Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. (English) Zbl 07626577 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022). MSC: 34K37 34K07 PDF BibTeX XML Cite \textit{A. Afreen} and \textit{A. Raheem}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022; Zbl 07626577) Full Text: DOI OpenURL
Aimene, D.; Laoubi, K.; Seba, D. On approximate controllability of impulsive fractional semilinear systems with deviated argument in Hilbert spaces. (English) Zbl 1455.93011 Nonlinear Dyn. Syst. Theory 20, No. 5, 465-478 (2020). MSC: 93B05 93C27 93C10 93C25 93C15 34A37 34K30 26A33 PDF BibTeX XML Cite \textit{D. Aimene} et al., Nonlinear Dyn. Syst. Theory 20, No. 5, 465--478 (2020; Zbl 1455.93011) Full Text: Link OpenURL
Topolski, Krzysztof A. On the Cauchy problem for linear PDEs with retarded arguments at derivatives. (English) Zbl 1329.35114 Ann. Pol. Math. 113, No. 3, 269-282 (2015). MSC: 35G10 35A01 35R10 PDF BibTeX XML Cite \textit{K. A. Topolski}, Ann. Pol. Math. 113, No. 3, 269--282 (2015; Zbl 1329.35114) Full Text: DOI OpenURL
Figueroa, Rubén On the discontinuous second-order deviated Dirichlet problem with non-monotone conditions. (English) Zbl 1328.34057 Math. Nachr. 288, No. 2-3, 176-184 (2015). Reviewer: Mirosława Zima (Rzeszów) MSC: 34K10 34K07 PDF BibTeX XML Cite \textit{R. Figueroa}, Math. Nachr. 288, No. 2--3, 176--184 (2015; Zbl 1328.34057) Full Text: DOI arXiv OpenURL
Răsvan, Vladimir Stability and control of systems with propagation. (English) Zbl 1320.35190 Hartung, Ferenc (ed.) et al., Recent advances in delay differential and difference equations. Research papers based on the presentations at the international conference on delay differential and difference equations and applications, Balatonfüred, Hungary, July 15–19, 2013. Cham: Springer (ISBN 978-3-319-08250-9/hbk). Springer Proceedings in Mathematics & Statistics 94, 197-218 (2014). MSC: 35L20 35R10 93D15 PDF BibTeX XML Cite \textit{V. Răsvan}, Springer Proc. Math. Stat. 94, 197--218 (2014; Zbl 1320.35190) Full Text: DOI OpenURL
Muslim, M.; Agarwal, R. P. Exact controllability of an integro-differential equation with deviated argument. (English) Zbl 1326.34118 Funct. Differ. Equ. 21, No. 1-2, 31-45 (2014). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 34K35 34K06 93B05 34K30 PDF BibTeX XML Cite \textit{M. Muslim} and \textit{R. P. Agarwal}, Funct. Differ. Equ. 21, No. 1--2, 31--45 (2014; Zbl 1326.34118) OpenURL
Kumar, Pradeep; Pandey, Dwijendra N.; Bahuguna, D. Approximation of a solution of a semilinear evolution equations with a deviated argument. (English) Zbl 1330.34103 J. Nonlinear Evol. Equ. Appl. 2013, 111-128 (2013). MSC: 34G25 65L60 47H10 PDF BibTeX XML Cite \textit{P. Kumar} et al., J. Nonlinear Evol. Equ. Appl. 2013, 111--128 (2013; Zbl 1330.34103) Full Text: Link OpenURL
Muslim, M.; Al-Mufadi, Fahad; Agarwal, R. P. Controllability of abstract neutral differential equations with deviated arguments. (English) Zbl 1285.34072 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20, No. 6, 755-767 (2013). MSC: 34K35 93B05 93C25 34K40 47N20 34K30 PDF BibTeX XML Cite \textit{M. Muslim} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20, No. 6, 755--767 (2013; Zbl 1285.34072) Full Text: Link OpenURL
Figueroa, Rubén; López Pouso, Rodrigo Minimal and maximal solutions to first-order differential equations with state-dependent deviated arguments. (English) Zbl 1282.34069 Bound. Value Probl. 2012, Paper No. 7, 12 p. (2012). Reviewer: Panagiotis Ch. Tsamatos (Ioannina) MSC: 34K05 PDF BibTeX XML Cite \textit{R. Figueroa} and \textit{R. López Pouso}, Bound. Value Probl. 2012, Paper No. 7, 12 p. (2012; Zbl 1282.34069) Full Text: DOI OpenURL
Figueroa, Rubén Discontinuous functional differential equations with delayed or advanced arguments. (English) Zbl 1323.34080 Appl. Math. Comput. 218, No. 19, 9882-9889 (2012). MSC: 34K10 PDF BibTeX XML Cite \textit{R. Figueroa}, Appl. Math. Comput. 218, No. 19, 9882--9889 (2012; Zbl 1323.34080) Full Text: DOI arXiv OpenURL
Jankowski, Tadeusz Positive solutions to third-order impulsive Sturm-Liouville boundary value problems with deviated arguments and one-dimensional \(p\)-Laplacian. (English) Zbl 1253.34057 Dyn. Syst. Appl. 20, No. 4, 575-586 (2011). Reviewer: Eugene Bravyi (Perm) MSC: 34K10 34K45 47N20 PDF BibTeX XML Cite \textit{T. Jankowski}, Dyn. Syst. Appl. 20, No. 4, 575--586 (2011; Zbl 1253.34057) OpenURL
Bartoszewski, Z. Solving boundary value problems for delay differential equations by a fixed-point method. (English) Zbl 1269.65067 J. Comput. Appl. Math. 236, No. 6, 1576-1590 (2011). MSC: 65L03 65L10 65L70 34K10 92D25 PDF BibTeX XML Cite \textit{Z. Bartoszewski}, J. Comput. Appl. Math. 236, No. 6, 1576--1590 (2011; Zbl 1269.65067) Full Text: DOI OpenURL
Figueroa, Rubén Second-order functional differential equations with past, present and future dependence. (English) Zbl 1242.34122 Appl. Math. Comput. 217, No. 18, 7448-7454 (2011). Reviewer: Tenali Gnana Bhaskar (Melbourne) MSC: 34K10 47N20 PDF BibTeX XML Cite \textit{R. Figueroa}, Appl. Math. Comput. 217, No. 18, 7448--7454 (2011; Zbl 1242.34122) Full Text: DOI OpenURL
Zhang, Lihong Boundary value problem for first order impulsive functional integro-differential equations. (English) Zbl 1220.45010 J. Comput. Appl. Math. 235, No. 8, 2442-2450 (2011). Reviewer: Iulian Stoleriu (Iaşi) MSC: 45J05 45G10 45L05 PDF BibTeX XML Cite \textit{L. Zhang}, J. Comput. Appl. Math. 235, No. 8, 2442--2450 (2011; Zbl 1220.45010) Full Text: DOI OpenURL
Jankowski, Tadeusz Nonlinear multipoint boundary value problems for second order differential equations. (English) Zbl 1206.34087 Can. Math. Bull. 53, No. 3, 475-490 (2010). Reviewer: Mirosława Zima (Rzeszów) MSC: 34K10 34A45 PDF BibTeX XML Cite \textit{T. Jankowski}, Can. Math. Bull. 53, No. 3, 475--490 (2010; Zbl 1206.34087) Full Text: DOI OpenURL
Jankowski, Tadeusz Existence of solutions of boundary value problems for differential equations in which deviated arguments depend on the unknown solution. (English) Zbl 1235.34178 Comput. Math. Appl. 54, No. 3, 357-363 (2007). MSC: 34K10 PDF BibTeX XML Cite \textit{T. Jankowski}, Comput. Math. Appl. 54, No. 3, 357--363 (2007; Zbl 1235.34178) Full Text: DOI OpenURL
Gal, Ciprian G. Almost automorphic mild solutions to some semilinear abstract differential equations with deviated argument in {F}réchet spaces. (English) Zbl 1113.43006 Electron. J. Qual. Theory Differ. Equ. 2006, Paper No. 16, 8 p. (2006). Reviewer: Alois Klíč (Praha) MSC: 43A60 34G10 47D03 PDF BibTeX XML Cite \textit{C. G. Gal}, Electron. J. Qual. Theory Differ. Equ. 2006, Paper No. 16, 8 p. (2006; Zbl 1113.43006) Full Text: DOI EuDML Link OpenURL
Jankowski, Tadeusz Numerical-analytic method for implicit differential equations. (English) Zbl 1017.34024 Math. Notes, Miskolc 2, No. 2, 137-144 (2001). MSC: 34B99 PDF BibTeX XML Cite \textit{T. Jankowski}, Math. Notes, Miskolc 2, No. 2, 137--144 (2001; Zbl 1017.34024) OpenURL
Koplatadze, R.; Partsvania, N. Oscillatory behaviour of solutions of two-dimensional differential systems with deviated arguments. (English) Zbl 0928.34048 Georgian Math. J. 6, No. 4, 335-346 (1999). MSC: 34K11 34C15 PDF BibTeX XML Cite \textit{R. Koplatadze} and \textit{N. Partsvania}, Georgian Math. J. 6, No. 4, 335--346 (1999; Zbl 0928.34048) Full Text: EuDML EMIS OpenURL
Koplatadze, R.; Kvinikadze, G. On oscillation of second order linear difference equations with deviated arguments. (English) Zbl 0908.39006 Mem. Differ. Equ. Math. Phys. 10, 138-139 (1997). MSC: 39A12 39A10 PDF BibTeX XML Cite \textit{R. Koplatadze} and \textit{G. Kvinikadze}, Mem. Differ. Equ. Math. Phys. 10, 138--139 (1997; Zbl 0908.39006) Full Text: EuDML EMIS OpenURL
Partsvania, N. To the question of oscillation of solutions of two-dimensional differential systems with deviated arguments. (English) Zbl 0939.34513 Mem. Differ. Equ. Math. Phys. 10, 113-114 (1997). MSC: 34K11 34C10 PDF BibTeX XML Cite \textit{N. Partsvania}, Mem. Differ. Equ. Math. Phys. 10, 113--114 (1997; Zbl 0939.34513) Full Text: EuDML OpenURL
Jankowski, Tadeusz Existence and uniqueness of solutions for problems with a parameter. (English) Zbl 0810.39004 J. Math., Punjab Univ. 26, 1-26 (1993). MSC: 39B22 34K05 PDF BibTeX XML Cite \textit{T. Jankowski}, J. Math., Punjab Univ. 26, 1--26 (1993; Zbl 0810.39004) OpenURL
Jankowski, Tadeusz Existence, uniqueness and approximate solutions of problems with a parameter. (English) Zbl 0893.34062 Zesz. Nauk. Politech. Gdań. 496, Mat. 16, 3-167 (1993). Reviewer: T.Jankowski (Gdańsk) MSC: 34K05 34K40 45B05 45D05 45J05 65Q05 PDF BibTeX XML Cite \textit{T. Jankowski}, Zesz. Nauk. Politech. Gdań. 496, Mat. 16, 3--167 (1993; Zbl 0893.34062) OpenURL
Valeev, K. G. Development of the theory of linear differential equations with periodic coefficients and argument deviations. (Russian) Zbl 0411.34091 Differential equations with deviating argument, Proc. 4th All-Union Conf., Kiev 1975, 72-82 (1977). MSC: 34K05 34A34 34C25 34D05 34-02 34A30 PDF BibTeX XML OpenURL
Halanay, A. Noether’s theorem for variational problems with deviated arguments. (Théorème de Noether pour les problèmes variationnels à arguments déplacés.) (French) Zbl 0279.49022 Ann. Pol. Math. 29, 189-198 (1974). MSC: 49K99 PDF BibTeX XML Cite \textit{A. Halanay}, Ann. Pol. Math. 29, 189--198 (1974; Zbl 0279.49022) Full Text: DOI OpenURL