Čermák, Jan; Kisela, Tomáš Stabilization and destabilization of fractional oscillators via a delayed feedback control. (English) Zbl 07634588 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106960, 16 p. (2023). MSC: 34K37 34K20 93D15 PDF BibTeX XML Cite \textit{J. Čermák} and \textit{T. Kisela}, Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106960, 16 p. (2023; Zbl 07634588) Full Text: DOI OpenURL
Wang, Xing A computational approach to dynamic generalized Nash equilibrium problem with time delay. (English) Zbl 07634585 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106954, 11 p. (2023). MSC: 49J40 49J45 47Jxx 91Axx PDF BibTeX XML Cite \textit{X. Wang}, Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106954, 11 p. (2023; Zbl 07634585) Full Text: DOI OpenURL
Zhang, Haifeng; Zhang, Meirong; Lei, Jinzhi A mathematical model with aberrant growth correction in tissue homeostasis and tumor cell growth. (English) Zbl 07629587 J. Math. Biol. 86, No. 1, Paper No. 2, 40 p. (2023). MSC: 37N25 34K20 92C50 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Math. Biol. 86, No. 1, Paper No. 2, 40 p. (2023; Zbl 07629587) Full Text: DOI OpenURL
Liu, Yifan; Cai, Jiazhi; Xu, Haowen; Shan, Minghe; Gao, Qingbin Stability and Hopf bifurcation of a love model with two delays. (English) Zbl 07628008 Math. Comput. Simul. 205, 558-580 (2023). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{Y. Liu} et al., Math. Comput. Simul. 205, 558--580 (2023; Zbl 07628008) Full Text: DOI OpenURL
Gentile, Franco S.; Itovich, Griselda R.; Moiola, Jorge L. Stability analysis of some neutral delay-differential equations with a frequency-domain approach. (English) Zbl 07622283 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1787-1805 (2023). MSC: 34K06 34K20 34K40 34K35 93C80 PDF BibTeX XML Cite \textit{F. S. Gentile} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1787--1805 (2023; Zbl 07622283) Full Text: DOI OpenURL
Li, Yezhou; Sun, Heqing A note on the Julia sets of entire solutions to delay differential equations. (English) Zbl 07605440 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 143-155 (2023). MSC: 34M05 37F10 30D35 PDF BibTeX XML Cite \textit{Y. Li} and \textit{H. Sun}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 143--155 (2023; Zbl 07605440) Full Text: DOI OpenURL
Faria, Teresa; Figueroa, Rubén Positive periodic solutions for systems of impulsive delay differential equations. (English) Zbl 07599010 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 170-196 (2023). MSC: 34K13 34K45 47N20 92D25 PDF BibTeX XML Cite \textit{T. Faria} and \textit{R. Figueroa}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 170--196 (2023; Zbl 07599010) Full Text: DOI arXiv OpenURL
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 07596818 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 07596818) Full Text: DOI OpenURL
Oliveira, José J. Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks. (English) Zbl 07646434 Chaos Solitons Fractals 164, Article ID 112676, 11 p. (2022). MSC: 34K20 34K25 92B20 PDF BibTeX XML Cite \textit{J. J. Oliveira}, Chaos Solitons Fractals 164, Article ID 112676, 11 p. (2022; Zbl 07646434) Full Text: DOI OpenURL
Sedaghat, S.; Mashayekhi, S. Exploiting delay differential equations solved by Eta functions as suitable mathematical tools for the investigation of thickness controlling in rolling mill. (English) Zbl 07646424 Chaos Solitons Fractals 164, Article ID 112666, 13 p. (2022). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{S. Sedaghat} and \textit{S. Mashayekhi}, Chaos Solitons Fractals 164, Article ID 112666, 13 p. (2022; Zbl 07646424) Full Text: DOI OpenURL
Chendur Kumaran, R.; Venkatesh, T. G.; Swarup, K. S. Stochastic delay differential equations: analysis and simulation studies. (English) Zbl 07646307 Chaos Solitons Fractals 165, Part 2, Article ID 112819, 23 p. (2022). MSC: 34-XX 82-XX PDF BibTeX XML Cite \textit{R. Chendur Kumaran} et al., Chaos Solitons Fractals 165, Part 2, Article ID 112819, 23 p. (2022; Zbl 07646307) Full Text: DOI OpenURL
Shahidi, M.; Esmi, E. On the existence of approximate solutions to fuzzy delay differential equations under the metric derivative. (English) Zbl 07645491 Comput. Appl. Math. 41, No. 8, Paper No. 412, 16 p. (2022). MSC: 34K36 65Q20 PDF BibTeX XML Cite \textit{M. Shahidi} and \textit{E. Esmi}, Comput. Appl. Math. 41, No. 8, Paper No. 412, 16 p. (2022; Zbl 07645491) Full Text: DOI OpenURL
Alzahrani, Faris; Razzaq, Oyoon Abdul; Rehman, Daniyal Ur; Khan, Najeeb Alam; Alshomrani, Ali Saleh; Ullah, Malik Zaka Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations. (English) Zbl 07641566 Chaos Solitons Fractals 158, Article ID 111997, 17 p. (2022). MSC: 92Dxx 34Kxx 34Dxx PDF BibTeX XML Cite \textit{F. Alzahrani} et al., Chaos Solitons Fractals 158, Article ID 111997, 17 p. (2022; Zbl 07641566) Full Text: DOI OpenURL
Matsumoto, Akio; Szidarovszky, Ferenc The chaotic monopolist revisited with bounded rationality and delay dynamics. (English) Zbl 07641523 Chaos Solitons Fractals 159, Article ID 112142, 12 p. (2022). MSC: 91Bxx 34Kxx 37Dxx PDF BibTeX XML Cite \textit{A. Matsumoto} and \textit{F. Szidarovszky}, Chaos Solitons Fractals 159, Article ID 112142, 12 p. (2022; Zbl 07641523) Full Text: DOI OpenURL
Ruhomally, Yusra Bibi; Mungur, Maheshsingh; Khoodaruth, Abdel Anwar Hossen; Oree, Vishwamitra; Dauhoo, Muhammad Zaid Assessing the impact of contact tracing, quarantine and red zone on the dynamical evolution of the Covid-19 pandemic using the cellular automata approach and the resulting mean field system: a case study in Mauritius. (English) Zbl 07635782 Appl. Math. Modelling 111, 567-589 (2022). MSC: 92Dxx 34Cxx 34Kxx PDF BibTeX XML Cite \textit{Y. B. Ruhomally} et al., Appl. Math. Modelling 111, 567--589 (2022; Zbl 07635782) Full Text: DOI OpenURL
Klevchuk, I. I.; Grytchuk, M. V. Construction of stability domains for linear differential equations with several delays. (Ukrainian. English summary) Zbl 07633601 Bukovyn. Mat. Zh. 10, No. 1, 61-70 (2022). MSC: 34K20 PDF BibTeX XML Cite \textit{I. I. Klevchuk} and \textit{M. V. Grytchuk}, Bukovyn. Mat. Zh. 10, No. 1, 61--70 (2022; Zbl 07633601) Full Text: DOI OpenURL
Zhu, Zhi-Qiang; Wang, Qi-Ru The Newton-Cotes quadratures for solving a delay differential system. (English) Zbl 1499.65266 J. Appl. Math. Comput. 68, No. 6, 4589-4604 (2022). MSC: 65L03 34K10 65L10 PDF BibTeX XML Cite \textit{Z.-Q. Zhu} and \textit{Q.-R. Wang}, J. Appl. Math. Comput. 68, No. 6, 4589--4604 (2022; Zbl 1499.65266) Full Text: DOI OpenURL
Dzhalladova, Irada; Růžičková, Miroslava Stochastic model of drug concentration level during IV-administration. (English) Zbl 07632067 Opusc. Math. 42, No. 6, 833-847 (2022). MSC: 92-XX 34C60 34F05 60H10 PDF BibTeX XML Cite \textit{I. Dzhalladova} and \textit{M. Růžičková}, Opusc. Math. 42, No. 6, 833--847 (2022; Zbl 07632067) Full Text: DOI OpenURL
Adimy, Mostafa; Babin, Louis; Pujo-Menjouet, Laurent Neuron scale modeling of Prion production with the unfolded protein response. (English) Zbl 07629778 SIAM J. Appl. Dyn. Syst. 21, No. 4, 2487-2517 (2022). MSC: 34C60 34K60 92C20 34C05 34D20 34K21 34K20 34C23 34K18 34K13 PDF BibTeX XML Cite \textit{M. Adimy} et al., SIAM J. Appl. Dyn. Syst. 21, No. 4, 2487--2517 (2022; Zbl 07629778) Full Text: DOI OpenURL
Kumar, Manoj An efficient numerical scheme for solving a fractional-order system of delay differential equations. (English) Zbl 07626570 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 262, 18 p. (2022). MSC: 65L03 34A08 PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 262, 18 p. (2022; Zbl 07626570) Full Text: DOI OpenURL
Ngoc, Pham Huu Anh; Tran, Ky Quan On stability of solutions of stochastic delay differential equations. (English) Zbl 07626101 Syst. Control Lett. 169, Article ID 105384, 10 p. (2022). MSC: 93D23 93E15 93C23 34K50 PDF BibTeX XML Cite \textit{P. H. A. Ngoc} and \textit{K. Q. Tran}, Syst. Control Lett. 169, Article ID 105384, 10 p. (2022; Zbl 07626101) Full Text: DOI OpenURL
Ishiwata, Tetsuya; Nakata, Yukihiko A note on blow-up solutions for a scalar differential equation with a discrete delay. (English) Zbl 07625959 Japan J. Ind. Appl. Math. 39, No. 3, 959-971 (2022); correction ibid. 39, No. 3, 1109 (2022). MSC: 34K12 PDF BibTeX XML Cite \textit{T. Ishiwata} and \textit{Y. Nakata}, Japan J. Ind. Appl. Math. 39, No. 3, 959--971 (2022; Zbl 07625959) Full Text: DOI OpenURL
Nakata, Kenta; Maruno, Ken-ichi A systematic construction of integrable delay-difference and delay-differential analogues of soliton equations. (English) Zbl 07625571 J. Phys. A, Math. Theor. 55, No. 33, Article ID 335201, 18 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{K. Nakata} and \textit{K.-i. Maruno}, J. Phys. A, Math. Theor. 55, No. 33, Article ID 335201, 18 p. (2022; Zbl 07625571) Full Text: DOI arXiv OpenURL
Kim, Kyong-Hui; Kim, Jong-Kuk; Jo, Ho-Bom Pricing formula for exchange option based on stochastic delay differential equation with jumps. (English) Zbl 07621894 Probab. Eng. Inf. Sci. 36, No. 2, 548-563 (2022). MSC: 91G20 34K50 60J74 PDF BibTeX XML Cite \textit{K.-H. Kim} et al., Probab. Eng. Inf. Sci. 36, No. 2, 548--563 (2022; Zbl 07621894) Full Text: DOI OpenURL
Czyżewska, Natalia; Morkisz, Paweł M.; Przybyłowicz, Paweł Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme. (English) Zbl 07621834 Numer. Algorithms 91, No. 4, 1829-1854 (2022). MSC: 65L05 65L70 PDF BibTeX XML Cite \textit{N. Czyżewska} et al., Numer. Algorithms 91, No. 4, 1829--1854 (2022; Zbl 07621834) Full Text: DOI arXiv OpenURL
Brugnano, Luigi; Frasca-Caccia, Gianluca; Iavernaro, Felice; Vespri, Vincenzo A new framework for polynomial approximation to differential equations. (English) Zbl 07618979 Adv. Comput. Math. 48, No. 6, Paper No. 76, 36 p. (2022). MSC: 65L05 65L03 65L06 65P10 PDF BibTeX XML Cite \textit{L. Brugnano} et al., Adv. Comput. Math. 48, No. 6, Paper No. 76, 36 p. (2022; Zbl 07618979) Full Text: DOI arXiv OpenURL
Walther, Hans-Otto Dense short solution segments from monotonic delayed arguments. (English) Zbl 07616288 J. Dyn. Differ. Equations 34, No. 4, 2867-2900 (2022). MSC: 34K05 34K43 PDF BibTeX XML Cite \textit{H.-O. Walther}, J. Dyn. Differ. Equations 34, No. 4, 2867--2900 (2022; Zbl 07616288) Full Text: DOI OpenURL
Zhang, Xue; Scarabel, Francesca; Wang, Xiang-Sheng; Wu, Jianhong Global continuation of periodic oscillations to a diapause rhythm. (English) Zbl 07616286 J. Dyn. Differ. Equations 34, No. 4, 2819-2839 (2022). Reviewer: Changjin Xu (Guiyang) MSC: 34K13 34K18 34K60 92D25 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Dyn. Differ. Equations 34, No. 4, 2819--2839 (2022; Zbl 07616286) Full Text: DOI OpenURL
Grebennikov, Dmitry S.; Zheltkova, Valerya V.; Bocharov, Gennady A. Application of minimum description length criterion to assess the complexity of models in mathematical immunology. (English) Zbl 07613687 Russ. J. Numer. Anal. Math. Model. 37, No. 5, 253-261 (2022). MSC: 65-XX 92-08 PDF BibTeX XML Cite \textit{D. S. Grebennikov} et al., Russ. J. Numer. Anal. Math. Model. 37, No. 5, 253--261 (2022; Zbl 07613687) Full Text: DOI OpenURL
Akutsah, Francis; Mebawondu, Akindele Adebayo; Babasola, Oluwatosin; Pillay, Paranjothi; Narain, Ojen Kumar D-iterative method for solving a delay differential equation and a two-point second-order boundary value problems in Banach spaces. (English) Zbl 07612971 Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 6, 14 p. (2022). MSC: 47J25 47H09 47N20 PDF BibTeX XML Cite \textit{F. Akutsah} et al., Aust. J. Math. Anal. Appl. 19, No. 2, Article No. 6, 14 p. (2022; Zbl 07612971) Full Text: Link OpenURL
Adimy, Mostafa; Chekroun, Abdennasser; El Abdllaoui, Abderrahim; Marzorati, Arsène Discrete maturity and delay differential-difference model of hematopoietic cell dynamics with applications to acute myelogenous leukemia. (English) Zbl 07612059 J. Biol. Syst. 30, No. 3, 497-527 (2022). MSC: 92C37 92C15 92C32 35Q92 34K60 39A60 PDF BibTeX XML Cite \textit{M. Adimy} et al., J. Biol. Syst. 30, No. 3, 497--527 (2022; Zbl 07612059) Full Text: DOI OpenURL
Tosato, Marco; Zhang, Xue; Wu, Jianhong A patchy model for tick population dynamics with patch-specific developmental delays. (English) Zbl 07607685 Math. Biosci. Eng. 19, No. 5, 5329-5360 (2022). MSC: 92D25 92D40 34K26 34K20 PDF BibTeX XML Cite \textit{M. Tosato} et al., Math. Biosci. Eng. 19, No. 5, 5329--5360 (2022; Zbl 07607685) Full Text: DOI OpenURL
Cheng, Tianyu; Zou, Xingfu A new perspective on infection forces with demonstration by a DDE infectious disease model. (English) Zbl 07607662 Math. Biosci. Eng. 19, No. 5, 4856-4880 (2022). MSC: 92D30 34K20 34K18 PDF BibTeX XML Cite \textit{T. Cheng} and \textit{X. Zou}, Math. Biosci. Eng. 19, No. 5, 4856--4880 (2022; Zbl 07607662) Full Text: DOI OpenURL
Guo, Songbai; Cui, Jing-An; Ma, Wanbiao An analysis approach to permanence of a delay differential equations model of microorganism flocculation. (English) Zbl 07606621 Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3831-3844 (2022). MSC: 34K60 92D25 34K21 34K20 34K25 PDF BibTeX XML Cite \textit{S. Guo} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3831--3844 (2022; Zbl 07606621) Full Text: DOI OpenURL
Huang, Mu-gen; Yu, Jian-she Global asymptotic stability in a delay differential equation model for mosquito population suppression. (English) Zbl 07604874 Acta Math. Appl. Sin., Engl. Ser. 38, No. 4, 882-901 (2022). MSC: 92D45 92D25 34K20 PDF BibTeX XML Cite \textit{M.-g. Huang} and \textit{J.-s. Yu}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 4, 882--901 (2022; Zbl 07604874) Full Text: DOI OpenURL
Backes, Lucas; Dragičević, Davor; Pituk, Mihály; Singh, Lokesh Weighted shadowing for delay differential equations. (English) Zbl 07603648 Arch. Math. 119, No. 5, 539-552 (2022). MSC: 34K06 34K27 PDF BibTeX XML Cite \textit{L. Backes} et al., Arch. Math. 119, No. 5, 539--552 (2022; Zbl 07603648) Full Text: DOI OpenURL
Krawczyk, Joanna; Kowalewska, Agnieszka; Bodnar, Marek Some remarks on a mathematical model of COVID-19 pandemic with health care capacity. (English) Zbl 07603007 Math. Appl. (Warsaw) 50, No. 1, 23-42 (2022). MSC: 34K20 34K21 37N25 PDF BibTeX XML Cite \textit{J. Krawczyk} et al., Math. Appl. (Warsaw) 50, No. 1, 23--42 (2022; Zbl 07603007) Full Text: DOI OpenURL
Tirfesa, Bekele Badada; Duressa, Gemechis File; Debela, Habtamu Garoma Non-polynomial cubic spline method for solving singularly perturbed delay reaction-diusion equations. (English) Zbl 1496.65093 Thai J. Math. 20, No. 2, 679-692 (2022). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{B. B. Tirfesa} et al., Thai J. Math. 20, No. 2, 679--692 (2022; Zbl 1496.65093) Full Text: Link OpenURL
Najm, Fatiha; Yafia, Radouane; Aziz-Alaoui, M. A. Hopf bifurcation in oncolytic therapeutic modeling: viruses as anti-tumor means with viral lytic cycle. (English) Zbl 07602339 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2250171, 21 p. (2022). MSC: 34K60 92C37 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{F. Najm} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2250171, 21 p. (2022; Zbl 07602339) Full Text: DOI OpenURL
Han, Zikun; Wang, Qiubao; Wu, Hao; Hu, Zhouyu Stochastic P-bifurcation in a delayed Myc/E2F/miR-17-92 network. (English) Zbl 1500.92033 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2250159, 20 p. (2022). MSC: 92C42 92C40 34K50 34K18 PDF BibTeX XML Cite \textit{Z. Han} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2250159, 20 p. (2022; Zbl 1500.92033) Full Text: DOI OpenURL
Padial, Juan Francisco; Casal, Alfonso Bifurcation in car-following models with time delays and driver and mechanic sensitivities. (English) Zbl 1496.34105 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 180, 19 p. (2022). MSC: 34K13 34K14 34K18 34K20 PDF BibTeX XML Cite \textit{J. F. Padial} and \textit{A. Casal}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 180, 19 p. (2022; Zbl 1496.34105) Full Text: DOI OpenURL
Walther, Hans-Otto On the solution manifold of a differential equation with a delay which has a zero. (English) Zbl 07599851 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 31, 10 p. (2022). MSC: 34K19 34K05 58D25 PDF BibTeX XML Cite \textit{H.-O. Walther}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 31, 10 p. (2022; Zbl 07599851) Full Text: DOI arXiv OpenURL
Abdulrashid, Ismail; Caraballo, Tomás; Han, Xiaoying Effects of delays in mathematical models of cancer chemotherapy. (English) Zbl 1496.92031 Pure Appl. Funct. Anal. 7, No. 4, 1103-1126 (2022). MSC: 92C50 34D23 34D45 34K20 PDF BibTeX XML Cite \textit{I. Abdulrashid} et al., Pure Appl. Funct. Anal. 7, No. 4, 1103--1126 (2022; Zbl 1496.92031) Full Text: Link OpenURL
Hata, Yuki; Matsunaga, Hideaki Stability switches in a linear differential equation with two delays. (English) Zbl 07598576 Opusc. Math. 42, No. 5, 673-690 (2022). Reviewer: Cemil Tunç (Van) MSC: 34K06 34K20 34K25 PDF BibTeX XML Cite \textit{Y. Hata} and \textit{H. Matsunaga}, Opusc. Math. 42, No. 5, 673--690 (2022; Zbl 07598576) Full Text: DOI OpenURL
Sharma, Amit; Rai, Pratima A hybrid numerical scheme for singular perturbation delay problems with integral boundary condition. (English) Zbl 1497.65114 J. Appl. Math. Comput. 68, No. 5, 3445-3472 (2022). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, J. Appl. Math. Comput. 68, No. 5, 3445--3472 (2022; Zbl 1497.65114) Full Text: DOI OpenURL
Glyzin, S. D.; Kolesov, A. Yu. On a method of mathematical modeling of electrical synapses. (English. Russian original) Zbl 07596436 Differ. Equ. 58, No. 7, 853-868 (2022); translation from Differ. Uravn. 58, No. 7, 867-881 (2022). Reviewer: Ábel Garab (Klagenfurt) MSC: 92B20 34K26 34K13 34K20 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{A. Yu. Kolesov}, Differ. Equ. 58, No. 7, 853--868 (2022; Zbl 07596436); translation from Differ. Uravn. 58, No. 7, 867--881 (2022) Full Text: DOI OpenURL
Guo, Yuling; Wang, Zhongqing A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. (English) Zbl 07595651 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7521-7545 (2022). MSC: 65N35 65M22 65D32 65D05 65N15 45B99 34K10 41A10 26A33 35R11 35R07 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Wang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7521--7545 (2022; Zbl 07595651) Full Text: DOI OpenURL
Humphries, Antony R.; Krauskopf, Bernd; Ruschel, Stefan; Sieber, Jan Nonlinear effects of instantaneous and delayed state dependence in a delayed feedback loop. (English) Zbl 07595641 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7245-7273 (2022). MSC: 34K43 34K18 34K17 37M20 PDF BibTeX XML Cite \textit{A. R. Humphries} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7245--7273 (2022; Zbl 07595641) Full Text: DOI arXiv OpenURL
Yan, Tingjin; Chiu, Mei Choi; Wong, Hoi Ying Pairs trading under delayed cointegration. (English) Zbl 1498.91425 Quant. Finance 22, No. 9, 1627-1648 (2022). MSC: 91G15 34K50 35Q91 PDF BibTeX XML Cite \textit{T. Yan} et al., Quant. Finance 22, No. 9, 1627--1648 (2022; Zbl 1498.91425) Full Text: DOI OpenURL
López-Lázaro, Heraclio; Nascimento, Marcelo J. D.; Rubio, Obidio Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. (English) Zbl 1498.35103 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022). MSC: 35B41 35K20 35K58 35R10 35R37 37L30 35Q79 PDF BibTeX XML Cite \textit{H. López-Lázaro} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022; Zbl 1498.35103) Full Text: DOI OpenURL
Liu, Man Li; Hu, Pei Chu; Li, Zhi; Wang, Qiong Yan Results of certain types of nonlinear delay differential equation. (Chinese. English summary) Zbl 07594590 Acta Math. Sin., Chin. Ser. 65, No. 2, 221-234 (2022). MSC: 34K41 34M05 34M10 30D35 PDF BibTeX XML Cite \textit{M. L. Liu} et al., Acta Math. Sin., Chin. Ser. 65, No. 2, 221--234 (2022; Zbl 07594590) Full Text: Link OpenURL
Saber, Sayed; Alalyani, Ahmad Stability analysis and numerical simulations of IVGTT glucose-insulin interaction models with two time delays. (English) Zbl 1498.92049 Math. Model. Anal. 27, No. 3, 383-407 (2022). MSC: 92C30 34D23 34K18 34K20 PDF BibTeX XML Cite \textit{S. Saber} and \textit{A. Alalyani}, Math. Model. Anal. 27, No. 3, 383--407 (2022; Zbl 1498.92049) Full Text: DOI OpenURL
Sharma, Ankit; Pal Singh, Harendra; Nilam A methodical survey of mathematical model-based control techniques based on open and closed loop control approach for diabetes management. (English) Zbl 1498.92100 Int. J. Biomath. 15, No. 7, Article ID 2250051, 58 p. (2022). MSC: 92C50 34C60 34K60 35Q92 26A33 93B12 93B45 93C42 68T07 92-02 PDF BibTeX XML Cite \textit{A. Sharma} et al., Int. J. Biomath. 15, No. 7, Article ID 2250051, 58 p. (2022; Zbl 1498.92100) Full Text: DOI OpenURL
Pitchaimani, M.; Devi, A. Saranya Threshold dynamics of an HIV-TB co-infection model with multiple time delays. (English) Zbl 1498.92248 Tamkang J. Math. 53, No. 3, 201-228 (2022). MSC: 92D30 34A34 34K12 PDF BibTeX XML Cite \textit{M. Pitchaimani} and \textit{A. S. Devi}, Tamkang J. Math. 53, No. 3, 201--228 (2022; Zbl 1498.92248) Full Text: DOI OpenURL
Muthukumar, T.; Jayakumar, T.; Bharathi, D. Prasantha Numerical solution of fuzzy neutral delay differential equations by fifth order Runge-Kutta Nystrom method. (English) Zbl 07587320 J. Appl. Nonlinear Dyn. 11, No. 3, 703-717 (2022). MSC: 65L06 PDF BibTeX XML Cite \textit{T. Muthukumar} et al., J. Appl. Nonlinear Dyn. 11, No. 3, 703--717 (2022; Zbl 07587320) Full Text: DOI OpenURL
Lipshutz, David; Lipshutz, Robert J. Stability of synchronous slowly oscillating periodic solutions for systems of delay differential equations with coupled nonlinearity. (English) Zbl 07587121 J. Dyn. Differ. Equations 34, No. 3, 2259-2314 (2022). Reviewer: George Karakostas (Ioannina) MSC: 34K13 34K20 92B25 PDF BibTeX XML Cite \textit{D. Lipshutz} and \textit{R. J. Lipshutz}, J. Dyn. Differ. Equations 34, No. 3, 2259--2314 (2022; Zbl 07587121) Full Text: DOI arXiv OpenURL
Ruiz-Herrera, Alfonso; Pérez, Pablo; San Luis, Ana M. Global stability and oscillations for mosquito population models with diapausing stages. (English) Zbl 07585662 J. Differ. Equations 337, 483-506 (2022). Reviewer: Hongquan Sun (Harbin) MSC: 34K60 92D25 34A36 34K20 34K25 37C60 PDF BibTeX XML Cite \textit{A. Ruiz-Herrera} et al., J. Differ. Equations 337, 483--506 (2022; Zbl 07585662) Full Text: DOI OpenURL
Wang, Wansheng; Yi, Lijun Delay-dependent elliptic reconstruction and optimal \(L^\infty (L^2)\) a posteriori error estimates for fully discrete delay parabolic problems. (English) Zbl 07584158 Math. Comput. 91, No. 338, 2609-2643 (2022). Reviewer: Abdullah Erdoğan (Lake Worth) MSC: 65M12 65M15 65L06 65M60 65M06 65N30 65M32 35R07 PDF BibTeX XML Cite \textit{W. Wang} and \textit{L. Yi}, Math. Comput. 91, No. 338, 2609--2643 (2022; Zbl 07584158) Full Text: DOI OpenURL
Latreuch, Zinelaabidine; Biswas, Tania; Banerjee, Abhijit On the exact forms of meromorphic solutions of certain non-linear delay-differential equations. (English) Zbl 07581346 Comput. Methods Funct. Theory 22, No. 3, 401-432 (2022). MSC: 34K41 34M05 30D35 PDF BibTeX XML Cite \textit{Z. Latreuch} et al., Comput. Methods Funct. Theory 22, No. 3, 401--432 (2022; Zbl 07581346) Full Text: DOI OpenURL
Chang, Yanqiang; Chen, Huabin Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. (English) Zbl 1496.60078 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5935-5952 (2022). MSC: 60H30 93D05 93D23 PDF BibTeX XML Cite \textit{Y. Chang} and \textit{H. Chen}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5935--5952 (2022; Zbl 1496.60078) Full Text: DOI OpenURL
Zhao, Yanfei; Xing, Yepeng A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. (English) Zbl 1498.92120 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5367-5387 (2022). MSC: 92C60 34K20 34K18 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{Y. Xing}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5367--5387 (2022; Zbl 1498.92120) Full Text: DOI OpenURL
Khristichenko, Michael Yu.; Nechepurenko, Yuri M. Optimal disturbances for periodic solutions of time-delay differential equations. (English) Zbl 1497.65105 Russ. J. Numer. Anal. Math. Model. 37, No. 4, 203-212 (2022). MSC: 65L03 34K13 92B05 92C42 93C23 93B35 93C73 PDF BibTeX XML Cite \textit{M. Yu. Khristichenko} and \textit{Y. M. Nechepurenko}, Russ. J. Numer. Anal. Math. Model. 37, No. 4, 203--212 (2022; Zbl 1497.65105) Full Text: DOI OpenURL
Yan, Tingjin; Wong, Hoi Ying Equilibrium pairs trading under delayed cointegration. (English) Zbl 1498.91409 Automatica 144, Article ID 110498, 12 p. (2022). MSC: 91G10 34K50 PDF BibTeX XML Cite \textit{T. Yan} and \textit{H. Y. Wong}, Automatica 144, Article ID 110498, 12 p. (2022; Zbl 1498.91409) Full Text: DOI OpenURL
Zheng, Bo Impact of releasing period and magnitude on mosquito population in a sterile release model with delay. (English) Zbl 07572813 J. Math. Biol. 85, No. 2, Paper No. 18, 26 p. (2022). MSC: 34K60 34K13 34K20 34K21 34K45 92D25 92D40 PDF BibTeX XML Cite \textit{B. Zheng}, J. Math. Biol. 85, No. 2, Paper No. 18, 26 p. (2022; Zbl 07572813) Full Text: DOI OpenURL
Su, Ying; Zheng, Bo; Zou, Xingfu Wolbachia dynamics in mosquitoes with incomplete CI and imperfect maternal transmission by a DDE system. (English) Zbl 1497.92215 Bull. Math. Biol. 84, No. 9, Paper No. 95, 21 p. (2022). MSC: 92D25 34K20 PDF BibTeX XML Cite \textit{Y. Su} et al., Bull. Math. Biol. 84, No. 9, Paper No. 95, 21 p. (2022; Zbl 1497.92215) Full Text: DOI OpenURL
Salceanu, Paul L. Robust uniform persistence for structured models of delay differential equations. (English) Zbl 07569511 Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4923-4939 (2022). MSC: 34K25 34K60 92D25 PDF BibTeX XML Cite \textit{P. L. Salceanu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4923--4939 (2022; Zbl 07569511) Full Text: DOI OpenURL
Nemati, Somayeh; Kalansara, Zahra Rezaei A low-cost computational method for solving nonlinear fractional delay differential equations. (English) Zbl 1495.65100 Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106650, 15 p. (2022). MSC: 65L03 34K37 65R20 PDF BibTeX XML Cite \textit{S. Nemati} and \textit{Z. R. Kalansara}, Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106650, 15 p. (2022; Zbl 1495.65100) Full Text: DOI OpenURL
Takács, Bálint M.; Faragó, István; Horváth, Róbert; Repovš, Dušan Qualitative properties of space-dependent SIR models with constant delay and their numerical solutions. (English) Zbl 1492.92116 Comput. Methods Appl. Math. 22, No. 3, 713-728 (2022). MSC: 92D30 65M06 34K60 65M12 92-08 PDF BibTeX XML Cite \textit{B. M. Takács} et al., Comput. Methods Appl. Math. 22, No. 3, 713--728 (2022; Zbl 1492.92116) Full Text: DOI arXiv OpenURL
Albers, Peter; Seifert, Irene Periodic delay orbits and the polyfold implicit function theorem. (English) Zbl 07565539 Comment. Math. Helv. 97, No. 2, 383-412 (2022). MSC: 34K13 47J07 PDF BibTeX XML Cite \textit{P. Albers} and \textit{I. Seifert}, Comment. Math. Helv. 97, No. 2, 383--412 (2022; Zbl 07565539) Full Text: DOI arXiv OpenURL
Nagaswara, P.; Rajeshwari, S. Complex delay-differential equations of Malmquist type. (English) Zbl 07564630 J. Appl. Math. Inform. 40, No. 3-4, 507-513 (2022). MSC: 39A10 30D35 39A12 PDF BibTeX XML Cite \textit{P. Nagaswara} and \textit{S. Rajeshwari}, J. Appl. Math. Inform. 40, No. 3--4, 507--513 (2022; Zbl 07564630) Full Text: DOI OpenURL
Wang, Lina; Wei, Yichen; Yi, Lijun An a priori error analysis of the hp-version of the \(C^0\)-continuous Petrov-Galerkin method for nonlinear second-order delay differential equations. (English) Zbl 07563032 Int. J. Comput. Math. 99, No. 8, 1557-1578 (2022). MSC: 65L60 65L05 65L70 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Comput. Math. 99, No. 8, 1557--1578 (2022; Zbl 07563032) Full Text: DOI OpenURL
Nachaoui, Mourad; Nachaoui, Abdeljalil; Tadumadze, Tamaz On the numerical approximation of some inverse problems governed by nonlinear delay differential equation. (English) Zbl 1495.49022 RAIRO, Oper. Res. 56, No. 3, 1553-1569 (2022). MSC: 49N45 34K29 49M25 PDF BibTeX XML Cite \textit{M. Nachaoui} et al., RAIRO, Oper. Res. 56, No. 3, 1553--1569 (2022; Zbl 1495.49022) Full Text: DOI OpenURL
Balanov, Zalman; Chen, Fulai; Guo, Jing; Krawcewicz, Wieslaw Periodic solutions to reversible second order autonomous systems with commensurate delays. (English) Zbl 07560282 Topol. Methods Nonlinear Anal. 59, No. 2A, 475-498 (2022). MSC: 34K13 34K04 47H11 PDF BibTeX XML Cite \textit{Z. Balanov} et al., Topol. Methods Nonlinear Anal. 59, No. 2A, 475--498 (2022; Zbl 07560282) Full Text: DOI arXiv OpenURL
Terrien, Soizic; Vergez, Christophe; Fabre, Benoît; de la Cuadra, Patricio Emergence of quasiperiodic regimes in a neutral delay model of flute-like instruments: influence of the detuning between resonance frequencies. (English) Zbl 07556714 J. Comput. Dyn. 9, No. 3, 465-482 (2022). MSC: 37N99 00A65 37G15 34K18 PDF BibTeX XML Cite \textit{S. Terrien} et al., J. Comput. Dyn. 9, No. 3, 465--482 (2022; Zbl 07556714) Full Text: DOI OpenURL
Duruisseaux, Valentin; Humphries, Antony R. Bistability, bifurcations and chaos in the Mackey-Glass equation. (English) Zbl 07556712 J. Comput. Dyn. 9, No. 3, 421-450 (2022). MSC: 34K18 34K20 34K60 92C37 34K13 34K23 37M20 PDF BibTeX XML Cite \textit{V. Duruisseaux} and \textit{A. R. Humphries}, J. Comput. Dyn. 9, No. 3, 421--450 (2022; Zbl 07556712) Full Text: DOI arXiv OpenURL
Derbazi, Choukri; Baitiche, Zidane Uniqueness and Ulam-Hyers-Mittag-Leffler stability results for the delayed fractional multiterm differential equation involving the \(\Phi\)-Caputo fractional derivative. (English) Zbl 07556045 Rocky Mt. J. Math. 52, No. 3, 887-897 (2022). MSC: 34K37 34L05 34K27 47N20 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{Z. Baitiche}, Rocky Mt. J. Math. 52, No. 3, 887--897 (2022; Zbl 07556045) Full Text: DOI arXiv Link OpenURL
Gao, Yin; Gao, Jinwu; Yang, Xiangfeng Parameter estimation in uncertain delay differential equations via the method of moments. (English) Zbl 07555044 Appl. Math. Comput. 431, Article ID 127311, 15 p. (2022). MSC: 60Hxx 34Kxx 93Exx PDF BibTeX XML Cite \textit{Y. Gao} et al., Appl. Math. Comput. 431, Article ID 127311, 15 p. (2022; Zbl 07555044) Full Text: DOI OpenURL
Park, Anna The impact of delay in the treatment of autoinflammatory disease with a mathematical model. (English) Zbl 1493.92027 East Asian Math. J. 38, No. 3, 357-363 (2022). MSC: 92C50 34K60 PDF BibTeX XML Cite \textit{A. Park}, East Asian Math. J. 38, No. 3, 357--363 (2022; Zbl 1493.92027) Full Text: DOI OpenURL
Gökçe, Aytül A dynamic interplay between allee effect and time delay in a mathematical model with weakening memory. (English) Zbl 07545346 Appl. Math. Comput. 430, Article ID 127306, 12 p. (2022). MSC: 34D20 34C23 34Kxx 92D25 PDF BibTeX XML Cite \textit{A. Gökçe}, Appl. Math. Comput. 430, Article ID 127306, 12 p. (2022; Zbl 07545346) Full Text: DOI OpenURL
Amster, Pablo; Bondorevsky, Melanie On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting. (English) Zbl 07544599 Nonlinear Anal., Real World Appl. 67, Article ID 103609, 16 p. (2022). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 34K60 34K25 34K13 92D25 PDF BibTeX XML Cite \textit{P. Amster} and \textit{M. Bondorevsky}, Nonlinear Anal., Real World Appl. 67, Article ID 103609, 16 p. (2022; Zbl 07544599) Full Text: DOI arXiv OpenURL
Rauh, Andreas; Auer, Ekaterina Verified integration of differential equations with discrete delay. (English) Zbl 07541744 Acta Cybern. 25, No. 3, 677-702 (2022). MSC: 65L03 PDF BibTeX XML Cite \textit{A. Rauh} and \textit{E. Auer}, Acta Cybern. 25, No. 3, 677--702 (2022; Zbl 07541744) Full Text: DOI OpenURL
Mohammadian, Safiyeh; Mahmoudi, Yaghoub; Saei, Farhad Dastmalchi Numerical solution of fractional multi-delay differential equations. (English) Zbl 07541681 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 71, 12 p. (2022). MSC: 34-XX 26A33 PDF BibTeX XML Cite \textit{S. Mohammadian} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 71, 12 p. (2022; Zbl 07541681) Full Text: DOI OpenURL
Berezansky, Leonid; Braverman, Elena Exponential stability for a system of second and first order delay differential equations. (English) Zbl 07540946 Appl. Math. Lett. 132, Article ID 108127, 7 p. (2022). Reviewer: Nataliya O. Sedova (Ulyanovsk) MSC: 34K06 34K20 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, Appl. Math. Lett. 132, Article ID 108127, 7 p. (2022; Zbl 07540946) Full Text: DOI arXiv OpenURL
Xiao, Huafeng The existence of periodic solutions of delay differential equations by \(E^+\)-Conley index theory. (English) Zbl 07539800 J. Funct. Spaces 2022, Article ID 3396716, 14 p. (2022). Reviewer: George Karakostas (Ioannina) MSC: 34K13 37B30 PDF BibTeX XML Cite \textit{H. Xiao}, J. Funct. Spaces 2022, Article ID 3396716, 14 p. (2022; Zbl 07539800) Full Text: DOI OpenURL
Basu, R. An iterative scheme for the oscillation criteria of a nonlinear delay differential equation with several deviating arguments. (English) Zbl 1487.34122 Asian-Eur. J. Math. 15, No. 4, Article ID 2250071, 10 p. (2022). MSC: 34K11 PDF BibTeX XML Cite \textit{R. Basu}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250071, 10 p. (2022; Zbl 1487.34122) Full Text: DOI OpenURL
Amster, Pablo; Déboli, Alberto; Pinto, Manuel Hartman and Nirenberg type results for systems of delay differential equations under \((\omega, Q)\)-periodic conditions. (English) Zbl 07536436 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3019-3037 (2022). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{P. Amster} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3019--3037 (2022; Zbl 07536436) Full Text: DOI OpenURL
Zhang, Qixia Mean-field stochastic \(H_2/H_\infty\) control with delay. (English) Zbl 1492.93050 Int. J. Control 95, No. 6, 1551-1561 (2022). MSC: 93B36 93E20 93C23 34K50 PDF BibTeX XML Cite \textit{Q. Zhang}, Int. J. Control 95, No. 6, 1551--1561 (2022; Zbl 1492.93050) Full Text: DOI OpenURL
Enciu, Daniela; Halanay, Andrei Stability for a delayed switched nonlinear system of differential equations in a critical case. (English) Zbl 1492.93130 Int. J. Control 95, No. 6, 1543-1550 (2022). MSC: 93D05 93C30 93C43 93C10 93B52 PDF BibTeX XML Cite \textit{D. Enciu} and \textit{A. Halanay}, Int. J. Control 95, No. 6, 1543--1550 (2022; Zbl 1492.93130) Full Text: DOI OpenURL
Silva, M. A.; Federson, M.; Gadotti, M. C. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. (English) Zbl 07536067 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 125-136 (2022). Reviewer: Qiru Wang (Guangzhou) MSC: 34K11 34K45 26A39 PDF BibTeX XML Cite \textit{M. A. Silva} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 125--136 (2022; Zbl 07536067) Full Text: arXiv Link OpenURL
Tamilarasi, M.; Radhakrishnan, B.; Anukokila, P. Approximate controllability of fractional semi-linear delay differential control system with random impulse. (English) Zbl 1490.35527 Palest. J. Math. 11, Spec. Iss. I, 141-150 (2022). MSC: 35R11 35R12 35R60 26A33 93B05 34K45 35K20 PDF BibTeX XML Cite \textit{M. Tamilarasi} et al., Palest. J. Math. 11, 141--150 (2022; Zbl 1490.35527) Full Text: Link OpenURL
Deng, Xun-Huan; Huang, Xianyong; Wang, Qi-Ru Oscillation and asymptotic behavior of third-order nonlinear delay differential equations with positive and negative terms. (English) Zbl 07534432 Appl. Math. Lett. 129, Article ID 107927, 8 p. (2022). Reviewer: Neville Ford (Chester) MSC: 34K11 34K25 PDF BibTeX XML Cite \textit{X.-H. Deng} et al., Appl. Math. Lett. 129, Article ID 107927, 8 p. (2022; Zbl 07534432) Full Text: DOI OpenURL
Saranya, K.; Piramanantham, V.; Thandapani, E.; Alzabut, J. Oscillation of noncanonical second-order functional differential equations via canonical transformation. (English) Zbl 07533975 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 69, 14 p. (2022). MSC: 34K11 PDF BibTeX XML Cite \textit{K. Saranya} et al., Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 69, 14 p. (2022; Zbl 07533975) Full Text: DOI OpenURL
Siah, Mansouri Samira; Gachpazan, Morteza; Ahmady, Nazanin; Ahmady, Elham Existence, uniqueness and stability of fuzzy delay differential equations with local Lipschitz and linear growth conditions. (English) Zbl 1499.34396 J. Math. Model. 10, No. 1, 129-141 (2022). MSC: 34K36 34K20 PDF BibTeX XML Cite \textit{M. S. Siah} et al., J. Math. Model. 10, No. 1, 129--141 (2022; Zbl 1499.34396) Full Text: DOI OpenURL
Li, Cui; Zhou, Yongtao Block generalized Störmer-Cowell methods applied to second order nonlinear delay differential equations. (English) Zbl 1495.65098 Appl. Numer. Math. 178, 296-303 (2022). MSC: 65L03 34K05 65L05 65L70 PDF BibTeX XML Cite \textit{C. Li} and \textit{Y. Zhou}, Appl. Numer. Math. 178, 296--303 (2022; Zbl 1495.65098) Full Text: DOI OpenURL
Lobo, Jervin Zen; Valaulikar, Yeshwant Shivrai Classification of second order functional differential equations with constant coefficients to solvable Lie algebras. (English) Zbl 1486.34124 J. Math. Ext. 16, No. 3, Paper No. 10, 42 p. (2022). MSC: 34K06 34K40 34C14 22E99 PDF BibTeX XML Cite \textit{J. Z. Lobo} and \textit{Y. S. Valaulikar}, J. Math. Ext. 16, No. 3, Paper No. 10, 42 p. (2022; Zbl 1486.34124) Full Text: DOI OpenURL
Zhou, Ben-Xing; Liu, Chungen; Zhou, Zhan; Zhang, Xiaofei Minimal \(\mathcal{M} \)-symmetric periodic solutions of general Hamiltonian systems and delay differential equations. (English) Zbl 07531820 J. Differ. Equations 329, 1-30 (2022). Reviewer: Thomas J. Bartsch (Gießen) MSC: 37J46 37B30 34K13 PDF BibTeX XML Cite \textit{B.-X. Zhou} et al., J. Differ. Equations 329, 1--30 (2022; Zbl 07531820) Full Text: DOI OpenURL
Ruiz-Herrera, Alfonso Non-autonomous differential systems with delays: a global attraction analysis. (English) Zbl 1500.34058 J. Nonlinear Sci. 32, No. 4, Paper No. 47, 43 p. (2022). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 34K13 34K25 92D25 39A12 37C60 PDF BibTeX XML Cite \textit{A. Ruiz-Herrera}, J. Nonlinear Sci. 32, No. 4, Paper No. 47, 43 p. (2022; Zbl 1500.34058) Full Text: DOI OpenURL
Kerr, Gilbert; González-Parra, Gilberto Accuracy of the Laplace transform method for linear neutral delay differential equations. (English) Zbl 07529444 Math. Comput. Simul. 197, 308-326 (2022). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{G. Kerr} and \textit{G. González-Parra}, Math. Comput. Simul. 197, 308--326 (2022; Zbl 07529444) Full Text: DOI OpenURL
Öğrekçi, Süleyman; Başcı, Yasemin; Mısır, Adil On the Hyers-Ulam stability of delay differential equations. (English) Zbl 1486.34139 Mem. Differ. Equ. Math. Phys. 85, 133-142 (2022). MSC: 34K20 39B82 47H10 PDF BibTeX XML Cite \textit{S. Öğrekçi} et al., Mem. Differ. Equ. Math. Phys. 85, 133--142 (2022; Zbl 1486.34139) Full Text: Link OpenURL
Breda, Dimitri; Liessi, Davide; Vermiglio, Rossana Piecewise discretization of monodromy operators of delay equations on adapted meshes. (English) Zbl 1492.65183 J. Comput. Dyn. 9, No. 2, 103-121 (2022). MSC: 65L03 34K13 34K20 65L15 65L50 65L60 65P30 PDF BibTeX XML Cite \textit{D. Breda} et al., J. Comput. Dyn. 9, No. 2, 103--121 (2022; Zbl 1492.65183) Full Text: DOI arXiv OpenURL