Heterog. Media 16, No. 1, 31-47 (2021). MSC: 35L65 90B20 65M06 76A30 PDF BibTeX XML Cite \textit{S. Göttlich} et al., Netw. Heterog. Media 16, No. 1, 31--47 (2021; Zbl 1469.35145) Full Text: DOI arXiv
Guo, Zhiming; Guo, Hongpeng; Chen, Yuming Traveling wavefronts of a delayed temporally discrete reaction-diffusion equation. (English) Zbl 1459.39018 J. Math. Anal. Appl. 496, No. 1, Article ID 124787, 23 p. (2021). MSC: 39A14 39A12 35K57 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Math. Anal. Appl. 496, No. 1, Article ID 124787, 23 p. (2021; Zbl 1459.39018) Full Text: DOI
Ashyralyev, A.; Agirseven, D.; Agarwal, R. P. Stability estimates for delay parabolic differential and difference equations. (English) Zbl 1473.35617 Appl. Comput. Math. 19, No. 2, 175-204 (2020). MSC: 35R10 35K20 65M06 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Appl. Comput. Math. 19, No. 2, 175--204 (2020; Zbl 1473.35617) Full Text: Link
Gorbova, T. V.; Pimenov, V. G.; Solodushkin, S. I. Crank-Nicolson numerical algorithm for nonlinear partial differential equation with heredity and its program implementation. (English) Zbl 1501.65035 Pinelas, Sandra (ed.) et al., Mathematical analysis with applications. In honor of the 90th birthday of Constantin Corduneanu, Ekaterinburg, Russia, July 26–28, 2018. Cham: Springer. Springer Proc. Math. Stat. 318, 33-43 (2020). MSC: 65M06 65M12 65-04 35R07 PDF BibTeX XML Cite \textit{T. V. Gorbova} et al., Springer Proc. Math. Stat. 318, 33--43 (2020; Zbl 1501.65035) Full Text: DOI
Zeid, Samaneh Soradi Approximation methods for solving fractional equations. (English) Zbl 1448.65059 Chaos Solitons Fractals 125, 171-193 (2019). MSC: 65L03 65M06 65-02 35R11 34K37 45J05 PDF BibTeX XML Cite \textit{S. S. Zeid}, Chaos Solitons Fractals 125, 171--193 (2019; Zbl 1448.65059) Full Text: DOI
Zarubin, Aleksandr N. Boundary value problem for a mixed functionally differential advancing-lagging equation with fractional derivative. (English. Russian original) Zbl 1429.35207 Russ. Math. 63, No. 4, 44-56 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 52-65 (2019). MSC: 35R11 35R10 35K55 PDF BibTeX XML Cite \textit{A. N. Zarubin}, Russ. Math. 63, No. 4, 44--56 (2019; Zbl 1429.35207); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 52--65 (2019) Full Text: DOI
Gorbova, Tat’yana Vladimirovna; Pimenov, Vladimir Germanovich; Solodushkin, Svyatoslav Igor’evich Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator. (Russian. English summary) Zbl 1428.65007 Sib. Èlektron. Mat. Izv. 16, 1587-1599 (2019). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{T. V. Gorbova} et al., Sib. Èlektron. Mat. Izv. 16, 1587--1599 (2019; Zbl 1428.65007) Full Text: DOI
Burger, Michael; Göttlich, Simone; Jung, Thomas Derivation of second order traffic flow models with time delays. (English) Zbl 1426.35150 Netw. Heterog. Media 14, No. 2, 265-288 (2019). MSC: 35L60 90B20 65M06 PDF BibTeX XML Cite \textit{M. Burger} et al., Netw. Heterog. Media 14, No. 2, 265--288 (2019; Zbl 1426.35150) Full Text: DOI
Wang, Lisha; Qin, Wendi; Ding, Xiaohua Dissipativity of \(\theta \)-methods for a class of advection-reaction-diffusion equations with both fixed and distributed delays. (English) Zbl 1499.65440 Int. J. Comput. Math. 95, No. 8, 1672-1687 (2018). MSC: 65M06 35K57 35R09 35R10 45D05 45J05 65L03 65M12 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Comput. Math. 95, No. 8, 1672--1687 (2018; Zbl 1499.65440) Full Text: DOI
Ran, Maohua; He, Yu Linearized Crank-Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay. (English) Zbl 1499.65425 Int. J. Comput. Math. 95, No. 12, 2458-2470 (2018). MSC: 65M06 65M12 35K58 35R10 35R11 PDF BibTeX XML Cite \textit{M. Ran} and \textit{Y. He}, Int. J. Comput. Math. 95, No. 12, 2458--2470 (2018; Zbl 1499.65425) Full Text: DOI
Zhang, Qifeng; Chen, Mengzhe; Xu, Yinghong; Xu, Dinghua Compact \(\theta \)-method for the generalized delay diffusion equation. (English) Zbl 1427.65202 Appl. Math. Comput. 316, 357-369 (2018). MSC: 65M06 35K20 35R10 65M12 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Math. Comput. 316, 357--369 (2018; Zbl 1427.65202) Full Text: DOI
Dehghan, Mehdi; Abbaszadeh, Mostafa A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. (English) Zbl 1395.65098 Math. Methods Appl. Sci. 41, No. 9, 3476-3494 (2018). MSC: 65M70 65M06 65M12 65M60 35R11 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Abbaszadeh}, Math. Methods Appl. Sci. 41, No. 9, 3476--3494 (2018; Zbl 1395.65098) Full Text: DOI
Pimenov, V. G. Numerical method for fractional advection-diffusion equation with heredity. (English. Russian original) Zbl 1395.65053 J. Math. Sci., New York 230, No. 5, 737-741 (2018); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 132 (2016). MSC: 65M12 35R11 65D05 65M06 26A33 PDF BibTeX XML Cite \textit{V. G. Pimenov}, J. Math. Sci., New York 230, No. 5, 737--741 (2018; Zbl 1395.65053); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 132 (2016) Full Text: DOI
Pimenov, Vladimir G.; Hendy, Ahmed S. A numerical solution for a class of time fractional diffusion equations with delay. (English) Zbl 1373.35334 Int. J. Appl. Math. Comput. Sci. 27, No. 3, 477-488 (2017). MSC: 35R11 65M06 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. S. Hendy}, Int. J. Appl. Math. Comput. Sci. 27, No. 3, 477--488 (2017; Zbl 1373.35334) Full Text: DOI
Gu, Wei; Zhou, Yanli; Ge, Xiangyu A compact difference scheme for solving fractional neutral parabolic differential equation with proportional delay. (English) Zbl 1376.65114 J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017). MSC: 65M06 35K55 35R11 35K20 35R10 65M12 PDF BibTeX XML Cite \textit{W. Gu} et al., J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017; Zbl 1376.65114) Full Text: DOI
Zhang, Qifeng; Ran, Maohua; Xu, Dinghua Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. (English) Zbl 1373.65061 Appl. Anal. 96, No. 11, 1867-1884 (2017). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35R11 35K58 35R10 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Anal. 96, No. 11, 1867--1884 (2017; Zbl 1373.65061) Full Text: DOI
Solodushkin, Svyatoslav I.; Sagoyan, Arsen A.; Yumanova, Irina F. One parallel method for solving the multidimensional transfer equation with aftereffect. (English) Zbl 1368.65147 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 617-624 (2017). MSC: 65M06 35L02 35R10 65Y05 PDF BibTeX XML Cite \textit{S. I. Solodushkin} et al., Lect. Notes Comput. Sci. 10187, 617--624 (2017; Zbl 1368.65147) Full Text: DOI
Pimenov, Vladimir; Hendy, Ahmed Numerical methods for a class of fractional advection-diffusion models with functional delay. (English) Zbl 1368.65145 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 533-541 (2017). MSC: 65M06 35K20 35R11 65M12 PDF BibTeX XML Cite \textit{V. Pimenov} and \textit{A. Hendy}, Lect. Notes Comput. Sci. 10187, 533--541 (2017; Zbl 1368.65145) Full Text: DOI
Aleshin, S.; Glyzin, S.; Kaschenko, S. Waves interaction in the Fisher-Kolmogorov equation with arguments deviation. (English) Zbl 1486.65145 Lobachevskii J. Math. 38, No. 1, 24-29 (2017). MSC: 65M20 65M06 65L06 65Y05 35A18 35B10 35K57 35K91 35R10 35R07 35Q92 PDF BibTeX XML Cite \textit{S. Aleshin} et al., Lobachevskii J. Math. 38, No. 1, 24--29 (2017; Zbl 1486.65145) Full Text: DOI
Yuan, Chunhua; Liu, Shutang An envelope surface method for determining oscillation of a delay 2-D discrete convection system. (English) Zbl 1370.39006 J. Dyn. Differ. Equations 29, No. 1, 25-40 (2017). Reviewer: Yuming Chen (Waterloo) MSC: 39A21 39A14 39A12 34K11 PDF BibTeX XML Cite \textit{C. Yuan} and \textit{S. Liu}, J. Dyn. Differ. Equations 29, No. 1, 25--40 (2017; Zbl 1370.39006) Full Text: DOI
Solodushkin, Svyatoslav I.; Yumanova, Irina F.; De Staelen, Rob H. A difference scheme for multidimensional transfer equations with time delay. (English) Zbl 1357.65134 J. Comput. Appl. Math. 318, 580-590 (2017). MSC: 65M06 35Q92 92D30 65M12 35R10 PDF BibTeX XML Cite \textit{S. I. Solodushkin} et al., J. Comput. Appl. Math. 318, 580--590 (2017; Zbl 1357.65134) Full Text: DOI
Pimenov, Vladimir G.; Hendy, Ahmed S. Fractional analog of Crank-Nicholson method for the two sided space fractional partial equation with functional delay. (English) Zbl 1398.65217 Ural Math. J. 2, No. 1, 48-57 (2016). MSC: 65M06 35R10 65M12 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. S. Hendy}, Ural Math. J. 2, No. 1, 48--57 (2016; Zbl 1398.65217) Full Text: DOI MNR
Zhang, Yanmin; Liu, Mingding A numerical method for solving certain fractional diffusion differential equations with delay. (Chinese. English summary) Zbl 1374.65146 J. Qufu Norm. Univ., Nat. Sci. 42, No. 4, 1-4 (2016). MSC: 65M06 65M12 35R10 35R11 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{M. Liu}, J. Qufu Norm. Univ., Nat. Sci. 42, No. 4, 1--4 (2016; Zbl 1374.65146)
Amiraliyev, Gabil M.; Kudu, Mustafa; Amirali, Ilhame Analysis of difference approximations to delay pseudo-parabolic equations. (English) Zbl 1355.65109 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, May 18–22, 2015. Selected contributions. Cham: Springer (ISBN 978-3-319-32855-3/hbk; 978-3-319-32857-7/ebook). Springer Proceedings in Mathematics & Statistics 164, 159-168 (2016). MSC: 65M06 35K70 35R10 65M15 65M20 65L06 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} et al., Springer Proc. Math. Stat. 164, 159--168 (2016; Zbl 1355.65109) Full Text: DOI
Wang, Yejuan On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. (English) Zbl 1353.37148 Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3669-3708 (2016). MSC: 37L55 35K57 35R60 58J65 37H10 PDF BibTeX XML Cite \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3669--3708 (2016; Zbl 1353.37148) Full Text: DOI
Bulavatsky, V. M.; Bogaenko, V. A. Mathematical modeling of the dynamics of nonequilibrium in time convection-diffusion processes in domains with free boundaries. (English. Russian original) Zbl 1348.93026 Cybern. Syst. Anal. 52, No. 3, 427-440 (2016); translation from Kibern. Sist. Anal. 2016, No. 3, 106-121 (2016). MSC: 93A30 35R11 65M06 PDF BibTeX XML Cite \textit{V. M. Bulavatsky} and \textit{V. A. Bogaenko}, Cybern. Syst. Anal. 52, No. 3, 427--440 (2016; Zbl 1348.93026); translation from Kibern. Sist. Anal. 2016, No. 3, 106--121 (2016) Full Text: DOI
Liu, Z.; Wu, Z.; Ume, J. S.; Kang, S. M. Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation. (English) Zbl 1373.39009 Bull. Iran. Math. Soc. 41, No. 2, 389-405 (2015). MSC: 39A14 39A10 34K40 PDF BibTeX XML Cite \textit{Z. Liu} et al., Bull. Iran. Math. Soc. 41, No. 2, 389--405 (2015; Zbl 1373.39009) Full Text: Link
Hendy, A. S. A linearized difference scheme for a class of fractional partial differential equations with delay. (English) Zbl 1382.65244 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2015, No. 2(46), 236-242 (2015). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{A. S. Hendy}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2015, No. 2(46), 236--242 (2015; Zbl 1382.65244) Full Text: MNR
Liu, Zeqing; Yang, Meiling; Kang, Shin Min; Kwun, Young Chel Positive solutions for a fifth order nonlinear neutral delay partial difference equation. (English) Zbl 1352.39006 Panam. Math. J. 25, No. 4, 71-94 (2015). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 39A14 39A12 35R10 35Q20 39A22 PDF BibTeX XML Cite \textit{Z. Liu} et al., Panam. Math. J. 25, No. 4, 71--94 (2015; Zbl 1352.39006)
Tashirova, E. E. Convergence of the difference method of solving the two-dimensional wave equation with heredity. (Russian. English summary) Zbl 1333.65102 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 25, No. 1, 78-92 (2015). MSC: 65M12 65M06 35L70 35R10 65M15 PDF BibTeX XML Cite \textit{E. E. Tashirova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 25, No. 1, 78--92 (2015; Zbl 1333.65102) Full Text: DOI MNR
Ashyralyev, Allaberen; Agirseven, Deniz Difference schemes for delay parabolic equations with periodic boundary conditions. (English) Zbl 1359.65145 Dimov, Ivan (ed.) et al., Finite difference methods, theory and applications. 6th international conference, FDM 2014, Lozenetz, Bulgaria, June 18–23, 2014. Revised selected papers. Cham: Springer (ISBN 978-3-319-20238-9/pbk; 978-3-319-20239-6/ebook). Lecture Notes in Computer Science 9045, 145-152 (2015). MSC: 65M06 35K20 35R10 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{D. Agirseven}, Lect. Notes Comput. Sci. 9045, 145--152 (2015; Zbl 1359.65145) Full Text: DOI
Solodushkin, Svyatoslav I.; Yumanova, Irina F.; De Staelen, Rob H. First order partial differential equations with time delay and retardation of a state variable. (English) Zbl 1317.65179 J. Comput. Appl. Math. 289, 322-330 (2015). MSC: 65M06 35Q92 35R10 92C37 65M12 PDF BibTeX XML Cite \textit{S. I. Solodushkin} et al., J. Comput. Appl. Math. 289, 322--330 (2015; Zbl 1317.65179) Full Text: DOI
Polyanin, Andrei D.; Zhurov, Alexei I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. (English) Zbl 1470.35219 Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 417-430 (2014). MSC: 35K91 35C05 35R10 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{A. I. Zhurov}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 417--430 (2014; Zbl 1470.35219) Full Text: DOI
Polyanin, Andrei D.; Zhurov, Alexei I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations. (English) Zbl 1470.35218 Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 409-416 (2014). MSC: 35K91 35C05 35R10 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{A. I. Zhurov}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 409--416 (2014; Zbl 1470.35218) Full Text: DOI
Zhang, Yanmin A numerical method for solving time fractional delay parabolic equation. (Chinese. English summary) Zbl 1313.65238 J. Guizhou Norm. Univ., Nat. Sci. 32, No. 3, 55-57 (2014). MSC: 65M06 65M12 35K20 35R11 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Guizhou Norm. Univ., Nat. Sci. 32, No. 3, 55--57 (2014; Zbl 1313.65238)
Zhang, Qifeng; Xu, Dinghua An implicit difference scheme for a class of nonlinear delay impulsive hyperbolic partial differential equations. (Chinese. English summary) Zbl 1313.65236 Commun. Appl. Math. Comput. 28, No. 3, 291-299 (2014). MSC: 65M06 65M12 35L70 35R10 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{D. Xu}, Commun. Appl. Math. Comput. 28, No. 3, 291--299 (2014; Zbl 1313.65236) Full Text: DOI
Sun, Zhi-Zhong; Zhang, Zai-Bin A linearized compact difference scheme for a class of nonlinear delay partial differential equations. (English) Zbl 1352.65270 Appl. Math. Modelling 37, No. 3, 742-752 (2013). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{Z.-Z. Sun} and \textit{Z.-B. Zhang}, Appl. Math. Modelling 37, No. 3, 742--752 (2013; Zbl 1352.65270) Full Text: DOI
Wang, Yuanming; Zhu, Mingming A higher-order monotone iterative method for finite difference systems of nonlinear reaction-diffusion equations with time delays. (Chinese. English summary) Zbl 1289.65195 Commun. Appl. Math. Comput. 27, No. 1, 40-55 (2013). MSC: 65M06 65M12 35K57 35R10 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{M. Zhu}, Commun. Appl. Math. Comput. 27, No. 1, 40--55 (2013; Zbl 1289.65195) Full Text: DOI
Song, Xinmin; Yan, Xuehua Duality between state estimation and linear quadratic tracking for time-delay systems. (English) Zbl 1261.93079 Appl. Math. Sci., Ruse 6, No. 85-88, 4239-4248 (2012). MSC: 93E10 93C55 49N10 49L20 93E11 PDF BibTeX XML Cite \textit{X. Song} and \textit{X. Yan}, Appl. Math. Sci., Ruse 6, No. 85--88, 4239--4248 (2012; Zbl 1261.93079) Full Text: Link
Liu, Zeqing; Wu, Zhihua; Jung, Chahn Yong; Kang, Shin Min Bounded positive solutions of a second order nonlinear neutral delay partial difference equation. (English) Zbl 1260.39009 Panam. Math. J. 22, No. 1, 75-90 (2012). Reviewer: Zhiming Guo (Guangzhou) MSC: 39A14 39A12 35R10 39A22 PDF BibTeX XML Cite \textit{Z. Liu} et al., Panam. Math. J. 22, No. 1, 75--90 (2012; Zbl 1260.39009)
Agirseven, Deniz Approximate solutions of delay parabolic equations with the Dirichlet condition. (English) Zbl 1246.65145 Abstr. Appl. Anal. 2012, Article ID 682752, 31 p. (2012). MSC: 65M06 65M99 35R10 35K20 65M12 PDF BibTeX XML Cite \textit{D. Agirseven}, Abstr. Appl. Anal. 2012, Article ID 682752, 31 p. (2012; Zbl 1246.65145) Full Text: DOI
Pimenov, V. G.; Lozhnikov, A. B. Difference schemes for the numerical solution of the heat conduction equation with aftereffect. (English. Russian original) Zbl 1301.65094 Proc. Steklov Inst. Math. 275, Suppl. 1, S137-S148 (2011); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 17, No. 1, 178-189 (2011). MSC: 65M06 35K05 35R10 65M12 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. B. Lozhnikov}, Proc. Steklov Inst. Math. 275, S137--S148 (2011; Zbl 1301.65094); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 17, No. 1, 178--189 (2011) Full Text: DOI
Singh, Paramjeet; Sharma, Kapil K. Finite difference approximations for the first-order hyperbolic partial differential equation with point-wise delay. (English) Zbl 1256.65083 Int. J. Pure Appl. Math. 67, No. 1, 49-67 (2011). Reviewer: Snezhana Gocheva-Ilieva (Plovdiv) MSC: 65M06 65M12 35L02 35R10 PDF BibTeX XML Cite \textit{P. Singh} and \textit{K. K. Sharma}, Int. J. Pure Appl. Math. 67, No. 1, 49--67 (2011; Zbl 1256.65083) Full Text: arXiv
Bashier, E. B. M.; Patidar, K. C. A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. (English) Zbl 1227.65070 J. Difference Equ. Appl. 17, No. 5, 779-794 (2011). Reviewer: Angela Handlovičová (Bratislava) MSC: 65M06 65M12 65M15 35B25 35K20 35R10 PDF BibTeX XML Cite \textit{E. B. M. Bashier} and \textit{K. C. Patidar}, J. Difference Equ. Appl. 17, No. 5, 779--794 (2011; Zbl 1227.65070) Full Text: DOI
Singh, Paramjeet; Sharma, Kapil K. Numerical approximations to the transport equation arising in neuronal variability. (English) Zbl 1218.92022 Int. J. Pure Appl. Math. 69, No. 3, 341-356 (2011). MSC: 92C20 35L04 65M06 PDF BibTeX XML Cite \textit{P. Singh} and \textit{K. K. Sharma}, Int. J. Pure Appl. Math. 69, No. 3, 341--356 (2011; Zbl 1218.92022) Full Text: Link
Bashier, E. B. M.; Patidar, K. C. A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. (English) Zbl 1221.65213 Appl. Math. Comput. 217, No. 9, 4728-4739 (2011). Reviewer: Petr Sváček (Praha) MSC: 65M06 65M12 35R10 35B25 35K10 PDF BibTeX XML Cite \textit{E. B. M. Bashier} and \textit{K. C. Patidar}, Appl. Math. Comput. 217, No. 9, 4728--4739 (2011; Zbl 1221.65213) Full Text: DOI
Czernous, W. Generalized Euler method for quasilinear hyperbolic IBVPs with state dependent delays. (English) Zbl 1247.65115 Funct. Differ. Equ. 17, No. 1-2, 79-103 (2010). Reviewer: Roland Pulch (Wuppertal) MSC: 65M06 65M12 35R10 35L50 65R20 45K05 PDF BibTeX XML Cite \textit{W. Czernous}, Funct. Differ. Equ. 17, No. 1--2, 79--103 (2010; Zbl 1247.65115)
García, P.; Castro, M. A.; Martín, J. A.; Sirvent, A. Convergence of two implicit numerical schemes for diffusion mathematical models with delay. (English) Zbl 1205.65232 Math. Comput. Modelling 52, No. 7-8, 1279-1287 (2010). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{P. García} et al., Math. Comput. Modelling 52, No. 7--8, 1279--1287 (2010; Zbl 1205.65232) Full Text: DOI
Bashier, Eihab B. M.; Patidar, Kailash C. An almost second order fitted mesh numerical method for a singularly perturbed delay parabolic partial differential equation. (English) Zbl 1214.65043 Neural Parallel Sci. Comput. 18, No. 2, 137-154 (2010). Reviewer: Jiří Vaníček (Praha) MSC: 65M06 35K20 35R10 65M50 65M12 65M15 PDF BibTeX XML Cite \textit{E. B. M. Bashier} and \textit{K. C. Patidar}, Neural Parallel Sci. Comput. 18, No. 2, 137--154 (2010; Zbl 1214.65043)
Shu, Axiu; Hao, Qingyi; Hu, Wanbao Numerical method for nonlinear parabolic equations with time delay. (Chinese. English summary) Zbl 1212.65324 J. Jilin Univ., Sci. 47, No. 4, 723-729 (2009). MSC: 65M06 35K55 65M12 35R10 PDF BibTeX XML Cite \textit{A. Shu} et al., J. Jilin Univ., Sci. 47, No. 4, 723--729 (2009; Zbl 1212.65324)
García, P.; Castro, M. A.; Martín, J. A.; Sirvent, A. Numerical solutions of diffusion mathematical models with delay. (English) Zbl 1185.65148 Math. Comput. Modelling 50, No. 5-6, 860-868 (2009). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{P. García} et al., Math. Comput. Modelling 50, No. 5--6, 860--868 (2009; Zbl 1185.65148) Full Text: DOI
Tian, Hongjiong Asymptotic stability analysis of the linear \(\theta \)-method for linear parabolic differential equations with delay. (English) Zbl 1169.65084 J. Difference Equ. Appl. 15, No. 5, 473-487 (2009). Reviewer: Gerald W. Hedstrom (Pleasanton) MSC: 65M12 65M06 35R10 PDF BibTeX XML Cite \textit{H. Tian}, J. Difference Equ. Appl. 15, No. 5, 473--487 (2009; Zbl 1169.65084) Full Text: DOI Link
Aleshin, P. S.; Zarubin, A. N. Initial-boundary value problem for a difference-differential diffusion equation with fractional derivative and distributed delay. (English. Russian original) Zbl 1161.35056 Differ. Equ. 43, No. 10, 1396-1402 (2007); translation from Differ. Uravn. 43, No. 10, 1363-1368 (2007). Reviewer: Peixuan Weng (Guangzhou) MSC: 35R10 PDF BibTeX XML Cite \textit{P. S. Aleshin} and \textit{A. N. Zarubin}, Differ. Equ. 43, No. 10, 1396--1402 (2007; Zbl 1161.35056); translation from Differ. Uravn. 43, No. 10, 1363--1368 (2007) Full Text: DOI
Zhang, Binggen; Zhou, Yong Qualitative analysis of delay partial difference equations. (English) Zbl 1153.35078 Contemporary Mathematics and Its Applications 4. New York, NY: Hindawi Publishing Corporation (ISBN 978-977-454-000-4/hbk). viii, 374 p. (2007). Reviewer: Peixuan Weng (Guangzhou) MSC: 35R10 39A11 35B05 35B35 35B40 35-02 PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Y. Zhou}, Qualitative analysis of delay partial difference equations. New York, NY: Hindawi Publishing Corporation (2007; Zbl 1153.35078)
Ansari, A. R.; Bakr, S. A.; Shishkin, G. I. A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. (English) Zbl 1121.65090 J. Comput. Appl. Math. 205, No. 1, 552-566 (2007). Reviewer: Piotr Matus (Minsk) MSC: 65M06 65M12 65M50 35B25 35K20 35R10 PDF BibTeX XML Cite \textit{A. R. Ansari} et al., J. Comput. Appl. Math. 205, No. 1, 552--566 (2007; Zbl 1121.65090) Full Text: DOI
Kropielnicka, Karolina Implicit difference methods for nonlinear parabolic functional differential systems. (English) Zbl 1116.65103 Demonstr. Math. 39, No. 3, 711-728 (2006). Reviewer: Gerald W. Hedstrom (Pleasanton) MSC: 65M06 65M12 35K55 35R10 PDF BibTeX XML Cite \textit{K. Kropielnicka}, Demonstr. Math. 39, No. 3, 711--728 (2006; Zbl 1116.65103) Full Text: DOI
McDonough, James M.; Kunadian, I.; Kumar, Ratnesh R.; Yang, Tianliang An alternative discretization and solution procedure for the dual phase-lag equation. (English) Zbl 1105.65094 J. Comput. Phys. 219, No. 1, 163-171 (2006). MSC: 65M06 65M70 35K05 35R10 65M12 65M15 PDF BibTeX XML Cite \textit{J. M. McDonough} et al., J. Comput. Phys. 219, No. 1, 163--171 (2006; Zbl 1105.65094) Full Text: DOI
Liu, Shutang; Han, Zhongyue; Zhang, Binggen Asymptotic behavior and oscillations for nonlinear delay partial difference equations with variable coefficients. (English) Zbl 1106.39010 Southeast Asian Bull. Math. 29, No. 6, 1069-1086 (2005). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A10 39A12 PDF BibTeX XML Cite \textit{S. Liu} et al., Southeast Asian Bull. Math. 29, No. 6, 1069--1086 (2005; Zbl 1106.39010)
Domoshnitsky, A.; Drakhlin, M.; Stavroulakis, I. P. Distribution of zeros of solutions to functional equations. (English) Zbl 1090.39007 Math. Comput. Modelling 42, No. 1-2, 193-205 (2005). Reviewer: J. Banaś (Rzeszów) MSC: 39A11 39B52 35R10 PDF BibTeX XML Cite \textit{A. Domoshnitsky} et al., Math. Comput. Modelling 42, No. 1--2, 193--205 (2005; Zbl 1090.39007) Full Text: DOI
Tian, Chuan Jun; Zhang, Bing Gen; Wang, Hui New stability criteria of delay partial difference equations. (English) Zbl 1086.39015 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 12, No. 5, 633-641 (2005). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A11 39A12 35R10 PDF BibTeX XML Cite \textit{C. J. Tian} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 12, No. 5, 633--641 (2005; Zbl 1086.39015)
Pötzsche, Christian Delay equations on measure chains: basics and linearized stability. (English) Zbl 1117.39324 Elaydi, Saber (ed.) et al., Proceedings of the 8th international conference on difference equations and applications (ICDEA 2003), Masaryk University, Brno, Czech Republic, July 28–August 1, 2003. Boca Raton, FL: Chapman & Hall/CRC (ISBN 1-58488-536-X/hbk). 227-234 (2005). MSC: 39A12 39A14 PDF BibTeX XML Cite \textit{C. Pötzsche}, in: Proceedings of the 8th international conference on difference equations and applications (ICDEA 2003), Masaryk University, Brno, Czech Republic, July 28--August 1, 2003. Boca Raton, FL: Chapman \& Hall/CRC. 227--234 (2005; Zbl 1117.39324)
Zhong, Xiaozhu; Xing, Hailong; Shi, Yan; Liang, Jingcui; Wang, Donghua Existence of nonoscillatory solution of third order linear neutral delay difference equation with positive and negative coefficients. (English) Zbl 1075.35098 Nonlinear Dyn. Syst. Theory 5, No. 2, 201-214 (2005). Reviewer: Emil Minchev (Tokyo) MSC: 35R10 35D05 35E05 PDF BibTeX XML Cite \textit{X. Zhong} et al., Nonlinear Dyn. Syst. Theory 5, No. 2, 201--214 (2005; Zbl 1075.35098) Full Text: Link
Saker, S. H. Oscillation of parabolic neutral delay difference equations. (English) Zbl 1068.39022 Bull. Korean Math. Soc. 41, No. 4, 619-632 (2004). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A11 39A12 35R10 PDF BibTeX XML Cite \textit{S. H. Saker}, Bull. Korean Math. Soc. 41, No. 4, 619--632 (2004; Zbl 1068.39022) Full Text: DOI
Huang, Chengming; Vandewalle, Stefan An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. (English) Zbl 1064.65078 SIAM J. Sci. Comput. 25, No. 5, 1608-1632 (2004). Reviewer: Kai Diethelm (Braunschweig) MSC: 65L20 65M12 34K28 35R10 65M20 65M06 65L06 PDF BibTeX XML Cite \textit{C. Huang} and \textit{S. Vandewalle}, SIAM J. Sci. Comput. 25, No. 5, 1608--1632 (2004; Zbl 1064.65078) Full Text: DOI
Ashyralyev, Allaberen; Sobolevskii, Pavel E. New difference schemes for partial differential equations. (English) Zbl 1060.65055 Operator Theory: Advances and Applications 148. Basel: Birkhäuser (ISBN 3-7643-7054-8/hbk). ix, 443 p. (2004). Reviewer: Evgenij D’yakonov (Moskva) MSC: 65J10 65-02 65M06 65N06 34G10 35K15 35L15 35J25 65M15 65N15 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{P. E. Sobolevskii}, New difference schemes for partial differential equations. Basel: Birkhäuser (2004; Zbl 1060.65055)
Khartouski, V. On the reconstruction of the current state of the linear difference-differential system with commensurable delays. (English) Zbl 1071.93009 Syst. Sci. 29, No. 4, 55-67 (2003). Reviewer: Hernán R. Henríquez (Santiago) MSC: 93B07 35R10 PDF BibTeX XML Cite \textit{V. Khartouski}, Syst. Sci. 29, No. 4, 55--67 (2003; Zbl 1071.93009)
Liu, Shu Tang; Jin, Ping Oscillatory behavior of delay partial difference equations. (English) Zbl 1050.39012 Period. Math. Hung. 47, No. 1-2, 151-167 (2003). MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{S. T. Liu} and \textit{P. Jin}, Period. Math. Hung. 47, No. 1--2, 151--167 (2003; Zbl 1050.39012) Full Text: DOI
Liu, Shutang; Han, Zhongyue Oscillation of delay partial difference equations with positive and negative coefficients. (English) Zbl 1060.39006 Southeast Asian Bull. Math. 26, No. 5, 811-824 (2003). Reviewer: Jurang Yan (Taiyuan) MSC: 39A11 PDF BibTeX XML Cite \textit{S. Liu} and \textit{Z. Han}, Southeast Asian Bull. Math. 26, No. 5, 811--824 (2003; Zbl 1060.39006)
Liu, Shu Tang; Zhang, Bing Gen; Chen, Guanrong Asymptotic behavior and oscillation of delay partial difference equations with positive and negative coefficients. (English) Zbl 1050.39014 Rocky Mt. J. Math. 33, No. 3, 953-970 (2003). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A11 PDF BibTeX XML Cite \textit{S. T. Liu} et al., Rocky Mt. J. Math. 33, No. 3, 953--970 (2003; Zbl 1050.39014) Full Text: DOI
Kubiaczyk, I.; Saker, S. H. Oscillation theorems for discrete nonlinear delay wave equations. (English) Zbl 1040.39005 ZAMM, Z. Angew. Math. Mech. 83, No. 12, 812-819 (2003). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{I. Kubiaczyk} and \textit{S. H. Saker}, ZAMM, Z. Angew. Math. Mech. 83, No. 12, 812--819 (2003; Zbl 1040.39005) Full Text: DOI
Liu, Shu Tang; Zhang, Bing Gen Oscillatory behavior of delay partial difference equations with positive and negative coefficients. (English) Zbl 1050.39013 Comput. Math. Appl. 43, No. 8-9, 951-964 (2002). MSC: 39A11 39A12 35R10 PDF BibTeX XML Cite \textit{S. T. Liu} and \textit{B. G. Zhang}, Comput. Math. Appl. 43, No. 8--9, 951--964 (2002; Zbl 1050.39013) Full Text: DOI
Zhang, B. G.; Deng, Xinghua Oscillation of delay differential equations on time scales. (English) Zbl 1034.34080 Math. Comput. Modelling 36, No. 11-12, 1307-1318 (2002). Reviewer: Christian Pötzsche (Augsburg) MSC: 34K11 39A13 39A14 34C10 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{X. Deng}, Math. Comput. Modelling 36, No. 11--12, 1307--1318 (2002; Zbl 1034.34080) Full Text: DOI
Saker, S. H.; Zhang, B. G. Oscillation in a discrete partial delay Nicholson’s blowflies model. (English) Zbl 1021.92042 Math. Comput. Modelling 36, No. 9-10, 1021-1026 (2002). MSC: 92D40 39A12 PDF BibTeX XML Cite \textit{S. H. Saker} and \textit{B. G. Zhang}, Math. Comput. Modelling 36, No. 9--10, 1021--1026 (2002; Zbl 1021.92042) Full Text: DOI
Xie, Shengli; Tian, Chuanjun; Xie, Zhendong Oscillation of a class of partial difference equations with unbounded delay. (English) Zbl 0999.39008 Comput. Math. Appl. 42, No. 3-5, 529-541 (2001). Reviewer: D.M.Bors (Iaşi) MSC: 39A11 PDF BibTeX XML Cite \textit{S. Xie} et al., Comput. Math. Appl. 42, No. 3--5, 529--541 (2001; Zbl 0999.39008) Full Text: DOI
Zhang, Bing Gen; Deng, Xing Hua The stability of certain partial difference equations. (English) Zbl 1002.39023 Comput. Math. Appl. 42, No. 3-5, 419-425 (2001). Reviewer: Eduardo Liz (Vigo) MSC: 39A11 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{X. H. Deng}, Comput. Math. Appl. 42, No. 3--5, 419--425 (2001; Zbl 1002.39023) Full Text: DOI
Jiang, Chengshun; Li, Zhengchao; Lian, Yuzhong Estimates theory and reaction control for some nonlinear convection diffusion systems with time delay terms. (Chinese. English summary) Zbl 1002.65094 Control Theory Appl. 18, Suppl., 95-98 (2001). Reviewer: Yu Wenhuan (Tianjin) MSC: 65M06 65M15 65M12 35K55 35R10 PDF BibTeX XML Cite \textit{C. Jiang} et al., Control Theory Appl. 18, 95--98 (2001; Zbl 1002.65094)
Liu, Shutang; Guan, Xinping; Yang, Jun Necessary and sufficient conditions for oscillations of hyperbolic and elliptic type partial difference equations. (English) Zbl 0992.39011 Ann. Differ. Equations 17, No. 1, 42-51 (2001). Reviewer: N.C.Apreutesei (Iasi) MSC: 39A11 PDF BibTeX XML Cite \textit{S. Liu} et al., Ann. Differ. Equations 17, No. 1, 42--51 (2001; Zbl 0992.39011)
Guan, Xin Ping; Yang, Jun; Liu, Shu Tang Nonexistence of positive solution of a class of nonlinear delay partial difference equation. (English) Zbl 1009.39016 Acta Math. Sin. 43, No. 2, 233-238 (2000). MSC: 39A11 PDF BibTeX XML Cite \textit{X. P. Guan} et al., Acta Math. Sin. 43, No. 2, 233--238 (2000; Zbl 1009.39016)
Antoniades, Charalambos; Christofides, Panagiotis D. Nonlinear feedback control of parabolic partial differential difference equation systems. (English) Zbl 1001.93036 Int. J. Control 73, No. 17, 1572-1591 (2000). Reviewer: Toshihiri Kobayashi (Tobata) MSC: 93C23 93C20 35B42 93C70 93B11 93C95 93C10 PDF BibTeX XML Cite \textit{C. Antoniades} and \textit{P. D. Christofides}, Int. J. Control 73, No. 17, 1572--1591 (2000; Zbl 1001.93036) Full Text: DOI
Hamaya, Yoshihiro Global attractivity of some diffusive functional difference equations. (English) Zbl 0979.39009 Far East J. Dyn. Syst. 2, 107-119 (2000). Reviewer: Edwin Engin Yaz (Fayetteville) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{Y. Hamaya}, Far East J. Dyn. Syst. 2, 107--119 (2000; Zbl 0979.39009)
Zhang, B. G. Oscillation theorems for certain nonlinear delay partial difference equations. (English) Zbl 0951.39004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 41, No. 3-4, 447-454 (2000). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A11 PDF BibTeX XML Cite \textit{B. G. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 41, No. 3--4, 447--454 (2000; Zbl 0951.39004) Full Text: DOI
Zhang, B. G.; Tian, Chuan Jun Stability criteria for a class of linear delay partial difference equations. (English) Zbl 0943.39003 Comput. Math. Appl. 38, No. 2, 37-43 (1999). Reviewer: Quingkai Kong (DeKalb) MSC: 39A11 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{C. J. Tian}, Comput. Math. Appl. 38, No. 2, 37--43 (1999; Zbl 0943.39003) Full Text: DOI
Jun, Tian Chuan; Zhang, B. G. On the global attractivity of partial difference equations. (Chinese. English summary) Zbl 0973.39004 J. Ocean Univ. Qingdao 28, No. 4, 688-692 (1998). MSC: 39A11 PDF BibTeX XML Cite \textit{T. C. Jun} and \textit{B. G. Zhang}, J. Ocean Univ. Qingdao 28, No. 4, 688--692 (1998; Zbl 0973.39004)
Liu, S. T.; Zhang, B. G. Oscillations of a class of partial difference equations. (English) Zbl 0958.39019 Panam. Math. J. 8, No. 1, 93-100 (1998). MSC: 39A11 PDF BibTeX XML Cite \textit{S. T. Liu} and \textit{B. G. Zhang}, Panam. Math. J. 8, No. 1, 93--100 (1998; Zbl 0958.39019)
Zhang, B. G.; Liu, S. T. Necessary and sufficient conditions for oscillations of linear delay partial difference equations. (English) Zbl 0965.39003 Discrete Dyn. Nat. Soc. 1, No. 4, 265-268 (1998). Reviewer: Jan Čermák (Brno) MSC: 39A11 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{S. T. Liu}, Discrete Dyn. Nat. Soc. 1, No. 4, 265--268 (1998; Zbl 0965.39003) Full Text: DOI EuDML
Zhang, B. G.; Liu, S. T. Necessary and sufficient conditions for oscillations of partial difference equations. (English) Zbl 0864.39006 Nonlinear Stud. 3, No. 2, 187-192 (1996). Reviewer: E.Thandapani (Salem) MSC: 39A12 39A10 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{S. T. Liu}, Nonlinear Stud. 3, No. 2, 187--192 (1996; Zbl 0864.39006)
Zhang, Bing Gen; Liu, Shu Tang Necessary and sufficient conditions for oscillations of delay partial difference equations. (English) Zbl 0862.39008 Discuss. Math., Differ. Incl. 15, No. 2, 213-219 (1995). Reviewer: B.Aulbach (Augsburg) MSC: 39A12 39A10 PDF BibTeX XML Cite \textit{B. G. Zhang} and \textit{S. T. Liu}, Discuss. Math., Differ. Incl. 15, No. 2, 213--219 (1995; Zbl 0862.39008)
Mitsui, T.; Ueda, Y.; Thompson, J. M. T. Straddle-orbit location of a chaotic saddle in a high-dimensional realization of \(\mathbb{R}^ \infty\). (English) Zbl 0814.58036 Proc. R. Soc. Lond., Ser. A 445, No. 1925, 669-677 (1994). Reviewer: S.Ya.Serovajskij (Alma-Ata) MSC: 35R10 PDF BibTeX XML Cite \textit{T. Mitsui} et al., Proc. R. Soc. Lond., Ser. A 445, No. 1925, 669--677 (1994; Zbl 0814.58036) Full Text: DOI
Wiener, Joseph; Debnath, Lokenath A parabolic differential equation with unbounded piecewise constant delay. (English) Zbl 0803.34072 Int. J. Math. Math. Sci. 15, No. 2, 339-346 (1992). MSC: 34K25 35A05 35R10 35R05 PDF BibTeX XML Cite \textit{J. Wiener} and \textit{L. Debnath}, Int. J. Math. Math. Sci. 15, No. 2, 339--346 (1992; Zbl 0803.34072) Full Text: DOI EuDML
Moroşanu, Gheorghe Nonlinear evolution equations and applications. (Ecuaţii neliniare de evoluţie şi aplicaţii). With a preface by Viorel Barbu. (Romanian) Zbl 0668.47046 Analiză Modernă şi Aplicaţii. Bucureşti: Editura Academiei Republicii Socialiste România. 208 p.; Lei 17.50 (1986). MSC: 47H20 47-02 47H06 34G20 58D25 PDF BibTeX XML
Burgos Vega, H. Degeneracy constructions and control of wave propagation. (English) Zbl 0496.93042 Cienc. Tecnol. 3, No. 2, 3-19 (1979). MSC: 93D15 93C20 39A11 35L05 93C05 93C99 93C55 PDF BibTeX XML Cite \textit{H. Burgos Vega}, Cienc. Tecnol. 3, No. 2, 3--19 (1979; Zbl 0496.93042)