Boichuk, O. A.; Chuiko, S. M.; Kuzmina, V. O. Nonlinear integrodifferential boundary-value problems with deviating argument unsolved with respect to the derivative. (English. Ukrainian original) Zbl 1510.45007 Ukr. Math. J. 74, No. 9, 1334-1347 (2023); translation from Ukr. Mat. Zh. 74, No. 9, 1170-1181 (2022). MSC: 45J05 45G10 34K10 65R20 PDF BibTeX XML Cite \textit{O. A. Boichuk} et al., Ukr. Math. J. 74, No. 9, 1334--1347 (2023; Zbl 1510.45007); translation from Ukr. Mat. Zh. 74, No. 9, 1170--1181 (2022) Full Text: DOI
Slyusarchuk, Vu. Y. Dynamics of three bodies located on a straight line for a finite speed of gravity. (English. Ukrainian original) Zbl 1508.70013 J. Math. Sci., New York 263, No. 2, 299-326 (2022); translation from Neliniĭni Kolyvannya 23, No. 4, 529-552 (2020). MSC: 70F07 83C55 PDF BibTeX XML Cite \textit{Vu. Y. Slyusarchuk}, J. Math. Sci., New York 263, No. 2, 299--326 (2022; Zbl 1508.70013); translation from Neliniĭni Kolyvannya 23, No. 4, 529--552 (2020) Full Text: DOI
Muhib, A.; Dassios, I.; Baleanu, D.; Santra, S. S.; Moaaz, O. Odd-order differential equations with deviating arguments: asymptomatic behavior and oscillation. (English) Zbl 1500.34056 Math. Biosci. Eng. 19, No. 2, 1411-1425 (2022). Reviewer: Kazuki Ishibashi (Hiroshima) MSC: 34K11 34K40 34K25 PDF BibTeX XML Cite \textit{A. Muhib} et al., Math. Biosci. Eng. 19, No. 2, 1411--1425 (2022; Zbl 1500.34056) Full Text: DOI
Moaaz, Osama; Park, Choonkil; Elabbasy, Elmetwally M.; Muhsin, Waed New oscillation criteria for second-order neutral differential equations with distributed deviating arguments. (English) Zbl 1502.34076 Bound. Value Probl. 2021, Paper No. 35, 15 p. (2021). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{O. Moaaz} et al., Bound. Value Probl. 2021, Paper No. 35, 15 p. (2021; Zbl 1502.34076) Full Text: DOI
Partsvania, Nino Some optimal conditions for the unique solvability of the Dirichlet problem for second order singular linear differential equations with a deviating argument. (English) Zbl 1482.34057 Trans. A. Razmadze Math. Inst. 175, No. 3, 455-459 (2021). MSC: 34B05 34K10 PDF BibTeX XML Cite \textit{N. Partsvania}, Trans. A. Razmadze Math. Inst. 175, No. 3, 455--459 (2021; Zbl 1482.34057) Full Text: Link
Xi, Qiang; Liu, Xinzhi Finite-time stability and controller design for a class of hybrid dynamical systems with deviating argument. (English) Zbl 1478.93609 Nonlinear Anal., Hybrid Syst. 39, Article ID 100952, 12 p. (2021). MSC: 93D40 93C30 93C57 93C27 PDF BibTeX XML Cite \textit{Q. Xi} and \textit{X. Liu}, Nonlinear Anal., Hybrid Syst. 39, Article ID 100952, 12 p. (2021; Zbl 1478.93609) Full Text: DOI
Buterin, S. A.; Malyugina, M. A.; Shieh, C.-T. An inverse spectral problem for second-order functional-differential pencils with two delays. (English) Zbl 1510.34036 Appl. Math. Comput. 411, Article ID 126475, 19 p. (2021). MSC: 34A55 34B07 34K29 PDF BibTeX XML Cite \textit{S. A. Buterin} et al., Appl. Math. Comput. 411, Article ID 126475, 19 p. (2021; Zbl 1510.34036) Full Text: DOI arXiv
Djurić, Nebojša; Buterin, Sergey On an open question in recovering Sturm-Liouville-type operators with delay. (English) Zbl 1464.34098 Appl. Math. Lett. 113, Article ID 106862, 7 p. (2021). MSC: 34K29 PDF BibTeX XML Cite \textit{N. Djurić} and \textit{S. Buterin}, Appl. Math. Lett. 113, Article ID 106862, 7 p. (2021; Zbl 1464.34098) Full Text: DOI arXiv
Wang, Yong; Tao, Zhengwu; Tian, Donghong; Ma, Xin; Li, Mingjun; Feng, Zonghong Some novel results of \(T\)-periodic solutions for Rayleigh type equation with double deviating arguments. (English) Zbl 1513.34263 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 1, 55-68 (2020). MSC: 34K13 37C60 47N20 PDF BibTeX XML Cite \textit{Y. Wang} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 1, 55--68 (2020; Zbl 1513.34263)
Moaaz, Osama; Park, Choonkil; Muhib, Ali; Bazighifan, Omar Oscillation criteria for a class of even-order neutral delay differential equations. (English) Zbl 1475.34053 J. Appl. Math. Comput. 63, No. 1-2, 607-617 (2020). MSC: 34K40 34K11 PDF BibTeX XML Cite \textit{O. Moaaz} et al., J. Appl. Math. Comput. 63, No. 1--2, 607--617 (2020; Zbl 1475.34053) Full Text: DOI
Burlakov, E. O.; Pluzhnikova, E. A. On implicit abstract Volterra equations in metric spaces. (English) Zbl 1473.45018 Pinelas, Sandra (ed.) et al., Mathematical analysis with applications. In honor of the 90th birthday of Constantin Corduneanu, Ekaterinburg, Russia, July 26–28, 2018. Cham: Springer. Springer Proc. Math. Stat. 318, 13-23 (2020). MSC: 45N05 PDF BibTeX XML Cite \textit{E. O. Burlakov} and \textit{E. A. Pluzhnikova}, Springer Proc. Math. Stat. 318, 13--23 (2020; Zbl 1473.45018) Full Text: DOI
Nikonorov, Yuriĭ Gennadyevich Asymptotics of mean value points: a survey. (English) Zbl 1461.26002 Math. Semesterber. 67, No. 2, 185-212 (2020). MSC: 26A24 26B35 53A04 PDF BibTeX XML Cite \textit{Y. G. Nikonorov}, Math. Semesterber. 67, No. 2, 185--212 (2020; Zbl 1461.26002) Full Text: DOI
Devi, Darshana; Chutia, Duranta; Haloi, Rajib Rothe’s method for solving semi-linear differential equations with deviating arguments. (English) Zbl 1490.34086 Electron. J. Differ. Equ. 2020, Paper No. 120, 10 p. (2020). Reviewer: Andrei Horvat-Marc (Baia Mare) MSC: 34K30 34K07 35R10 PDF BibTeX XML Cite \textit{D. Devi} et al., Electron. J. Differ. Equ. 2020, Paper No. 120, 10 p. (2020; Zbl 1490.34086) Full Text: Link
Feng, Limei; Sun, Shurong Oscillation of second-order Emden-Fowler neutral differential equations with advanced and delay arguments. (English) Zbl 1453.34085 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3777-3790 (2020). MSC: 34K11 PDF BibTeX XML Cite \textit{L. Feng} and \textit{S. Sun}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3777--3790 (2020; Zbl 1453.34085) Full Text: DOI
Kovaleva, A. M.; Kulikov, D. A. Bifurcations of spatially inhomogeneous solutions in two versions of the nonlocal erosion equation. (English. Russian original) Zbl 1450.35048 J. Math. Sci., New York 248, No. 4, 438-447 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 148, 66-74 (2018). MSC: 35B32 35K35 35K58 35B35 PDF BibTeX XML Cite \textit{A. M. Kovaleva} and \textit{D. A. Kulikov}, J. Math. Sci., New York 248, No. 4, 438--447 (2020; Zbl 1450.35048); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 148, 66--74 (2018) Full Text: DOI
Garab, Ábel; Stavroulakis, Ioannis P. Oscillation criteria for first order linear delay differential equations with several variable delays. (English) Zbl 1446.34081 Appl. Math. Lett. 106, Article ID 106366, 8 p. (2020). Reviewer: Qingkai Kong (DeKalb) MSC: 34K11 34K06 PDF BibTeX XML Cite \textit{Á. Garab} and \textit{I. P. Stavroulakis}, Appl. Math. Lett. 106, Article ID 106366, 8 p. (2020; Zbl 1446.34081) Full Text: DOI
Moaaz, Osama; Elabbasy, Elmetwally M.; Muhib, Ali Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. (English) Zbl 1485.34166 Adv. Difference Equ. 2019, Paper No. 297, 10 p. (2019). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{O. Moaaz} et al., Adv. Difference Equ. 2019, Paper No. 297, 10 p. (2019; Zbl 1485.34166) Full Text: DOI
Cheng, Weike; Wu, Ailong; Zhang, Jin-E; Li, Biwen Outer-synchronization of fractional-order neural networks with deviating argument via centralized and decentralized data-sampling approaches. (English) Zbl 1485.93331 Adv. Difference Equ. 2019, Paper No. 390, 31 p. (2019). MSC: 93C57 34A08 34K20 34K37 PDF BibTeX XML Cite \textit{W. Cheng} et al., Adv. Difference Equ. 2019, Paper No. 390, 31 p. (2019; Zbl 1485.93331) Full Text: DOI
Slyusarchuk, V. Yu. Mathematical model of the solar system with regard for the velocity of gravitation. (English. Ukrainian original) Zbl 1455.70014 J. Math. Sci., New York 243, No. 2, 287-312 (2019); translation from Neliniĭni Kolyvannya 21, No. 2, 238-261 (2018). MSC: 70M20 70F15 85A04 34K99 PDF BibTeX XML Cite \textit{V. Yu. Slyusarchuk}, J. Math. Sci., New York 243, No. 2, 287--312 (2019; Zbl 1455.70014); translation from Neliniĭni Kolyvannya 21, No. 2, 238--261 (2018) Full Text: DOI
Cheng, Zhibo; Bi, Zhonghua; Yao, Shaowen Periodic solution for \(p\)-Laplacian Liénard equation with attractive singularity and time-dependent deviating argument. (Chinese. English summary) Zbl 1438.34239 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 277-285 (2019). MSC: 34K13 PDF BibTeX XML Cite \textit{Z. Cheng} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 277--285 (2019; Zbl 1438.34239)
Buterin, S. A.; Yurko, V. A. An inverse spectral problem for Sturm-Liouville operators with a large constant delay. (English) Zbl 1423.34087 Anal. Math. Phys. 9, No. 1, 17-27 (2019). Reviewer: Natalia Bondarenko (Saratov) MSC: 34K29 34A55 PDF BibTeX XML Cite \textit{S. A. Buterin} and \textit{V. A. Yurko}, Anal. Math. Phys. 9, No. 1, 17--27 (2019; Zbl 1423.34087) Full Text: DOI
Chatzarakis, George E.; Džurina, Jozef; Jadlovská, Irena A remark on oscillatory results for neutral differential equations. (English) Zbl 1408.34047 Appl. Math. Lett. 90, 124-130 (2019). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{G. E. Chatzarakis} et al., Appl. Math. Lett. 90, 124--130 (2019; Zbl 1408.34047) Full Text: DOI
Kalmenov, Tynysbek S.; Sadybekov, Makhmud A.; Torebek, Berikbol T. A criterion of solvability of the elliptic Cauchy problem in a multi-dimensional cylindrical domain. (English) Zbl 1408.31002 Complex Var. Elliptic Equ. 64, No. 3, 398-408 (2019). MSC: 31A30 31B30 35J40 PDF BibTeX XML Cite \textit{T. S. Kalmenov} et al., Complex Var. Elliptic Equ. 64, No. 3, 398--408 (2019; Zbl 1408.31002) Full Text: DOI arXiv
Samoilenko, Anatoly M.; Sergeeva, Lidiya M. About global solution of nonhomogeneous neutral partial differential equation with deviating argument in the time variable. (English) Zbl 1424.35332 Miskolc Math. Notes 19, No. 2, 1163-1171 (2018). MSC: 35R10 PDF BibTeX XML Cite \textit{A. M. Samoilenko} and \textit{L. M. Sergeeva}, Miskolc Math. Notes 19, No. 2, 1163--1171 (2018; Zbl 1424.35332) Full Text: DOI
Migda, Janusz; Nockowska-Rosiak, Magdalena Asymptotic behavior of solutions of second order difference equations with deviating argument. (English) Zbl 1424.39031 Miskolc Math. Notes 19, No. 2, 1047-1061 (2018). MSC: 39A22 39A10 PDF BibTeX XML Cite \textit{J. Migda} and \textit{M. Nockowska-Rosiak}, Miskolc Math. Notes 19, No. 2, 1047--1061 (2018; Zbl 1424.39031) Full Text: DOI
Ignat’ev, Mikhaĭl Yur’evich On an inverse Regge problem for the Sturm-Liouville operator with deviating argument. (English) Zbl 1424.34262 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 22, No. 2, 203-213 (2018). MSC: 34K29 47E05 34K08 34K10 PDF BibTeX XML Cite \textit{M. Y. Ignat'ev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 22, No. 2, 203--213 (2018; Zbl 1424.34262) Full Text: DOI MNR
Yurko, Vyacheslav Anatol’evich On inverse problem for differential operators with deviating argument. (English. Russian summary) Zbl 1410.34231 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 3, 328-333 (2018). MSC: 34K29 PDF BibTeX XML Cite \textit{V. A. Yurko}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 18, No. 3, 328--333 (2018; Zbl 1410.34231) Full Text: DOI arXiv MNR
Qin, Guorui; Huang, Guangmou; Yao, Xiaojie Positive periodic solutions for second-order neutral Liénard differential equations with a singularity and deviating arguments. (Chinese. English summary) Zbl 1424.34239 Math. Pract. Theory 48, No. 9, 214-222 (2018). MSC: 34K13 34K40 47N20 PDF BibTeX XML Cite \textit{G. Qin} et al., Math. Pract. Theory 48, No. 9, 214--222 (2018; Zbl 1424.34239)
Xin, Yun; Liu, Hongmin Singularity problems to fourth-order Rayleigh equation with time-dependent deviating argument. (English) Zbl 1448.34055 Adv. Difference Equ. 2018, Paper No. 368, 15 p. (2018). MSC: 34B16 34C25 34K13 34B15 PDF BibTeX XML Cite \textit{Y. Xin} and \textit{H. Liu}, Adv. Difference Equ. 2018, Paper No. 368, 15 p. (2018; Zbl 1448.34055) Full Text: DOI
Bondarenko, Natalia P.; Yurko, Vjacheslav A. Partial inverse problems for the Sturm-Liouville equation with deviating argument. (English) Zbl 1469.34034 Math. Methods Appl. Sci. 41, No. 17, 8350-8354 (2018). MSC: 34A55 34B08 34K10 PDF BibTeX XML Cite \textit{N. P. Bondarenko} and \textit{V. A. Yurko}, Math. Methods Appl. Sci. 41, No. 17, 8350--8354 (2018; Zbl 1469.34034) Full Text: DOI
Kong, Fanchao; Liang, Zaitao Positive periodic solutions for singular fourth-order differential equations with a deviating argument. (English) Zbl 1453.34088 Proc. R. Soc. Edinb., Sect. A, Math. 148, No. 3, 605-617 (2018). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{F. Kong} and \textit{Z. Liang}, Proc. R. Soc. Edinb., Sect. A, Math. 148, No. 3, 605--617 (2018; Zbl 1453.34088) Full Text: DOI
Cheng, Zhibo; Bi, Zhonghua; Yao, Shaowen Periodic solution for \(p\)-Laplacian Rayleigh equation with attractive singularity and time-dependent deviating argument. (English) Zbl 1453.34087 Bound. Value Probl. 2018, Paper No. 20, 14 p. (2018). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{Z. Cheng} et al., Bound. Value Probl. 2018, Paper No. 20, 14 p. (2018; Zbl 1453.34087) Full Text: DOI
Bondarenko, N.; Yurko, V. An inverse problem for Sturm-Liouville differential operators with deviating argument. (English) Zbl 1489.34105 Appl. Math. Lett. 83, 140-144 (2018). MSC: 34K29 34K08 PDF BibTeX XML Cite \textit{N. Bondarenko} and \textit{V. Yurko}, Appl. Math. Lett. 83, 140--144 (2018; Zbl 1489.34105) Full Text: DOI
Das, Sanjukta Approximate controllability of an impulsive neutral differential equation with deviating argument and bounded delay. (English) Zbl 1488.34414 J. Fract. Calc. Appl. 8, No. 2, 132-142 (2017). MSC: 34K35 34K40 34K45 47D09 93B05 47N20 34K30 PDF BibTeX XML Cite \textit{S. Das}, J. Fract. Calc. Appl. 8, No. 2, 132--142 (2017; Zbl 1488.34414) Full Text: Link
Wang, Haixia; Chen, Guojuan; Jiang, Ying; Jiang, Cuimei; Li, Tongxing Asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. (English) Zbl 1427.34095 J. Math. Comput. Sci., JMCS 17, No. 2, 194-199 (2017). MSC: 34K11 34K25 34K40 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Math. Comput. Sci., JMCS 17, No. 2, 194--199 (2017; Zbl 1427.34095) Full Text: DOI
Vdovenko, T. I.; Dudkin, M. E. Dual pair of eigenvalues in rank one singular nonsymmetric perturbations. (English) Zbl 1481.47021 Mat. Stud. 48, No. 2, 156-164 (2017). MSC: 47A75 47A55 47A10 34A37 PDF BibTeX XML Cite \textit{T. I. Vdovenko} and \textit{M. E. Dudkin}, Mat. Stud. 48, No. 2, 156--164 (2017; Zbl 1481.47021) Full Text: DOI
Wan, Liguang; Wu, Ailong; Chen, Jingru Robustness analysis of global exponential stability in neural networks evoked by deviating argument and stochastic disturbance. (English) Zbl 1412.34180 J. Nonlinear Sci. Appl. 10, No. 11, 5646-5667 (2017). MSC: 34D23 93D09 PDF BibTeX XML Cite \textit{L. Wan} et al., J. Nonlinear Sci. Appl. 10, No. 11, 5646--5667 (2017; Zbl 1412.34180) Full Text: DOI
Wan, Liguang; Wu, Ailong Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument. (English) Zbl 1422.92011 Adv. Difference Equ. 2017, Paper No. 308, 19 p. (2017). MSC: 92B20 34A08 34K20 93D09 34D06 PDF BibTeX XML Cite \textit{L. Wan} and \textit{A. Wu}, Adv. Difference Equ. 2017, Paper No. 308, 19 p. (2017; Zbl 1422.92011) Full Text: DOI
Li, Jin A Lazer-Leach-type condition for singular differential equations with a deviating argument at resonance. (English) Zbl 1422.34111 Adv. Difference Equ. 2017, Paper No. 203, 15 p. (2017). MSC: 34B16 34C25 PDF BibTeX XML Cite \textit{J. Li}, Adv. Difference Equ. 2017, Paper No. 203, 15 p. (2017; Zbl 1422.34111) Full Text: DOI
Abregov, Muhad H.; Kanchukoev, Vladimir Z.; Shardanova, Maryana A. Numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument. (English) Zbl 1386.34126 J. Appl. Anal. 23, No. 2, 141-146 (2017). MSC: 34K28 PDF BibTeX XML Cite \textit{M. H. Abregov} et al., J. Appl. Anal. 23, No. 2, 141--146 (2017; Zbl 1386.34126) Full Text: DOI
Isaia, Vincenzo M. Nonlinear differential equations with deviating arguments and approximations via a Parker-Sochacki approach. (English) Zbl 1370.34122 Electron. J. Differ. Equ. 2017, Paper No. 68, 25 p. (2017). MSC: 34K07 34K40 65L03 PDF BibTeX XML Cite \textit{V. M. Isaia}, Electron. J. Differ. Equ. 2017, Paper No. 68, 25 p. (2017; Zbl 1370.34122) Full Text: Link
Buterin, S. A.; Pikula, M.; Yurko, V. A. Sturm-Liouville differential operators with deviating argument. (English) Zbl 1410.34230 Tamkang J. Math. 48, No. 1, 61-71 (2017). MSC: 34K29 47E05 34K08 PDF BibTeX XML Cite \textit{S. A. Buterin} et al., Tamkang J. Math. 48, No. 1, 61--71 (2017; Zbl 1410.34230) Full Text: DOI
Ayazoglu, Rabil; Ekincioglu, Ismail; Alisoy, Gülizar Periodic solutions for a kind of Liénard-type \(p(t)\)-Laplacian equation. (English) Zbl 1413.34221 Acta Univ. Apulensis, Math. Inform. 47, 61-72 (2016). MSC: 34K13 PDF BibTeX XML Cite \textit{R. Ayazoglu} et al., Acta Univ. Apulensis, Math. Inform. 47, 61--72 (2016; Zbl 1413.34221)
Jiang, Cuimei; Jiang, Ying; Li, Tongxing Asymptotic behavior of third-order differential equations with nonpositive neutral coefficients and distributed deviating arguments. (English) Zbl 1419.34172 Adv. Difference Equ. 2016, Paper No. 105, 14 p. (2016). MSC: 34K11 34K40 34K25 PDF BibTeX XML Cite \textit{C. Jiang} et al., Adv. Difference Equ. 2016, Paper No. 105, 14 p. (2016; Zbl 1419.34172) Full Text: DOI
Xin, Yun; Cheng, Zhibo Positive periodic solution of \(p\)-Laplacian Liénard type differential equation with singularity and deviating argument. (English) Zbl 1419.34135 Adv. Difference Equ. 2016, Paper No. 41, 11 p. (2016). MSC: 34C25 34K13 34K40 PDF BibTeX XML Cite \textit{Y. Xin} and \textit{Z. Cheng}, Adv. Difference Equ. 2016, Paper No. 41, 11 p. (2016; Zbl 1419.34135) Full Text: DOI
Jiang, Cuimei; Li, Tongxing Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments. (English) Zbl 1386.34117 J. Nonlinear Sci. Appl. 9, No. 12, 6170-6182 (2016). MSC: 34K11 PDF BibTeX XML Cite \textit{C. Jiang} and \textit{T. Li}, J. Nonlinear Sci. Appl. 9, No. 12, 6170--6182 (2016; Zbl 1386.34117) Full Text: DOI Link
Yao, Xiaojie; Qin, Fajin Periodic solutions for generalized second-order neutral Rayleigh differential equations with deviating arguments. (Chinese. English summary) Zbl 1374.34271 Math. Pract. Theory 46, No. 22, 251-258 (2016). MSC: 34K13 34K40 47N20 PDF BibTeX XML Cite \textit{X. Yao} and \textit{F. Qin}, Math. Pract. Theory 46, No. 22, 251--258 (2016; Zbl 1374.34271)
Wang, Hailian; Wang, Lianglong Periodic solutions for fourth-order \(p\)-Laplacian neutral functional differential equation with deviating argument. (Chinese. English summary) Zbl 1363.34239 J. Jilin Univ., Sci. 54, No. 3, 439-445 (2016). MSC: 34K13 34K40 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Wang}, J. Jilin Univ., Sci. 54, No. 3, 439--445 (2016; Zbl 1363.34239) Full Text: DOI
Chadha, Alka; Pandey, Dwijendra N. Faedo-Galerkin approximation of solution for a nonlocal neutral fractional differential equation with deviating argument. (English) Zbl 1359.34081 Mediterr. J. Math. 13, No. 5, 3041-3067 (2016). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K30 47N20 34K40 34K07 PDF BibTeX XML Cite \textit{A. Chadha} and \textit{D. N. Pandey}, Mediterr. J. Math. 13, No. 5, 3041--3067 (2016; Zbl 1359.34081) Full Text: DOI
Zhang, Chenghui; Baculíková, Blanka; Džurina, Jozef; Li, Tongxing Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments. (English) Zbl 1389.34215 Math. Slovaca 66, No. 3, 615-626 (2016). Reviewer: Peiguang Wang (Baoding) MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{C. Zhang} et al., Math. Slovaca 66, No. 3, 615--626 (2016; Zbl 1389.34215) Full Text: DOI
Nguyen Bich Huy; Nguyen Huu Khanh; Vo Viet Tri Fixed point theorems via cone-norms and cone-valued measures of noncompactness. (English) Zbl 1362.47044 Fixed Point Theory 17, No. 2, 349-358 (2016). MSC: 47H10 47H07 47H08 PDF BibTeX XML Cite \textit{Nguyen Bich Huy} et al., Fixed Point Theory 17, No. 2, 349--358 (2016; Zbl 1362.47044) Full Text: Link
Bzheumikhova, O. I.; Lesev, V. N. On the solvability of nonlinear partial differential equations of a high order with deviating argument in lowest terms. (English. Russian original) Zbl 1386.35045 Russ. Math. 60, No. 7, 7-13 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 10-17 (2016). MSC: 35G31 35R10 PDF BibTeX XML Cite \textit{O. I. Bzheumikhova} and \textit{V. N. Lesev}, Russ. Math. 60, No. 7, 7--13 (2016; Zbl 1386.35045); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 7, 10--17 (2016) Full Text: DOI
Sergeeva, Lidiya About global solutions of partial differential equation with deviating argument in the time variable. (English) Zbl 1424.35206 ROMAI J. 11, No. 2, 109-118 (2015). MSC: 35K20 35R10 35A01 PDF BibTeX XML Cite \textit{L. Sergeeva}, ROMAI J. 11, No. 2, 109--118 (2015; Zbl 1424.35206)
Tian, Yazhou; Cai, Yuanli; Fu, Youliang; Li, Tongxing Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. (English) Zbl 1422.34196 Adv. Difference Equ. 2015, Paper No. 267, 14 p. (2015). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{Y. Tian} et al., Adv. Difference Equ. 2015, Paper No. 267, 14 p. (2015; Zbl 1422.34196) Full Text: DOI
Lu, Shiping; Kong, Fanchao Periodic solutions for a kind of prescribed mean curvature Liénard equation with a singularity and a deviating argument. (English) Zbl 1422.34141 Adv. Difference Equ. 2015, Paper No. 151, 13 p. (2015). MSC: 34C25 34K13 34B16 34B15 34B18 PDF BibTeX XML Cite \textit{S. Lu} and \textit{F. Kong}, Adv. Difference Equ. 2015, Paper No. 151, 13 p. (2015; Zbl 1422.34141) Full Text: DOI
Zhang, Xuemei; Feng, Meiqiang Deviating arguments, impulsive effects, and positive solutions for second order singular \(p\)-Laplacian equations. (English) Zbl 1422.34114 Adv. Difference Equ. 2015, Paper No. 127, 24 p. (2015). MSC: 34B18 34B37 34B15 34B09 34B16 47H10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{M. Feng}, Adv. Difference Equ. 2015, Paper No. 127, 24 p. (2015; Zbl 1422.34114) Full Text: DOI
Li, Wenjuan; Tang, Huo Boundedness and asymptotic behavior of the solutions of a class of second order integro-differential equations with deviating argument. (Chinese. English summary) Zbl 1349.45015 Math. Pract. Theory 45, No. 20, 272-277 (2015). MSC: 45J05 45M05 PDF BibTeX XML Cite \textit{W. Li} and \textit{H. Tang}, Math. Pract. Theory 45, No. 20, 272--277 (2015; Zbl 1349.45015)
Fu, Cehong; Li, Wu; Huang, Jizhou Existence and uniqueness of periodic solutions for a kind of Liénard equations with several deviating arguments. (Chinese. English summary) Zbl 1349.34278 Math. Pract. Theory 45, No. 10, 295-301 (2015). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{C. Fu} et al., Math. Pract. Theory 45, No. 10, 295--301 (2015; Zbl 1349.34278)
Fu, Jinbo; Cheng, Rongfu Positive periodic solution of two species predator-prey discrete system with deviating arguments. (Chinese. English summary) Zbl 1363.39008 J. Biomath. 30, No. 4, 639-646 (2015). MSC: 39A12 39A22 39A23 92D25 PDF BibTeX XML Cite \textit{J. Fu} and \textit{R. Cheng}, J. Biomath. 30, No. 4, 639--646 (2015; Zbl 1363.39008)
Arab, R.; Rabbani, M.; Mollapourasl, R. The solution of a nonlinear integral equation with deviating argument based the on fixed point technique. (English) Zbl 1347.65191 Appl. Comput. Math. 14, No. 1, 38-49 (2015). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G10 47H08 47H10 PDF BibTeX XML Cite \textit{R. Arab} et al., Appl. Comput. Math. 14, No. 1, 38--49 (2015; Zbl 1347.65191) Full Text: Link
Utkina, E. A. Characteristic boundary value problem for a third-order functional-differential equation with the Bianchi operator. (English. Russian original) Zbl 1515.35305 Differ. Equ. 51, No. 12, 1620-1625 (2015); translation from Differ. Uravn. 51, No. 12, 1641-1646 (2015). MSC: 35R10 35G15 PDF BibTeX XML Cite \textit{E. A. Utkina}, Differ. Equ. 51, No. 12, 1620--1625 (2015; Zbl 1515.35305); translation from Differ. Uravn. 51, No. 12, 1641--1646 (2015) Full Text: DOI
Kong, Fanchao Homoclinic solutions for a prescribed mean curvature Rayleigh \(p\)-Laplacian equation with a deviating argument. (English) Zbl 1342.34088 J. Appl. Math. Inform. 33, No. 5-6, 723-738 (2015). Reviewer: Adriana Buică (Cluj-Napoca) MSC: 34K10 34K13 47N20 PDF BibTeX XML Cite \textit{F. Kong}, J. Appl. Math. Inform. 33, No. 5--6, 723--738 (2015; Zbl 1342.34088) Full Text: DOI Link
Kong, Fanchao; Lu, Shiping; Liang, Zaitao Existence of positive periodic solutions for neutral Liénard differential equations with a singularity. (English) Zbl 1336.34099 Electron. J. Differ. Equ. 2015, Paper No. 242, 12 p. (2015). Reviewer: Adriana Buică (Cluj-Napoca) MSC: 34K13 47N20 34K40 PDF BibTeX XML Cite \textit{F. Kong} et al., Electron. J. Differ. Equ. 2015, Paper No. 242, 12 p. (2015; Zbl 1336.34099) Full Text: EMIS
Mesgarani, H.; Mollapourasl, R.; Ostadi, A. Numerical approach for solving neutral differential equation with deviating argument. (English) Zbl 1325.65097 Comput. Math. Math. Phys. 55, No. 6, 969-982 (2015). MSC: 65L03 65L05 34K28 34K40 PDF BibTeX XML Cite \textit{H. Mesgarani} et al., Comput. Math. Math. Phys. 55, No. 6, 969--982 (2015; Zbl 1325.65097) Full Text: DOI
Qi, Yunsong; Yu, Jinwei Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments. (English) Zbl 1311.34145 Bull. Malays. Math. Sci. Soc. (2) 38, No. 2, 543-560 (2015). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{Y. Qi} and \textit{J. Yu}, Bull. Malays. Math. Sci. Soc. (2) 38, No. 2, 543--560 (2015; Zbl 1311.34145) Full Text: DOI
Ma, Tiantian Periodic solutions of a kind of Liénard equations with two deviating arguments. (English) Zbl 1360.34142 Topol. Methods Nonlinear Anal. 44, No. 2, 337-348 (2014). MSC: 34K13 34K10 47N20 PDF BibTeX XML Cite \textit{T. Ma}, Topol. Methods Nonlinear Anal. 44, No. 2, 337--348 (2014; Zbl 1360.34142) Full Text: DOI
Jankowski, Robert; Schmeidel, Ewa; Zonenberg, Joanna Oscillatory properties of solutions of the fourth order difference equations with quasidifferences. (English) Zbl 1330.39013 Opusc. Math. 34, No. 4, 789-797 (2014). MSC: 39A21 39A10 34K40 39A12 PDF BibTeX XML Cite \textit{R. Jankowski} et al., Opusc. Math. 34, No. 4, 789--797 (2014; Zbl 1330.39013) Full Text: DOI arXiv
Tunç, Cemil Asymptotic stability of solutions of a class of neutral differential equations with multiple deviating argument. (English) Zbl 1340.34273 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105), No. 1, 121-130 (2014). MSC: 34K20 34K40 34K25 PDF BibTeX XML Cite \textit{C. Tunç}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105), No. 1, 121--130 (2014; Zbl 1340.34273)
Haloi, Rajib Solutions to quasi-linear differential equations with iterated deviating arguments. (English) Zbl 1320.34107 Electron. J. Differ. Equ. 2014, Paper No. 249, 13 p. (2014). MSC: 34K30 47N20 39B12 PDF BibTeX XML Cite \textit{R. Haloi}, Electron. J. Differ. Equ. 2014, Paper No. 249, 13 p. (2014; Zbl 1320.34107) Full Text: EMIS
Li, Tongxing; Baculíková, Blanka; Džurina, Jozef Oscillatory behavior of second-order nonlinear neutral differential equations with distributed deviating arguments. (English) Zbl 1307.34109 Bound. Value Probl. 2014, Paper No. 68, 15 p. (2014). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{T. Li} et al., Bound. Value Probl. 2014, Paper No. 68, 15 p. (2014; Zbl 1307.34109) Full Text: DOI
Kumar, Pradeep On the new concepts of solutions and existence results for impulsive integro-differential equations with a deviating argument. (English) Zbl 1304.34130 Nonlinear Dyn. Syst. Theory 14, No. 1, 58-75 (2014). MSC: 34K30 34K45 35R12 45J05 34A12 47N20 47D03 PDF BibTeX XML Cite \textit{P. Kumar}, Nonlinear Dyn. Syst. Theory 14, No. 1, 58--75 (2014; Zbl 1304.34130)
Tunç, Cemil A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating argument. (English) Zbl 1306.34113 Afr. Mat. 25, No. 2, 417-425 (2014). MSC: 34K20 34K12 47N20 PDF BibTeX XML Cite \textit{C. Tunç}, Afr. Mat. 25, No. 2, 417--425 (2014; Zbl 1306.34113) Full Text: DOI
Haloi, Rajib Existence of weighted pseudo-almost automorphic mild solutions to non-autonomous abstract neutral differential equations with deviating arguments. (English) Zbl 1298.34146 Differ. Equ. Dyn. Syst. 22, No. 2, 165-179 (2014). MSC: 34K30 34K14 43A60 47N20 PDF BibTeX XML Cite \textit{R. Haloi}, Differ. Equ. Dyn. Syst. 22, No. 2, 165--179 (2014; Zbl 1298.34146) Full Text: DOI
Phaneendra, K.; Soujanya, Gbsl.; Reddy, Y. N. Numerical integration method for singular perturbation delay differential equations with layer or oscillatory behaviour. (English) Zbl 06496582 Appl. Comput. Math. 12, No. 2, 211-221 (2013). MSC: 65L11 PDF BibTeX XML Cite \textit{K. Phaneendra} et al., Appl. Comput. Math. 12, No. 2, 211--221 (2013; Zbl 06496582) Full Text: Link
Mukhigulashvili, S. Nonlocal boundary value problems for strongly singular higher-order linear functional-differential equations. (English) Zbl 1340.34235 Electron. J. Qual. Theory Differ. Equ. 2013, Paper No. 33, 38 p. (2013). MSC: 34K10 34K06 PDF BibTeX XML Cite \textit{S. Mukhigulashvili}, Electron. J. Qual. Theory Differ. Equ. 2013, Paper No. 33, 38 p. (2013; Zbl 1340.34235) Full Text: DOI Link
Pelyukh, G. P.; Sharkovskiĭ, A. N. The method of invariants in the theory of functional equations. (Метод инвариантов в теории функциональных уравнений.) (Russian) Zbl 1324.39001 Pratsi Instytutu Matematyky Natsional’noï Akademiï Nauk Ukraïny. Matematyka ta ïï Zastosuvannya 95. Kyïv: Instytut Matematyky NAN Ukraïny (ISBN 978-966-02-6530-1). 255 p. (2013). Reviewer: Mikhail P. Moklyachuk (Kyïv) MSC: 39-02 39B05 39A05 34K05 34K25 PDF BibTeX XML Cite \textit{G. P. Pelyukh} and \textit{A. N. Sharkovskiĭ}, Метод инвариантов в теории функциональных уравнений (Russian). Kyïv: Instytut Matematyky NAN Ukraïny (2013; Zbl 1324.39001)
Mukhigulashvili, Sulkhan; Partsvania, Nino On one estimate for solutions of two-point boundary value problems for higher-order strongly singular linear differential equations. (English) Zbl 1295.34067 Mem. Differ. Equ. Math. Phys. 58, 65-77 (2013). MSC: 34K10 34K06 PDF BibTeX XML Cite \textit{S. Mukhigulashvili} and \textit{N. Partsvania}, Mem. Differ. Equ. Math. Phys. 58, 65--77 (2013; Zbl 1295.34067)
Chen, Wenbin; Gao, Fang; Lu, Shiping Periodic solutions for a \(p\)-Laplacian neutral functional differential equation with a deviating argument. (English) Zbl 1299.34231 Chin. Q. J. Math. 28, No. 4, 585-591 (2013). MSC: 34K13 34K40 47N20 PDF BibTeX XML Cite \textit{W. Chen} et al., Chin. Q. J. Math. 28, No. 4, 585--591 (2013; Zbl 1299.34231)
Zhou, Ling; Zhou, Zongfu; Shen, Qinrui Existence of periodic solutions to a class of third-order \(p\)-Laplacian equations with delays. (English) Zbl 1299.34238 Chin. Q. J. Math. 28, No. 4, 492-502 (2013). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{L. Zhou} et al., Chin. Q. J. Math. 28, No. 4, 492--502 (2013; Zbl 1299.34238)
Shen, Qinrui; Cheng, Lixin; Zhou, Zongfu The existence of periodic solutions for a third-order \(p\)-Laplacian equation with delays. (Chinese. English summary) Zbl 1299.34236 J. Wuhan Univ., Nat. Sci. Ed. 59, No. 6, 505-510 (2013). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{Q. Shen} et al., J. Wuhan Univ., Nat. Sci. Ed. 59, No. 6, 505--510 (2013; Zbl 1299.34236)
Wang, Zaihong; Li, Jin; Ma, Tiantian Periodic solutions of Duffing equation with an asymmetric nonlinearity and a deviating argument. (English) Zbl 1302.34104 Abstr. Appl. Anal. 2013, Article ID 507854, 8 p. (2013). Reviewer: Daniela Danciu (Craiova) MSC: 34K13 PDF BibTeX XML Cite \textit{Z. Wang} et al., Abstr. Appl. Anal. 2013, Article ID 507854, 8 p. (2013; Zbl 1302.34104) Full Text: DOI
Kumar, Pradeep; Pandey, Dwijendra N.; Bahuguna, Dhirendra Existence of piecewise continuous mild solutions for impulsive functional differential equations with iterated deviating arguments. (English) Zbl 1293.34100 Electron. J. Differ. Equ. 2013, Paper No. 241, 15 p. (2013). MSC: 34K30 34K45 35R12 45J05 47N20 PDF BibTeX XML Cite \textit{P. Kumar} et al., Electron. J. Differ. Equ. 2013, Paper No. 241, 15 p. (2013; Zbl 1293.34100) Full Text: EMIS
Liu, Jiaying; Liu, Wenbin; Liu, Bingzhuo Periodic solutions for fourth-order \(p\)-Laplacian functional differential equations with sign-variable coefficient. (English) Zbl 1293.34086 Electron. J. Differ. Equ. 2013, Paper No. 205, 9 p. (2013). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{J. Liu} et al., Electron. J. Differ. Equ. 2013, Paper No. 205, 9 p. (2013; Zbl 1293.34086) Full Text: EMIS
Lauran, Monica Solution of first iterative differential equations. (English) Zbl 1313.34182 An. Univ. Craiova, Ser. Mat. Inf. 40, No. 1, 45-51 (2013). MSC: 34K05 47N20 PDF BibTeX XML Cite \textit{M. Lauran}, An. Univ. Craiova, Ser. Mat. Inf. 40, No. 1, 45--51 (2013; Zbl 1313.34182)
Ma, Tiantian Periodic solutions of Rayleigh equations with two deviating arguments. (English) Zbl 1295.34072 Int. J. Math. Anal., Ruse 7, No. 25-28, 1225-1237 (2013). Reviewer: Adriana Buică (Cluj-Napoca) MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{T. Ma}, Int. J. Math. Anal., Ruse 7, No. 25--28, 1225--1237 (2013; Zbl 1295.34072) Full Text: DOI Link Link
Liu, Jiaying; Liu, Bingzhuo; Chen, Xiaofei; Chen, Chunxiang; Liu, Wenbin Periodic solutions for a fourth-order \(p\)-Laplacian differential equation with a deviating argument. (Chinese. English summary) Zbl 1289.34184 Math. Pract. Theory 43, No. 7, 176-183 (2013). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{J. Liu} et al., Math. Pract. Theory 43, No. 7, 176--183 (2013; Zbl 1289.34184)
Tunç, Cemil Stability to vector Liénard equation with constant deviating argument. (English) Zbl 1281.34102 Nonlinear Dyn. 73, No. 3, 1245-1251 (2013). MSC: 34D20 93D20 93D30 PDF BibTeX XML Cite \textit{C. Tunç}, Nonlinear Dyn. 73, No. 3, 1245--1251 (2013; Zbl 1281.34102) Full Text: DOI
Rodionov, V. I. Analog of the Cauchy function for a generalized equation with several deviations of the argument. (English. Russian original) Zbl 1282.45002 Differ. Equ. 49, No. 6, 662-679 (2013); translation from Differ. Uravn. 49, No. 6, 690-706 (2013). Reviewer: Anatoly Filip Grishin (Khar’kov) MSC: 45D05 45G10 PDF BibTeX XML Cite \textit{V. I. Rodionov}, Differ. Equ. 49, No. 6, 662--679 (2013; Zbl 1282.45002); translation from Differ. Uravn. 49, No. 6, 690--706 (2013) Full Text: DOI
Stević, Stevo On bounded continuously differentiable solutions with Lipschitz first derivatives of a system of functional differential equations. (English) Zbl 1278.34073 Appl. Math. Comput. 219, No. 11, 6344-6353 (2013). MSC: 34K10 34K12 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 11, 6344--6353 (2013; Zbl 1278.34073) Full Text: DOI
Stević, Stevo Asymptotically convergent solutions of a system of nonlinear functional differential equations of neutral type with iterated deviating arguments. (English) Zbl 1278.34085 Appl. Math. Comput. 219, No. 11, 6197-6203 (2013). MSC: 34K25 34K40 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 11, 6197--6203 (2013; Zbl 1278.34085) Full Text: DOI
Jiang, Ani Periodic solutions for Duffing type \(p\)-Laplacian equation with multiple deviating arguments. (English) Zbl 1261.34050 J. Appl. Math. Inform. 31, No. 1-2, 27-34 (2013). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{A. Jiang}, J. Appl. Math. Inform. 31, No. 1--2, 27--34 (2013; Zbl 1261.34050) Full Text: DOI Link
Mukhigulashvili, S.; Partsvania, N. Two-point boundary value problems for strongly singular higher-order linear differential equations with deviating arguments. (English) Zbl 1340.34236 Electron. J. Qual. Theory Differ. Equ. 2012, Paper No. 38, 14 p. (2012). MSC: 34K10 34K06 PDF BibTeX XML Cite \textit{S. Mukhigulashvili} and \textit{N. Partsvania}, Electron. J. Qual. Theory Differ. Equ. 2012, Paper No. 38, 14 p. (2012; Zbl 1340.34236) Full Text: DOI
Stević, Stevo Solutions converging to zero of some systems of nonlinear functional differential equations with iterated deviating argument. (English) Zbl 1311.34158 Appl. Math. Comput. 219, No. 8, 4031-4035 (2012). MSC: 34K25 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 8, 4031--4035 (2012; Zbl 1311.34158) Full Text: DOI
Stević, Stevo On solutions of a class of systems of nonlinear functional differential equations of neutral type with complicated deviations of an argument. (English) Zbl 1311.34148 Appl. Math. Comput. 219, No. 8, 3693-3700 (2012). MSC: 34K12 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 8, 3693--3700 (2012; Zbl 1311.34148) Full Text: DOI
Plyshevskaya, T. K. On solvability of a quasilinear differential equation with a neutral type deviating argument. (Russian. English summary) Zbl 1305.34100 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2012, No. 1(39), 109-110 (2012). MSC: 34K05 PDF BibTeX XML Cite \textit{T. K. Plyshevskaya}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 2012, No. 1(39), 109--110 (2012; Zbl 1305.34100) Full Text: MNR
Stević, Stevo Globally bounded solutions of a system of nonlinear functional differential equations with iterated deviating argument. (English) Zbl 1298.34128 Appl. Math. Comput. 219, No. 4, 2180-2185 (2012). MSC: 34K12 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 4, 2180--2185 (2012; Zbl 1298.34128) Full Text: DOI
Tunç, Cemil Stability and uniform boundedness results for non-autonomous Lienard-type equations with a variable deviating argument. (English) Zbl 1417.34121 Acta Math. Vietnam. 37, No. 3, 311-325 (2012). MSC: 34D20 34C11 34K20 PDF BibTeX XML Cite \textit{C. Tunç}, Acta Math. Vietnam. 37, No. 3, 311--325 (2012; Zbl 1417.34121) Full Text: Link
Stević, Stevo Solutions of a system of functional differential equations in a right neighborhood of zero. (English) Zbl 1291.34106 Appl. Math. Comput. 219, No. 3, 1011-1019 (2012). MSC: 34K05 34K32 PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 219, No. 3, 1011--1019 (2012; Zbl 1291.34106) Full Text: DOI
Feng, Meiqiang; Zhang, Xuemei Anti-periodic solutions to Rayleigh-type equations with two deviating arguments. (English) Zbl 1290.34069 Electron. J. Differ. Equ. 2012, Paper No. 232, 8 p. (2012). MSC: 34K13 47N20 PDF BibTeX XML Cite \textit{M. Feng} and \textit{X. Zhang}, Electron. J. Differ. Equ. 2012, Paper No. 232, 8 p. (2012; Zbl 1290.34069) Full Text: EMIS
Li, Yong; Yao, Xiaojie; Qin, Fajin Periodic solutions of a kind of high-order differential equation with a deviating argument. (Chinese. English summary) Zbl 1274.34200 Math. Pract. Theory 42, No. 1, 178-187 (2012). MSC: 34K13 34K40 47N20 PDF BibTeX XML Cite \textit{Y. Li} et al., Math. Pract. Theory 42, No. 1, 178--187 (2012; Zbl 1274.34200)