Biswas, Animikh; Hudson, Joshua Determining the viscosity of the Navier-Stokes equations from observations of finitely many modes. (English) Zbl 07765712 Inverse Probl. 39, No. 12, Article ID 125012, 29 p. (2023). MSC: 35Qxx 76Dxx 35Bxx PDF BibTeX XML Cite \textit{A. Biswas} and \textit{J. Hudson}, Inverse Probl. 39, No. 12, Article ID 125012, 29 p. (2023; Zbl 07765712) Full Text: DOI arXiv
Denisov, A. M. Approximation of the solution of an inverse problem for a singularly perturbed system of partial differential equations. (English. Russian original) Zbl 1522.35578 Differ. Equ. 59, No. 6, 762-768 (2023); translation from Differ. Uravn. 59, No. 6, 746-751 (2023). MSC: 35R30 35B25 35K20 PDF BibTeX XML Cite \textit{A. M. Denisov}, Differ. Equ. 59, No. 6, 762--768 (2023; Zbl 1522.35578); translation from Differ. Uravn. 59, No. 6, 746--751 (2023) Full Text: DOI
Da, Nguyen Tien; Van Loi, Do On the random attractor for stochastic 2D hydrodynamical type equations with additive white noise. (English) Zbl 07711917 Stochastics 95, No. 3, 356-376 (2023). MSC: 60H15 28A78 28A80 PDF BibTeX XML Cite \textit{N. T. Da} and \textit{D. Van Loi}, Stochastics 95, No. 3, 356--376 (2023; Zbl 07711917) Full Text: DOI
Wu, Huan; Liu, Yang Long time behavior for the critical modified surface quasi-geostrophic equation. (English) Zbl 1519.35338 Nonlinear Anal., Real World Appl. 72, Article ID 103844, 27 p. (2023). MSC: 35Q86 35Q30 76D05 86A05 35B41 35B40 35B65 35A01 PDF BibTeX XML Cite \textit{H. Wu} and \textit{Y. Liu}, Nonlinear Anal., Real World Appl. 72, Article ID 103844, 27 p. (2023; Zbl 1519.35338) Full Text: DOI
Sun, Wenlong; Lai, Chunlin; Liang, Yunyun Determining modes and determining nodes for the 3D non-autonomous regularized magnetohydrodynamics equations. (English) Zbl 1512.35489 Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3373-3392 (2023). MSC: 35Q35 76W05 35B40 35B65 35D30 35D35 PDF BibTeX XML Cite \textit{W. Sun} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3373--3392 (2023; Zbl 1512.35489) Full Text: DOI
Kian, Yavar; Uhlmann, Gunther Recovery of nonlinear terms for reaction diffusion equations from boundary measurements. (English) Zbl 1506.35277 Arch. Ration. Mech. Anal. 247, No. 1, Paper No. 6, 20 p. (2023). MSC: 35R30 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Kian} and \textit{G. Uhlmann}, Arch. Ration. Mech. Anal. 247, No. 1, Paper No. 6, 20 p. (2023; Zbl 1506.35277) Full Text: DOI arXiv
Kalantarov, Varga; Kostianko, Anna; Zelik, Sergey Determining functionals and finite-dimensional reduction for dissipative PDEs revisited. (English) Zbl 1504.35071 J. Differ. Equations 345, 78-103 (2023). MSC: 35B40 35B42 35K58 35K90 37D10 37L25 PDF BibTeX XML Cite \textit{V. Kalantarov} et al., J. Differ. Equations 345, 78--103 (2023; Zbl 1504.35071) Full Text: DOI arXiv
Choulli, Mourad Comments on the determination of the conductivity by boundary measurements. (English) Zbl 1498.35613 J. Math. Anal. Appl. 517, No. 2, Article ID 126638, 31 p. (2023). MSC: 35R30 35B45 35J25 PDF BibTeX XML Cite \textit{M. Choulli}, J. Math. Anal. Appl. 517, No. 2, Article ID 126638, 31 p. (2023; Zbl 1498.35613) Full Text: DOI arXiv
Bonheure, Denis; Gazzola, Filippo; Lasiecka, Irena; Webster, Justin Long-time dynamics of a hinged-free plate driven by a nonconservative force. (English) Zbl 1511.35043 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 39, No. 2, 457-500 (2022). Reviewer: Joseph Shomberg (Providence) MSC: 35B41 35L35 35L76 35R09 74K20 74H40 70J10 PDF BibTeX XML Cite \textit{D. Bonheure} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 39, No. 2, 457--500 (2022; Zbl 1511.35043) Full Text: DOI arXiv
Lobo, Jervin Zen Application of group methods in solving wave equations. (English) Zbl 1498.35020 Giri, Debasis (ed.) et al., Proceedings of the seventh international conference on mathematics and computing, ICMC 2021, Shibpur, India, March 2–5, 2021. Singapore: Springer. Adv. Intell. Syst. Comput. 1412, 869-878 (2022). MSC: 35B06 35L05 PDF BibTeX XML Cite \textit{J. Z. Lobo}, Adv. Intell. Syst. Comput. 1412, 869--878 (2022; Zbl 1498.35020) Full Text: DOI
Balakrishna, Abhishek; Biswas, Animikh Determining map, data assimilation and an observable regularity criterion for the three-dimensional Boussinesq system. (English) Zbl 1497.35338 Appl. Math. Optim. 86, No. 3, Paper No. 28, 53 p. (2022). MSC: 35Q30 35Q35 76D55 76D05 93C20 35B65 35D30 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{A. Balakrishna} and \textit{A. Biswas}, Appl. Math. Optim. 86, No. 3, Paper No. 28, 53 p. (2022; Zbl 1497.35338) Full Text: DOI arXiv
Lobo, Jervin Zen; Valaulikar, Yeshwant Shivrai Classification of second order functional differential equations with constant coefficients to solvable Lie algebras. (English) Zbl 1486.34124 J. Math. Ext. 16, No. 3, Paper No. 10, 42 p. (2022). MSC: 34K06 34K40 34C14 22E99 PDF BibTeX XML Cite \textit{J. Z. Lobo} and \textit{Y. S. Valaulikar}, J. Math. Ext. 16, No. 3, Paper No. 10, 42 p. (2022; Zbl 1486.34124)
Pérez Álvarez, Javier The Lagrange-Charpit theory of the Hamilton-Jacobi problem. (English) Zbl 1479.35230 Mediterr. J. Math. 19, No. 1, Paper No. 8, 10 p. (2022). MSC: 35F21 58A15 70H20 70G70 PDF BibTeX XML Cite \textit{J. Pérez Álvarez}, Mediterr. J. Math. 19, No. 1, Paper No. 8, 10 p. (2022; Zbl 1479.35230) Full Text: DOI
Lobo, Jervin Zen; Valaulikar, Y. S. Group methods for first order neutral differential equations. (English) Zbl 1504.34151 Indian J. Math. 63, No. 2, 263-282 (2021). MSC: 34K04 34K40 22E99 34K06 PDF BibTeX XML Cite \textit{J. Z. Lobo} and \textit{Y. S. Valaulikar}, Indian J. Math. 63, No. 2, 263--282 (2021; Zbl 1504.34151)
Tuan, Nguyen Huy; Nane, Erkan; Trong, Dang Duc Analysis of a quasi-reversibility method for nonlinear parabolic equations with uncertainty data. (English) Zbl 1482.35278 Ill. J. Math. 65, No. 4, 793-845 (2021). MSC: 35R30 35K20 35K59 35R60 47H10 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Ill. J. Math. 65, No. 4, 793--845 (2021; Zbl 1482.35278) Full Text: DOI Link
Ashurov, R. R.; Faiziev, Yu. É. Inverse problem for finding the order of the fractional derivative in the wave equation. (English. Russian original) Zbl 1481.35394 Math. Notes 110, No. 6, 842-852 (2021); translation from Mat. Zametki 110, No. 6, 824-836 (2021). MSC: 35R30 35L05 35R11 PDF BibTeX XML Cite \textit{R. R. Ashurov} and \textit{Yu. É. Faiziev}, Math. Notes 110, No. 6, 842--852 (2021; Zbl 1481.35394); translation from Mat. Zametki 110, No. 6, 824--836 (2021) Full Text: DOI
Feizmohammadi, Ali; Lassas, Matti; Oksanen, Lauri Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers. (English) Zbl 1479.35946 Forum Math. Pi 9, Paper No. e10, 52 p. (2021). MSC: 35R30 35L72 35L71 35L15 58J45 58J47 PDF BibTeX XML Cite \textit{A. Feizmohammadi} et al., Forum Math. Pi 9, Paper No. e10, 52 p. (2021; Zbl 1479.35946) Full Text: DOI arXiv
Aksenov, A. V.; Druzhkov, K. P. Symmetries and conservation laws of the equations of two-dimensional shallow water over uneven bottom. (English) Zbl 1479.35034 Sadovnichiy, Victor A. (ed.) et al., Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. Underst. Complex Syst., 113-163 (2021). MSC: 35B06 35Q35 76M60 PDF BibTeX XML Cite \textit{A. V. Aksenov} and \textit{K. P. Druzhkov}, in: Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. 113--163 (2021; Zbl 1479.35034) Full Text: DOI
Biswas, Animikh; Price, Randy Continuous data assimilation for the three-dimensional Navier-Stokes equations. (English) Zbl 1479.35602 SIAM J. Math. Anal. 53, No. 6, 6697-6723 (2021). MSC: 35Q30 35Q35 76D05 76D55 93C20 35B65 35D30 35B40 35B41 35A01 35A02 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{R. Price}, SIAM J. Math. Anal. 53, No. 6, 6697--6723 (2021; Zbl 1479.35602) Full Text: DOI arXiv
Kian, Yavar On the determination of nonlinear terms appearing in semilinear hyperbolic equations. (English) Zbl 1478.35240 J. Lond. Math. Soc., II. Ser. 104, No. 2, 572-595 (2021). MSC: 35R30 35L20 35L71 35R01 PDF BibTeX XML Cite \textit{Y. Kian}, J. Lond. Math. Soc., II. Ser. 104, No. 2, 572--595 (2021; Zbl 1478.35240) Full Text: DOI arXiv
Anh, Cung The; Thuy, Le Thi; Tinh, Le Tran Long-time behavior of a family of incompressible three-dimensional Leray-\(\alpha\)-like models. (English) Zbl 1477.35152 Bull. Korean Math. Soc. 58, No. 5, 1109-1127 (2021). MSC: 35Q35 37L30 76D03 76D05 76F20 76F65 26A33 35R11 35D30 35B41 35B40 PDF BibTeX XML Cite \textit{C. T. Anh} et al., Bull. Korean Math. Soc. 58, No. 5, 1109--1127 (2021; Zbl 1477.35152) Full Text: DOI
Kian, Yavar; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro The uniqueness of inverse problems for a fractional equation with a single measurement. (English) Zbl 1472.35455 Math. Ann. 380, No. 3-4, 1465-1495 (2021). MSC: 35R30 35A02 35K20 35R11 PDF BibTeX XML Cite \textit{Y. Kian} et al., Math. Ann. 380, No. 3--4, 1465--1495 (2021; Zbl 1472.35455) Full Text: DOI Link
Zhang, Na; Jia, Guangyan W-symmetries of backward stochastic differential equations, preservation of simple symmetries and Kozlov’s theory. (English) Zbl 1462.60092 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105527, 13 p. (2021). Reviewer: Georgiy Shevchenko (Kyïv) MSC: 60H15 35B06 93E03 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{G. Jia}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105527, 13 p. (2021; Zbl 1462.60092) Full Text: DOI
Zhang, Zhi-Yong Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation. (English) Zbl 1472.35446 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190564, 17 p. (2020). MSC: 35R11 PDF BibTeX XML Cite \textit{Z.-Y. Zhang}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190564, 17 p. (2020; Zbl 1472.35446) Full Text: DOI Link
Selmi, Ridha; Châabani, Abdelkerim Well-posedness, stability and determining modes to 3D Burgers equation in Gevrey class. (English) Zbl 1462.35177 Z. Angew. Math. Phys. 71, No. 5, Paper No. 162, 15 p. (2020). MSC: 35K58 35K20 35A01 35A02 35B10 35B35 PDF BibTeX XML Cite \textit{R. Selmi} and \textit{A. Châabani}, Z. Angew. Math. Phys. 71, No. 5, Paper No. 162, 15 p. (2020; Zbl 1462.35177) Full Text: DOI
Mawi, Henok An overview of mathematical modeling of geometric optics problems involving refraction. (English) Zbl 1459.35224 Ortega, Omayra (ed.) et al., The golden anniversary celebration of the National Association of Mathematicians. AMS special session on the mathematics of historically black colleges and universities, HBCUs in the Mid-Atlantic. MAA invited paper session on the past 50 years of African Americans in the mathematical sciences. Haynes-Granville-Browne session of presentations by recent doctoral recipients. 2019 Claytor-Wookdard lecture. NAM David Harold Blackwell lecture, Baltimore, MD, USA and Cincinnati, OH, USA, January 17, 18 and 19 and August 2, 2019. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 759, 21-37 (2020). MSC: 35J96 35R30 35-02 PDF BibTeX XML Cite \textit{H. Mawi}, Contemp. Math. 759, 21--37 (2020; Zbl 1459.35224) Full Text: DOI
Uhlmann, Gunther; Wang, Yiran Convolutional neural networks in phase space and inverse problems. (English) Zbl 1458.35485 SIAM J. Appl. Math. 80, No. 6, 2560-2585 (2020). MSC: 35R30 35L71 35L20 PDF BibTeX XML Cite \textit{G. Uhlmann} and \textit{Y. Wang}, SIAM J. Appl. Math. 80, No. 6, 2560--2585 (2020; Zbl 1458.35485) Full Text: DOI arXiv
Ashurov, R. R.; Mukhiddinova, A. T. Inverse problem of determining the heat source density for the subdiffusion equation. (English. Russian original) Zbl 1471.35321 Differ. Equ. 56, No. 12, 1550-1563 (2020); translation from Differ. Uravn. 56, No. 12, 1596-1609 (2020). Reviewer: Elena V. Tabarintseva (Chelyabinsk) MSC: 35R30 35D30 35R11 35K20 PDF BibTeX XML Cite \textit{R. R. Ashurov} and \textit{A. T. Mukhiddinova}, Differ. Equ. 56, No. 12, 1550--1563 (2020; Zbl 1471.35321); translation from Differ. Uravn. 56, No. 12, 1596--1609 (2020) Full Text: DOI
Tagiev, R. K.; Maharramli, Sh. I. Variational formulation of an inverse problem for a parabolic equation with integral conditions. (Russian. English summary) Zbl 1456.35233 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 3, 34-40 (2020). MSC: 35R30 35K20 PDF BibTeX XML Cite \textit{R. K. Tagiev} and \textit{Sh. I. Maharramli}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 3, 34--40 (2020; Zbl 1456.35233) Full Text: DOI MNR
Zen Lobo, Jervin; Valaulikar, Y. S. Classification of some first order functional differential equations with constant coefficients to solvable Lie algebras. (English) Zbl 1457.34102 Appl. Appl. Math. 15, No. 2, 985-1003 (2020). MSC: 34K06 34K04 PDF BibTeX XML Cite \textit{J. Zen Lobo} and \textit{Y. S. Valaulikar}, Appl. Appl. Math. 15, No. 2, 985--1003 (2020; Zbl 1457.34102) Full Text: Link
Kamynin, V. L. Inverse problem of determining the absorption coefficient in a degenerate parabolic equation in the class of \(L_2\)-functions. (English. Russian original) Zbl 1448.35574 J. Math. Sci., New York 250, No. 2, 322-336 (2020); translation from Probl. Mat. Anal. 105, 121-133 (2020). MSC: 35R30 35K20 35K65 PDF BibTeX XML Cite \textit{V. L. Kamynin}, J. Math. Sci., New York 250, No. 2, 322--336 (2020; Zbl 1448.35574); translation from Probl. Mat. Anal. 105, 121--133 (2020) Full Text: DOI
Liu, Lihan; Cai, Jingqiu; Xu, Yongzhi Steve Regularized Newton iteration method for a penetrable cavity with internal measurements in inverse scattering problem. (English) Zbl 1448.35578 Math. Methods Appl. Sci. 43, No. 5, 2665-2678 (2020). MSC: 35R30 35J25 65M32 PDF BibTeX XML Cite \textit{L. Liu} et al., Math. Methods Appl. Sci. 43, No. 5, 2665--2678 (2020; Zbl 1448.35578) Full Text: DOI
Yuan, Lele; Cheng, Xiaoliang; Liang, Kewei Solving a backward problem for a distributed-order time fractional diffusion equation by a new adjoint technique. (English) Zbl 1447.35394 J. Inverse Ill-Posed Probl. 28, No. 4, 471-488 (2020). MSC: 35R30 35R11 35R60 45Q05 49N45 35R25 PDF BibTeX XML Cite \textit{L. Yuan} et al., J. Inverse Ill-Posed Probl. 28, No. 4, 471--488 (2020; Zbl 1447.35394) Full Text: DOI
Toi, Vu Manh; Ngan, Nguyen Thi Upper bounds on the number of determining nodes for 3D Navier-Stokes-Voigt equations. (English) Zbl 1446.35142 Ann. Pol. Math. 125, No. 1, 83-99 (2020). MSC: 35Q35 35B10 PDF BibTeX XML Cite \textit{V. M. Toi} and \textit{N. T. Ngan}, Ann. Pol. Math. 125, No. 1, 83--99 (2020; Zbl 1446.35142) Full Text: DOI
Knox, Christina; Moradifam, Amir Determining both the source of a wave and its speed in a medium from boundary measurements. (English) Zbl 1458.35480 Inverse Probl. 36, No. 2, Article ID 025002, 15 p. (2020). MSC: 35R30 35L05 35L20 PDF BibTeX XML Cite \textit{C. Knox} and \textit{A. Moradifam}, Inverse Probl. 36, No. 2, Article ID 025002, 15 p. (2020; Zbl 1458.35480) Full Text: DOI arXiv
Temuer, Chaolu; Wei, Kangkang; Yao, Yufeng; Su, Dao A mechanical algorithm for constructing structural constants of the Lie algebra of symmetry of differential equations based on Wu’s method. (Chinese. English summary) Zbl 1513.35031 Sci. Sin., Math. 49, No. 5, 751-764 (2019). MSC: 35A30 PDF BibTeX XML Cite \textit{C. Temuer} et al., Sci. Sin., Math. 49, No. 5, 751--764 (2019; Zbl 1513.35031) Full Text: DOI
Kian, Yavar; Oksanen, Lauri Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations. (English) Zbl 1459.35398 Int. Math. Res. Not. 2019, No. 16, 5087-5126 (2019). MSC: 35R30 35L20 35R01 PDF BibTeX XML Cite \textit{Y. Kian} and \textit{L. Oksanen}, Int. Math. Res. Not. 2019, No. 16, 5087--5126 (2019; Zbl 1459.35398) Full Text: DOI arXiv HAL
Chueshov, Igor; Fastovska, Tamara; Ryzhkova, Iryna Quasi-stability method in study of asymptotic behavior of dynamical systems. (English) Zbl 1451.37005 J. Math. Phys. Anal. Geom. 15, No. 4, 448-501 (2019). MSC: 37-02 37L05 37L15 37L30 35B40 35B41 PDF BibTeX XML Cite \textit{I. Chueshov} et al., J. Math. Phys. Anal. Geom. 15, No. 4, 448--501 (2019; Zbl 1451.37005) Full Text: DOI
Liu, Chein-Shan; Dong, Leiting Closed-form higher-order numerical differentiators for differentiating noisy signals. (English) Zbl 1429.65159 Appl. Math. Comput. 359, 386-403 (2019). MSC: 65L09 94A12 PDF BibTeX XML Cite \textit{C.-S. Liu} and \textit{L. Dong}, Appl. Math. Comput. 359, 386--403 (2019; Zbl 1429.65159) Full Text: DOI
Jolly, Michael S.; Martinez, Vincent R.; Sadigov, Tural; Titi, Edriss S. A determining form for the subcritical surface quasi-geostrophic equation. (English) Zbl 1420.35042 J. Dyn. Differ. Equations 31, No. 3, 1457-1494 (2019). MSC: 35B40 35R11 35Q35 35Q86 35G25 35B10 PDF BibTeX XML Cite \textit{M. S. Jolly} et al., J. Dyn. Differ. Equations 31, No. 3, 1457--1494 (2019; Zbl 1420.35042) Full Text: DOI arXiv
Miyajima, N.; Wirosoetisno, D. Navier-Stokes equations on the \(\beta\)-plane: determining modes and nodes. (English) Zbl 1415.76732 Physica D 386-387, 31-37 (2019). MSC: 76U05 76D05 86A05 PDF BibTeX XML Cite \textit{N. Miyajima} and \textit{D. Wirosoetisno}, Physica D 386--387, 31--37 (2019; Zbl 1415.76732) Full Text: DOI arXiv
Cheskidov, Alexey; Dai, Mimi Kolmogorov’s dissipation number and the number of degrees of freedom for the 3D Navier-Stokes equations. (English) Zbl 1420.35227 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 2, 429-446 (2019). MSC: 35Q35 37L30 76D05 35B41 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{M. Dai}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 2, 429--446 (2019; Zbl 1420.35227) Full Text: DOI arXiv
Goubet, Olivier Determining nodes for the damped forced periodic Korteweg-de Vries equation. (English) Zbl 1420.35315 J. Dyn. Differ. Equations 31, No. 2, 1029-1039 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35B41 37L50 PDF BibTeX XML Cite \textit{O. Goubet}, J. Dyn. Differ. Equations 31, No. 2, 1029--1039 (2019; Zbl 1420.35315) Full Text: DOI
Yamazaki, Kazuo Gibbsian dynamics and ergodicity of stochastic micropolar fluid system. (English) Zbl 1411.35231 Appl. Math. Optim. 79, No. 1, 1-40 (2019). MSC: 35Q35 37L55 60H15 PDF BibTeX XML Cite \textit{K. Yamazaki}, Appl. Math. Optim. 79, No. 1, 1--40 (2019; Zbl 1411.35231) Full Text: DOI
Biswas, Animikh; Foias, Ciprian; Mondaini, Cecilia F.; Titi, Edriss S. Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations. (English) Zbl 1420.35181 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 2, 295-326 (2019). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 76D06 34A45 34A55 35B42 93B52 PDF BibTeX XML Cite \textit{A. Biswas} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 2, 295--326 (2019; Zbl 1420.35181) Full Text: DOI arXiv
Zhao, Caidi; Li, Yanjiao; Zhang, Mingshu Determining nodes of the global attractor for an incompressible non-Newtonian fluid. (English) Zbl 1456.35044 J. Appl. Anal. Comput. 8, No. 3, 954-964 (2018). MSC: 35B41 35B40 35Q35 76D05 PDF BibTeX XML Cite \textit{C. Zhao} et al., J. Appl. Anal. Comput. 8, No. 3, 954--964 (2018; Zbl 1456.35044) Full Text: DOI
Sakulrang, Sasikarn; Sungnul, Surattana; Srihirun, Boonlert; Moore, Elvin J. Derivation of Lie groups for some higher order stochastic differential equations. (English) Zbl 1463.76039 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2017, 1-20 (2018). MSC: 76M35 76M60 35R60 60H15 PDF BibTeX XML Cite \textit{S. Sakulrang} et al., Thai J. Math., 1--20 (2018; Zbl 1463.76039) Full Text: Link
Xenitidis, Pavlos Determining the symmetries of difference equations. (English) Zbl 1425.39010 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2219, Article ID 20180340, 20 p. (2018). MSC: 39A30 PDF BibTeX XML Cite \textit{P. Xenitidis}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2219, Article ID 20180340, 20 p. (2018; Zbl 1425.39010) Full Text: DOI
Karasëva, G. L.; Ruzhitskaya, E. A. Method of solving the special optimal control problems with phase constraints. (Russian. English summary) Zbl 1409.49022 Probl. Fiz. Mat. Tekh. 2018, No. 4(37), 80-84 (2018). MSC: 49K30 PDF BibTeX XML Cite \textit{G. L. Karasëva} and \textit{E. A. Ruzhitskaya}, Probl. Fiz. Mat. Tekh. 2018, No. 4(37), 80--84 (2018; Zbl 1409.49022) Full Text: MNR
Bilgin, B. A.; Kalantarov, V. K. Existence of an attractor and determining modes for structurally damped nonlinear wave equations. (English) Zbl 1398.35009 Physica D 376-377, 15-22 (2018). MSC: 35B41 35B40 37L30 35L20 PDF BibTeX XML Cite \textit{B. A. Bilgin} and \textit{V. K. Kalantarov}, Physica D 376--377, 15--22 (2018; Zbl 1398.35009) Full Text: DOI
Huang, Aimin; Huo, Wenru; Jolly, Michael Finite-dimensionality and determining modes of the global attractor for 2D Boussinesq equations with fractional Laplacian. (English) Zbl 1397.35312 Adv. Nonlinear Stud. 18, No. 3, 501-515 (2018). MSC: 35Q86 35R11 86A10 35D35 35B41 PDF BibTeX XML Cite \textit{A. Huang} et al., Adv. Nonlinear Stud. 18, No. 3, 501--515 (2018; Zbl 1397.35312) Full Text: DOI
Cheskidov, Alexey; Dai, Mimi; Kavlie, Landon Determining modes for the 3D Navier-Stokes equations. (English) Zbl 1392.35205 Physica D 374-375, 1-9 (2018). MSC: 35Q30 35D30 35B41 PDF BibTeX XML Cite \textit{A. Cheskidov} et al., Physica D 374--375, 1--9 (2018; Zbl 1392.35205) Full Text: DOI arXiv
Krause, Paul Influence sampling of trailing variables of dynamical systems. (English) Zbl 1504.86002 Math. Clim. Weather Forecast. 3, 51-63 (2017). MSC: 86-08 86A08 58J45 37M05 34F05 34K35 PDF BibTeX XML Cite \textit{P. Krause}, Math. Clim. Weather Forecast. 3, 51--63 (2017; Zbl 1504.86002) Full Text: DOI
Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Michels, Dominik L. Algorithmic verification of linearizability for ordinary differential equations. (English) Zbl 1454.34064 Burr, Michael (ed.), Proceedings of the 42nd international symposium on symbolic and algebraic computation, ISSAC 2017, Kaiserslautern, Germany, July 25–28, 2017. New York, NY: Association for Computing Machinery (ACM). 285-292 (2017). MSC: 34C20 34C14 68W30 PDF BibTeX XML Cite \textit{D. A. Lyakhov} et al., in: Proceedings of the 42nd international symposium on symbolic and algebraic computation, ISSAC 2017, Kaiserslautern, Germany, July 25--28, 2017. New York, NY: Association for Computing Machinery (ACM). 285--292 (2017; Zbl 1454.34064) Full Text: DOI arXiv Link
Su, Keqin; Cao, Jie Third-order conditional Lie-Bäcklund symmetries of nonlinear reaction-diffusion equations. (English) Zbl 1400.35014 Adv. Math. Phys. 2017, Article ID 2825416, 9 p. (2017). MSC: 35B06 35K57 37K35 PDF BibTeX XML Cite \textit{K. Su} and \textit{J. Cao}, Adv. Math. Phys. 2017, Article ID 2825416, 9 p. (2017; Zbl 1400.35014) Full Text: DOI
Foias, Ciprian; Jolly, Michael S.; Lithio, Dan; Titi, Edriss S. One-dimensional parametric determining form for the two-dimensional Navier-Stokes equations. (English) Zbl 1379.35211 J. Nonlinear Sci. 27, No. 5, 1513-1529 (2017). MSC: 35Q30 76F02 35B41 PDF BibTeX XML Cite \textit{C. Foias} et al., J. Nonlinear Sci. 27, No. 5, 1513--1529 (2017; Zbl 1379.35211) Full Text: DOI arXiv
Lunasin, Evelyn; Titi, Edriss S. Finite determining parameters feedback control for distributed nonlinear dissipative systems – a computational study. (English) Zbl 1375.35256 Evol. Equ. Control Theory 6, No. 4, 535-557 (2017). MSC: 35K57 37L25 37L30 37N35 93B52 93C20 93D15 PDF BibTeX XML Cite \textit{E. Lunasin} and \textit{E. S. Titi}, Evol. Equ. Control Theory 6, No. 4, 535--557 (2017; Zbl 1375.35256) Full Text: DOI arXiv
Bai, Lu; Yang, Meihua A determining form for a nonlocal system. (English) Zbl 06791433 Adv. Nonlinear Stud. 17, No. 4, 705-713 (2017). MSC: 47J35 35B41 35B40 PDF BibTeX XML Cite \textit{L. Bai} and \textit{M. Yang}, Adv. Nonlinear Stud. 17, No. 4, 705--713 (2017; Zbl 06791433) Full Text: DOI
Hào, Dinh Nho; Oanh, Nguyen Thi Ngoc Determination of the initial condition in parabolic equations from integral observations. (English) Zbl 1369.65116 Inverse Probl. Sci. Eng. 25, No. 8, 1138-1167 (2017). MSC: 65M32 65N20 65J20 PDF BibTeX XML Cite \textit{D. N. Hào} and \textit{N. T. N. Oanh}, Inverse Probl. Sci. Eng. 25, No. 8, 1138--1167 (2017; Zbl 1369.65116) Full Text: DOI
Jolly, Michael S.; Sadigov, Tural; Titi, Edriss S. Determining form and data assimilation algorithm for weakly damped and driven Korteweg-de Vries equation – Fourier modes case. (English) Zbl 1364.35312 Nonlinear Anal., Real World Appl. 36, 287-317 (2017). MSC: 35Q53 35B41 PDF BibTeX XML Cite \textit{M. S. Jolly} et al., Nonlinear Anal., Real World Appl. 36, 287--317 (2017; Zbl 1364.35312) Full Text: DOI arXiv
Lisle, Ian G.; Huang, S.-L. Tracy Algorithmic calculus for Lie determining systems. (English) Zbl 1361.35012 J. Symb. Comput. 79, Part 2, 482-498 (2017). MSC: 35A30 17B05 68W30 PDF BibTeX XML Cite \textit{I. G. Lisle} and \textit{S. L. T. Huang}, J. Symb. Comput. 79, Part 2, 482--498 (2017; Zbl 1361.35012) Full Text: DOI
Sun, Chengjin; Zhang, Jianjun; Wang, Songyu Third-order conditional Lie-Bäcklund symmetries and differential constraits of inhomogeneous nonlinear diffusion equations. (Chinese. English summary) Zbl 1374.35223 J. Zhengzhou Univ., Nat. Sci. Ed. 48, No. 4, 20-22 (2016). MSC: 35K57 35B06 PDF BibTeX XML Cite \textit{C. Sun} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 48, No. 4, 20--22 (2016; Zbl 1374.35223) Full Text: DOI
Albanez, Débora A. F.; Nussenzveig Lopes, Helena J.; Titi, Edriss S. Continuous data assimilation for the three-dimensional Navier-Stokes-\(\alpha\) model. (English) Zbl 1344.35078 Asymptotic Anal. 97, No. 1-2, 139-164 (2016). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{D. A. F. Albanez} et al., Asymptotic Anal. 97, No. 1--2, 139--164 (2016; Zbl 1344.35078) Full Text: DOI arXiv
Rontó, András; Rontó, Miklós; Varha, Jana A new approach to non-local boundary value problems for ordinary differential systems. (English) Zbl 1328.65165 Appl. Math. Comput. 250, 689-700 (2015). MSC: 65L10 34A45 34B10 PDF BibTeX XML Cite \textit{A. Rontó} et al., Appl. Math. Comput. 250, 689--700 (2015; Zbl 1328.65165) Full Text: DOI
Jolly, Michael S.; Sadigov, Tural; Titi, Edriss S. A determining form for the damped driven nonlinear Schrödinger equation – Fourier modes case. (English) Zbl 1309.35135 J. Differ. Equations 258, No. 8, 2711-2744 (2015). MSC: 35Q55 34G20 37L05 37L25 PDF BibTeX XML Cite \textit{M. S. Jolly} et al., J. Differ. Equations 258, No. 8, 2711--2744 (2015; Zbl 1309.35135) Full Text: DOI arXiv
Catuogno, Pedro José; Lucinger, Luis Roberto Random Lie-point symmetries. (English) Zbl 1420.34003 J. Nonlinear Math. Phys. 21, No. 2, 149-165 (2014). MSC: 34A05 34C14 60H10 60H30 82C31 PDF BibTeX XML Cite \textit{P. J. Catuogno} and \textit{L. R. Lucinger}, J. Nonlinear Math. Phys. 21, No. 2, 149--165 (2014; Zbl 1420.34003) Full Text: DOI
Rontó, András; Rontó, Miklós; Shchobak, Nataliya Notes on interval halving procedure for periodic and two-point problems. (English) Zbl 1339.34028 Bound. Value Probl. 2014, Paper No. 164, 20 p. (2014). MSC: 34A45 34B15 34C25 PDF BibTeX XML Cite \textit{A. Rontó} et al., Bound. Value Probl. 2014, Paper No. 164, 20 p. (2014; Zbl 1339.34028) Full Text: DOI
Azouani, Abderrahim; Titi, Edriss S. Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction-diffusion paradigm. (English) Zbl 1304.35715 Evol. Equ. Control Theory 3, No. 4, 579-594 (2014). MSC: 35Q93 35K57 37L25 37L30 37N35 93B52 93C20 93D15 76D05 PDF BibTeX XML Cite \textit{A. Azouani} and \textit{E. S. Titi}, Evol. Equ. Control Theory 3, No. 4, 579--594 (2014; Zbl 1304.35715) Full Text: DOI arXiv
Foias, C.; Jolly, M. S.; Kravchenko, R.; Titi, E. S. A unified approach to determining forms for the 2D Navier-Stokes equations – the general interpolants case. (English. Russian original) Zbl 1301.35108 Russ. Math. Surv. 69, No. 2, 359-381 (2014); translation from Usp. Mat. Nauk 69, No. 2, 177-200 (2014). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 76D05 35B41 PDF BibTeX XML Cite \textit{C. Foias} et al., Russ. Math. Surv. 69, No. 2, 359--381 (2014; Zbl 1301.35108); translation from Usp. Mat. Nauk 69, No. 2, 177--200 (2014) Full Text: DOI arXiv
Azouani, Abderrahim; Olson, Eric; Titi, Edriss S. Continuous data assimilation using general interpolant observables. (English) Zbl 1291.35168 J. Nonlinear Sci. 24, No. 2, 277-304 (2014). MSC: 35Q30 93C20 37C50 76B75 34D06 PDF BibTeX XML Cite \textit{A. Azouani} et al., J. Nonlinear Sci. 24, No. 2, 277--304 (2014; Zbl 1291.35168) Full Text: DOI arXiv
Popov, Sergey; Reitmann, Volker Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. (English) Zbl 1273.93116 Discrete Contin. Dyn. Syst. 34, No. 1, 249-267 (2014). MSC: 93C80 93C20 35K20 35L20 93C25 PDF BibTeX XML Cite \textit{S. Popov} and \textit{V. Reitmann}, Discrete Contin. Dyn. Syst. 34, No. 1, 249--267 (2014; Zbl 1273.93116) Full Text: DOI
Mironov, A. N. Classes of Bianchi equations of third order. (English. Russian original) Zbl 1284.35030 Math. Notes 94, No. 3, 369-378 (2013); translation from Mat. Zametki 94, No. 3, 389-400 (2013). MSC: 35B06 35L25 PDF BibTeX XML Cite \textit{A. N. Mironov}, Math. Notes 94, No. 3, 369--378 (2013; Zbl 1284.35030); translation from Mat. Zametki 94, No. 3, 389--400 (2013) Full Text: DOI
Fiedler, Bernold; Mochizuki, Atsushi; Kurosawa, Gen; Saito, Daisuke Dynamics and control at feedback vertex sets. I: Informative and determining nodes in regulatory networks. (English) Zbl 1337.92074 J. Dyn. Differ. Equations 25, No. 3, 563-604 (2013). MSC: 92C42 05C90 90B10 34D45 PDF BibTeX XML Cite \textit{B. Fiedler} et al., J. Dyn. Differ. Equations 25, No. 3, 563--604 (2013; Zbl 1337.92074) Full Text: DOI
Molati, Motlatsi; Khalique, Chaudry Masood Lie symmetry analysis of the time-variable coefficient B-BBM equation. (English) Zbl 1387.35022 Adv. Difference Equ. 2012, Paper No. 212, 8 p. (2012). MSC: 35B06 PDF BibTeX XML Cite \textit{M. Molati} and \textit{C. M. Khalique}, Adv. Difference Equ. 2012, Paper No. 212, 8 p. (2012; Zbl 1387.35022) Full Text: DOI
Kaptsov, O. V.; Fomina, A. V.; Chernykh, G. G.; Schmidt, A. V. Self-similar degeneration of the turbulent wake behind a body towed in a passively stratified medium. (English. Russian original) Zbl 1298.76096 J. Appl. Mech. Tech. Phys. 53, No. 5, 672-678 (2012); translation from Prikl. Mekh. Tekh. Fiz. 53, No. 5, 47-54 (2012). MSC: 76F10 76M60 PDF BibTeX XML Cite \textit{O. V. Kaptsov} et al., J. Appl. Mech. Tech. Phys. 53, No. 5, 672--678 (2012; Zbl 1298.76096); translation from Prikl. Mekh. Tekh. Fiz. 53, No. 5, 47--54 (2012) Full Text: DOI
Kaptsov, Oleg V.; Schmidt, Alexey V. Application of the \(B\)-determining equations method to one problem of free turbulence. (English) Zbl 1356.76116 SIGMA, Symmetry Integrability Geom. Methods Appl. 8, Paper 073, 10 p. (2012). MSC: 76F60 76M60 PDF BibTeX XML Cite \textit{O. V. Kaptsov} and \textit{A. V. Schmidt}, SIGMA, Symmetry Integrability Geom. Methods Appl. 8, Paper 073, 10 p. (2012; Zbl 1356.76116) Full Text: DOI arXiv
Rontó, A.; Rontó, M. Existence results for three-point boundary value problems for systems of linear functional differential equations. (English) Zbl 1265.34230 Carpathian J. Math. 28, No. 1, 163-182 (2012). Reviewer: Rodica Luca Tudorache (Iasi) MSC: 34K10 34K06 34A45 PDF BibTeX XML Cite \textit{A. Rontó} and \textit{M. Rontó}, Carpathian J. Math. 28, No. 1, 163--182 (2012; Zbl 1265.34230)
Rontó, Miklós; Marynets, K. On the parametrization of boundary-value problems with three-point non-linear restrictions. (English) Zbl 1265.34054 Miskolc Math. Notes 13, No. 1, 91-106 (2012). MSC: 34B10 34B15 34B08 34C20 PDF BibTeX XML Cite \textit{M. Rontó} and \textit{K. Marynets}, Miskolc Math. Notes 13, No. 1, 91--106 (2012; Zbl 1265.34054)
Matt, Michael Andreas Trivariate local Lagrange interpolation and macro elements of arbitrary smoothness. Foreword by Prof. Dr. Ming-Jun Lai. (English) Zbl 1246.65028 Research. Wiesbaden: Springer Spektrum (ISBN 978-3-8348-2383-0/pbk; 978-3-8348-2384-7/ebook). xvi, 370 p. (2012). Reviewer: Adhemar Bultheel (Leuven) MSC: 65D05 65-02 65D07 41A05 41A15 PDF BibTeX XML Cite \textit{M. A. Matt}, Trivariate local Lagrange interpolation and macro elements of arbitrary smoothness. Foreword by Prof. Dr. Ming-Jun Lai. Wiesbaden: Springer Spektrum (2012; Zbl 1246.65028) Full Text: DOI
Bibikov, Yu. N.; Bukaty, V. R. Multifrequency oscillations of singularly perturbed systems. (English. Russian original) Zbl 1277.34056 Differ. Equ. 48, No. 1, 19-25 (2012); translation from Differ. Uravn. 48, No. 1, 21-26 (2012). Reviewer: E. V. Shchetinina (Samara) MSC: 34C45 34E15 34C23 34C46 PDF BibTeX XML Cite \textit{Yu. N. Bibikov} and \textit{V. R. Bukaty}, Differ. Equ. 48, No. 1, 19--25 (2012; Zbl 1277.34056); translation from Differ. Uravn. 48, No. 1, 21--26 (2012) Full Text: DOI
Paicu, Marius; Raugel, Geneviève; Rekalo, Andrey Regularity of the global attractor and finite-dimensional behavior for the second grade fluid equations. (English) Zbl 1235.35225 J. Differ. Equations 252, No. 6, 3695-3751 (2012). MSC: 35Q35 35B41 76D05 46E35 35B65 PDF BibTeX XML Cite \textit{M. Paicu} et al., J. Differ. Equations 252, No. 6, 3695--3751 (2012; Zbl 1235.35225) Full Text: DOI
Kaptsov, Oleg V.; Schmidt, Alexey V. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. (English) Zbl 1306.76022 Discrete Contin. Dyn. Syst. 2011, Suppl., 794-802 (2011). MSC: 76F60 76F45 35Q35 PDF BibTeX XML Cite \textit{O. V. Kaptsov} and \textit{A. V. Schmidt}, Discrete Contin. Dyn. Syst. 2011, 794--802 (2011; Zbl 1306.76022) Full Text: Link
Marynets, K. On the parametrization of nonlinear boundary value problems with nonlinear boundary conditions. (English) Zbl 1265.34060 Miskolc Math. Notes 12, No. 2, 209-223 (2011). MSC: 34B15 34B08 34A45 PDF BibTeX XML Cite \textit{K. Marynets}, Miskolc Math. Notes 12, No. 2, 209--223 (2011; Zbl 1265.34060)
Kunzinger, Michael; Popovych, Roman O. Generalized conditional symmetries of evolution equations. (English) Zbl 1211.35021 J. Math. Anal. Appl. 379, No. 1, 444-460 (2011). MSC: 35B06 35C05 PDF BibTeX XML Cite \textit{M. Kunzinger} and \textit{R. O. Popovych}, J. Math. Anal. Appl. 379, No. 1, 444--460 (2011; Zbl 1211.35021) Full Text: DOI arXiv
Korn, Peter On degrees of freedom of certain conservative turbulence models for the Navier-Stokes equations. (English) Zbl 1211.35219 J. Math. Anal. Appl. 378, No. 1, 49-63 (2011). MSC: 35Q30 35Q35 35B40 76F99 76M25 PDF BibTeX XML Cite \textit{P. Korn}, J. Math. Anal. Appl. 378, No. 1, 49--63 (2011; Zbl 1211.35219) Full Text: DOI
Zaczkiewicz, Z. Representation of solutions for fractional differential-algebraic systems with delays. (English) Zbl 1225.34084 Bull. Pol. Acad. Sci., Tech. Sci. 58, No. 4, 607-612 (2010). MSC: 34K32 34K37 34K07 34K06 PDF BibTeX XML Cite \textit{Z. Zaczkiewicz}, Bull. Pol. Acad. Sci., Tech. Sci. 58, No. 4, 607--612 (2010; Zbl 1225.34084) Full Text: DOI Link
Nazarov, V. G. Determining the chemical composition of an inhomogeneous body by multi-energy radiography. (Russian) Zbl 1240.92003 Sib. Zh. Ind. Mat. 13, No. 1, 72-83 (2010). MSC: 92C55 44A12 35R30 45Q05 65R32 PDF BibTeX XML Cite \textit{V. G. Nazarov}, Sib. Zh. Ind. Mat. 13, No. 1, 72--83 (2010; Zbl 1240.92003)
Kawakami, Hajime; Tsuchiya, Masaaki Uniqueness in shape identification of a time-varying domain and related parabolic equations on non-cylindrical domains. (English) Zbl 1206.35257 Inverse Probl. 26, No. 12, Article ID 125007, 34 p. (2010). MSC: 35R30 35K10 35D30 35B60 PDF BibTeX XML Cite \textit{H. Kawakami} and \textit{M. Tsuchiya}, Inverse Probl. 26, No. 12, Article ID 125007, 34 p. (2010; Zbl 1206.35257) Full Text: DOI
Meleshko, Sergey V.; Schulz, Eckart A new set of admitted transformations for autonomous stochastic ordinary differential equations. (English) Zbl 1208.34095 J. Nonlinear Math. Phys. 17, No. 2, 179-196 (2010). MSC: 34F05 34C14 34C20 PDF BibTeX XML Cite \textit{S. V. Meleshko} and \textit{E. Schulz}, J. Nonlinear Math. Phys. 17, No. 2, 179--196 (2010; Zbl 1208.34095) Full Text: DOI
Lisle, Ian; Huang, S.-L. Tracy Algorithmic symmetry classification with invariance. (English) Zbl 1202.35016 J. Eng. Math. 66, No. 1-3, 201-216 (2010). Reviewer: Ma Wen-Xiu (Tampa) MSC: 35B06 35A30 58J70 37K05 PDF BibTeX XML Cite \textit{I. Lisle} and \textit{S. L. T. Huang}, J. Eng. Math. 66, No. 1--3, 201--216 (2010; Zbl 1202.35016) Full Text: DOI
Cimpoiasu, R.; Constantinescu, R. The inverse symmetry problem for a 2D generalized second order evolutionary equation. (English) Zbl 1204.35022 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 1, 147-154 (2010). Reviewer: Ma Wen-Xiu (Tampa) MSC: 35B06 35A30 58J70 37K05 PDF BibTeX XML Cite \textit{R. Cimpoiasu} and \textit{R. Constantinescu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 1, 147--154 (2010; Zbl 1204.35022) Full Text: DOI
Semenova, T. Yu. Conditions on determining functionals for subsets of Sobolev space. (English. Russian original) Zbl 1190.35071 Math. Notes 86, No. 6, 831-841 (2009); translation from Mat. Zametki 86, No. 6, 892-902 (2009). MSC: 35J25 46N20 35P05 35D30 PDF BibTeX XML Cite \textit{T. Yu. Semenova}, Math. Notes 86, No. 6, 831--841 (2009; Zbl 1190.35071); translation from Mat. Zametki 86, No. 6, 892--902 (2009) Full Text: DOI
Wan, Wen-Tao; Chen, Yong A note on nonclassical symmetries of a class of nonlinear partial differential equations and compatibility. (English) Zbl 1185.35010 Commun. Theor. Phys. 52, No. 3, 398-402 (2009). MSC: 35B06 PDF BibTeX XML Cite \textit{W.-T. Wan} and \textit{Y. Chen}, Commun. Theor. Phys. 52, No. 3, 398--402 (2009; Zbl 1185.35010) Full Text: DOI Link
Mironov, A. N. On the Laplace invariants of a fourth-order equation. (English. Russian original) Zbl 1186.35007 Differ. Equ. 45, No. 8, 1168-1173 (2009); translation from Differ. Uravn. 45, No. 8, 1144-1149 (2009). MSC: 35B06 35G05 PDF BibTeX XML Cite \textit{A. N. Mironov}, Differ. Equ. 45, No. 8, 1168--1173 (2009; Zbl 1186.35007); translation from Differ. Uravn. 45, No. 8, 1144--1149 (2009) Full Text: DOI
Kalantarov, Varga K.; Titi, Edriss S. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. (English) Zbl 1178.37112 Chin. Ann. Math., Ser. B 30, No. 6, 697-714 (2009). MSC: 37L30 35Q35 35Q30 35B40 PDF BibTeX XML Cite \textit{V. K. Kalantarov} and \textit{E. S. Titi}, Chin. Ann. Math., Ser. B 30, No. 6, 697--714 (2009; Zbl 1178.37112) Full Text: DOI arXiv
Fu, Jingli; Chen, Benyong Hojman conserved quantities and Lie symmetries of discrete non-conservative systems. (English) Zbl 1173.70008 Mod. Phys. Lett. B 23, No. 10, 1315-1322 (2009). MSC: 70H33 70G65 PDF BibTeX XML Cite \textit{J. Fu} and \textit{B. Chen}, Mod. Phys. Lett. B 23, No. 10, 1315--1322 (2009; Zbl 1173.70008) Full Text: DOI
Vaganan, B. Mayil; Subashini, J. K. Nonclassical symmetries via compatibility conditions for nonlinear hyperbolic equations. (English) Zbl 1178.35035 Int. J. Appl. Math. 22, No. 3, 385-396 (2009). MSC: 35B06 35G20 35A30 35L75 PDF BibTeX XML Cite \textit{B. M. Vaganan} and \textit{J. K. Subashini}, Int. J. Appl. Math. 22, No. 3, 385--396 (2009; Zbl 1178.35035)
Liu, Chang; Mei, Fengxiang; Guo, Yongxin Conformal symmetry and Hojman conserved quantity of Lagrange system. (Chinese. English summary) Zbl 1189.70067 Acta Phys. Sin. 57, No. 11, 6704-6708 (2008). MSC: 70H33 PDF BibTeX XML Cite \textit{C. Liu} et al., Acta Phys. Sin. 57, No. 11, 6704--6708 (2008; Zbl 1189.70067)
Olson, Eric; Titi, Edriss S. Determining modes and Grashof number in 2D turbulence: a numerical case study. (English) Zbl 1178.76190 Theor. Comput. Fluid Dyn. 22, No. 5, 327-339 (2008). MSC: 76F35 76D05 76M22 PDF BibTeX XML Cite \textit{E. Olson} and \textit{E. S. Titi}, Theor. Comput. Fluid Dyn. 22, No. 5, 327--339 (2008; Zbl 1178.76190) Full Text: DOI
Cicogna, Giampaolo Symmetry classification of quasi-linear PDE’s containing arbitrary functions. (English) Zbl 1179.35035 Nonlinear Dyn. 51, No. 1-2, 309-316 (2008); addendum ibid. 67, No. 4, 2909-2912 (2012). Reviewer: Werner M. Seiler (Kassel) MSC: 35B06 35A30 58J70 PDF BibTeX XML Cite \textit{G. Cicogna}, Nonlinear Dyn. 51, No. 1--2, 309--316 (2008; Zbl 1179.35035) Full Text: DOI arXiv