×

Expansion functions for two-dimensional incompressible fluid flow in arbitrary domains. (English) Zbl 0983.76074

Summary: Expansion functions are presented for two-dimensional incompressible fluid flow in arbitrary domains that optimally conserve the two-dimensional structure of vortex dynamics. This is obtained by conformal mapping of the domain onto a circle and by constructing orthogonal radial polynomials and angular harmonics on the new domain, such that the kinetic energy is diagonal and the separate components satisfy all physical boundary conditions.

MSC:

76M40 Complex variables methods applied to problems in fluid mechanics
76B47 Vortex flows for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Verkley, W. T.M., A Spectral model for two-dimensional incompressible fluid flow in a circular basin. I, II, J. Comput. Phys., 136, 100 (1997) · Zbl 0889.76071
[2] W. T. M. Verkley, 136, 115, 1997.; W. T. M. Verkley, 136, 115, 1997.
[3] Freidberg, J. P.; Goedbloed, J. P., Equilibrium and stability of a diffuse high-beta tokamak, Pulsed High Beta Plasmas, 117 (1976)
[4] Goedbloed, J. P., Conformal mapping methods in two-dimensional magnetohydrodynamics, Comp. Phys. Comm., 24, 311 (1981)
[5] Goedbloed, J. P., Free-boundary high-beta tokamaks. I, II, III, Phys. Fluids, 25, 852 (1982) · Zbl 0486.76129
[6] Goedbloed, J. P., Free-boundary high-beta tokamaks. I, II, III, Phys. Fluids, 25, 2062 (1982) · Zbl 0497.76099
[7] Goedbloed, J. P., Free-boundary high-beta tokamaks. I, II, III, Phys. Fluids, 25, 2073 (1982) · Zbl 0497.76100
[8] Goedbloed, J. P.; Hogewey, G. M.D.; Kleibergen, R.; Rem, J.; Galvão, R. M.O.; Sakanaka, P. H., Investigation of high-beta tokamak stability with the program HBT, Proc. Tenth International IAEA Conference on Plasma Physics and Controlled Fusion Research, London, 12-19 September 1984, 2, 165 (1985)
[9] Goedbloed, J. P.; Kleibergen, R.; Rem, J., Flux coordinate studies of elongated plasmas at high beta, Proc. 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, June 22-26, 1987, III, 1095 (1987)
[10] Kleibergen, R.; Goedbloed, J. P., Alfvén wave spectrum of an analytic high-beta tokamak equilibrium, Plasma Phys. Contr. Fusion, 30, 1961 (1988)
[11] Huysmans, G. T.A.; Hender, T. C.; Kwon, O. J.; Goedbloed, J. P.; Lazzaro, E.; Smeulders, P., MHD stability analysis of high-β JET discharges, Plasma Phys. Contr. Fusion, 34, 487 (1992)
[12] T. Theodorsen, NACA Report 411, 1931.; T. Theodorsen, NACA Report 411, 1931.
[13] Gutknecht, M. H., Existence of a solution of the discrete Theodorsen equation for conformal mappings, Math. Comput., 31, 478 (1977) · Zbl 0365.30004
[14] Henrici, P., Fast Fourier methods in computational complex analysis, SIAM Rev., 21, 481 (1979) · Zbl 0416.65022
[15] Henrici, P., Applied and Computational Complex Analysis. Vol. 3 Discrete Fourier Analysis-Cauchy Integrals-Construction of Conformal Maps-Univalent Functions (1986) · Zbl 0578.30001
[16] Garrick, T., Potential Flow about Arbitrary Biplane Wing Sections (1936) · JFM 62.1573.05
[17] Elghaoui, M.; Pasquetti, R., Mixed spectral-boundary element embedding algorithms for the Navier-Stokes equations in the vorticity-stream function formulation, Comput. Phys., 153, 82 (1999) · Zbl 0941.76066
[18] Abramowitz, M.; Segun, I. A., Handbook of Mathematical Functions (1968)
[19] Riordan, J., Combinatorial Identities (1968) · Zbl 0194.00502
[20] Gruber, R.; Rappaz, J., Finite Element Methods in Linear Ideal Magnetohydrodynamics (1985) · Zbl 0573.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.