G/Egziabher, Tewlede; Geleta, Hunduma Legesse; Hassen, Abdul Automorphic integrals with log-polynomial period functions and arithmetical identities. (English) Zbl 07689516 Indag. Math., New Ser. 34, No. 4, 854-870 (2023). MSC: 11-XX 39-XX PDF BibTeX XML Cite \textit{T. G/Egziabher} et al., Indag. Math., New Ser. 34, No. 4, 854--870 (2023; Zbl 07689516) Full Text: DOI arXiv OpenURL
Lapin, A. Grid approximation of the subdiffusion equation with variable order time fractional derivative. (English) Zbl 07688821 Lobachevskii J. Math. 44, No. 1, 387-393 (2023). MSC: 76Sxx 26Axx 37Nxx PDF BibTeX XML Cite \textit{A. Lapin}, Lobachevskii J. Math. 44, No. 1, 387--393 (2023; Zbl 07688821) Full Text: DOI OpenURL
Guseva, E. K.; Golubev, V. I.; Petrov, I. B. Linear, quasi-monotonic and hybrid grid-characteristic schemes for hyperbolic equations. (English) Zbl 07688814 Lobachevskii J. Math. 44, No. 1, 296-312 (2023). MSC: 74S20 PDF BibTeX XML Cite \textit{E. K. Guseva} et al., Lobachevskii J. Math. 44, No. 1, 296--312 (2023; Zbl 07688814) Full Text: DOI OpenURL
Panda, Abhilipsa; Mohapatra, Jugal A robust finite difference method for the solutions of singularly perturbed Fredholm integro-differential equations. (English) Zbl 07688486 Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023). MSC: 65L11 65R20 45J05 PDF BibTeX XML Cite \textit{A. Panda} and \textit{J. Mohapatra}, Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023; Zbl 07688486) Full Text: DOI OpenURL
Cheng, Qibin; Li, Yezhou; Liu, Zhixue On meromorphic solutions of nonlinear partial differential-difference equations of first order in several complex variables. (English) Zbl 07688255 Bull. Korean Math. Soc. 60, No. 2, 425-441 (2023). MSC: 32H30 32A20 39A45 PDF BibTeX XML Cite \textit{Q. Cheng} et al., Bull. Korean Math. Soc. 60, No. 2, 425--441 (2023; Zbl 07688255) Full Text: DOI OpenURL
Almaslokh, Abdulaziz; Qian, Chuanxi Global attractivity of a higher order nonlinear difference equation with unimodal terms. (English) Zbl 07687894 Opusc. Math. 43, No. 2, 131-143 (2023). MSC: 39A10 39A30 92D25 PDF BibTeX XML Cite \textit{A. Almaslokh} and \textit{C. Qian}, Opusc. Math. 43, No. 2, 131--143 (2023; Zbl 07687894) Full Text: DOI OpenURL
Salama, Fouad Mohammad; Balasim, Alla Tareq; Ali, Umair; Khan, Muhammad Asim Efficient numerical simulations based on an explicit group approach for the time fractional advection-diffusion reaction equation. (English) Zbl 07687556 Comput. Appl. Math. 42, No. 4, Paper No. 157, 30 p. (2023). MSC: 35R11 65N06 65N12 PDF BibTeX XML Cite \textit{F. M. Salama} et al., Comput. Appl. Math. 42, No. 4, Paper No. 157, 30 p. (2023; Zbl 07687556) Full Text: DOI OpenURL
Burgos, Clara; Caraballo, Tomás; Cortés, Juan Carlos; Villafuerte, Laura; Villanueva, Rafael Jacinto Constructing reliable approximations of the random fractional Hermite equation: solution, moments and density. (English) Zbl 07687539 Comput. Appl. Math. 42, No. 3, Paper No. 140, 28 p. (2023). MSC: 26A33 37H10 60H25 30B20 34F05 49J55 PDF BibTeX XML Cite \textit{C. Burgos} et al., Comput. Appl. Math. 42, No. 3, Paper No. 140, 28 p. (2023; Zbl 07687539) Full Text: DOI OpenURL
Doss, L. Jones Tarcius; Aishwarya, L. An \(H^1\)-Galerkin mixed finite element method for Rosenau equation. (English) Zbl 07687528 Comput. Appl. Math. 42, No. 3, Paper No. 112, 21 p. (2023). MSC: 65N30 65N06 65M60 65M06 PDF BibTeX XML Cite \textit{L. J. T. Doss} and \textit{L. Aishwarya}, Comput. Appl. Math. 42, No. 3, Paper No. 112, 21 p. (2023; Zbl 07687528) Full Text: DOI OpenURL
Haghighi, Donya; Abbasbandy, Saeid; Shivanian, Elyas Study of the fragile points method for solving two-dimensional linear and nonlinear wave equations on complex and cracked domains. (English) Zbl 07687446 Eng. Anal. Bound. Elem. 146, 44-55 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{D. Haghighi} et al., Eng. Anal. Bound. Elem. 146, 44--55 (2023; Zbl 07687446) Full Text: DOI OpenURL
Xie, Wei-Kang; Fan, Fang-Cheng Soliton, breather, rogue wave and continuum limit in the discrete complex modified Korteweg-de Vries equation by Darboux-Bäcklund transformation. (English) Zbl 07686686 J. Math. Anal. Appl. 525, No. 2, Article ID 127251, 18 p. (2023). MSC: 37Kxx 35Qxx 39Axx PDF BibTeX XML Cite \textit{W.-K. Xie} and \textit{F.-C. Fan}, J. Math. Anal. Appl. 525, No. 2, Article ID 127251, 18 p. (2023; Zbl 07686686) Full Text: DOI OpenURL
Shyaman, V. P.; Sreelakshmi, A.; Awasthi, Ashish A higher order implicit adaptive finite point method for the Burgers’ equation. (English) Zbl 07686651 J. Difference Equ. Appl. 29, No. 3, 235-269 (2023). MSC: 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{V. P. Shyaman} et al., J. Difference Equ. Appl. 29, No. 3, 235--269 (2023; Zbl 07686651) Full Text: DOI OpenURL
Kutluay, Selçuk; Özer, Sibel; Yağmurlu, Nuri Murat A new highly accurate numerical scheme for Benjamin-Bona-Mahony-Burgers equation describing small amplitude long wave propagation. (English) Zbl 07686493 Mediterr. J. Math. 20, No. 3, Paper No. 173, 24 p. (2023). MSC: 65N06 65M06 65M12 35A35 PDF BibTeX XML Cite \textit{S. Kutluay} et al., Mediterr. J. Math. 20, No. 3, Paper No. 173, 24 p. (2023; Zbl 07686493) Full Text: DOI OpenURL
Gao, Linkui; Gao, Junyang Trigonometric identities and entire solutions of non-linear binomial differential equations. (English) Zbl 07686487 Mediterr. J. Math. 20, No. 3, Paper No. 167, 15 p. (2023). MSC: 30D35 34M05 PDF BibTeX XML Cite \textit{L. Gao} and \textit{J. Gao}, Mediterr. J. Math. 20, No. 3, Paper No. 167, 15 p. (2023; Zbl 07686487) Full Text: DOI OpenURL
Babajanov, B. A.; Azamatov, A. Sh. Integration of the Kaup-Boussinesq type system with a self-consistent source via inverse scattering method. (English) Zbl 07686317 Uzb. Math. J. 67, No. 1, 15-23 (2023). MSC: 34K08 39A70 37K15 PDF BibTeX XML Cite \textit{B. A. Babajanov} and \textit{A. Sh. Azamatov}, Uzb. Math. J. 67, No. 1, 15--23 (2023; Zbl 07686317) Full Text: DOI OpenURL
Terpák, Ján General one-dimensional model of the time-fractional diffusion-wave equation in various geometries. (English) Zbl 07685927 Fract. Calc. Appl. Anal. 26, No. 2, 599-618 (2023). MSC: 26A33 35R11 80M20 PDF BibTeX XML Cite \textit{J. Terpák}, Fract. Calc. Appl. Anal. 26, No. 2, 599--618 (2023; Zbl 07685927) Full Text: DOI OpenURL
Ostaszewska, Urszula; Schmeidel, Ewa; Zdanowicz, Małgorzata Existence of solutions to nonlinear fourth-order beam equation. (English) Zbl 07682974 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 92, 17 p. (2023). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{U. Ostaszewska} et al., Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 92, 17 p. (2023; Zbl 07682974) Full Text: DOI OpenURL
Wang, Jialing; Zhou, Zhengting; Wang, Yushun Local structure-preserving algorithms for the Klein-Gordon-Zakharov equation. (English) Zbl 07682817 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1211-1238 (2023). MSC: 65L12 65M06 65M12 PDF BibTeX XML Cite \textit{J. Wang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1211--1238 (2023; Zbl 07682817) Full Text: DOI OpenURL
Folly-Gbetoula, M.; Nyirenda, D. Explicit formulas for solutions of some \((k+3)\)th-order difference equations. (English) Zbl 07682723 Differ. Equ. Dyn. Syst. 31, No. 2, 345-356 (2023). MSC: 39A20 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula} and \textit{D. Nyirenda}, Differ. Equ. Dyn. Syst. 31, No. 2, 345--356 (2023; Zbl 07682723) Full Text: DOI OpenURL
Cheng, Qing; Shen, Jie Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches. (English) Zbl 07682244 SIAM J. Sci. Comput. 45, No. 2, A530-A553 (2023). MSC: 65M70 65M06 65N35 65N22 65N12 35K61 78A25 82D40 PDF BibTeX XML Cite \textit{Q. Cheng} and \textit{J. Shen}, SIAM J. Sci. Comput. 45, No. 2, A530--A553 (2023; Zbl 07682244) Full Text: DOI arXiv OpenURL
Fang, Chengran; Wassermann, Demian; Li, Jing-Rebecca Fourier representation of the diffusion MRI signal using layer potentials. (English) Zbl 07681404 SIAM J. Appl. Math. 83, No. 1, 99-121 (2023). MSC: 35Q60 78A46 76U05 92C37 92C55 65M32 65Z05 65E05 65M06 65N25 65T50 65M12 31A10 35B05 PDF BibTeX XML Cite \textit{C. Fang} et al., SIAM J. Appl. Math. 83, No. 1, 99--121 (2023; Zbl 07681404) Full Text: DOI OpenURL
Kostolányi, Peter Polynomially ambiguous unary weighted automata over fields. (English) Zbl 07681310 Theory Comput. Syst. 67, No. 2, 291-309 (2023). MSC: 68Qxx 68-XX 68Nxx PDF BibTeX XML Cite \textit{P. Kostolányi}, Theory Comput. Syst. 67, No. 2, 291--309 (2023; Zbl 07681310) Full Text: DOI OpenURL
Chizhonkov, Eugene V.; Frolov, Alexander A. Effect of electron temperature on formation of travelling waves in plasma: kinetic and hydrodynamic models. (English) Zbl 07681029 Russ. J. Numer. Anal. Math. Model. 38, No. 2, 63-74 (2023). MSC: 65-XX 65M06 65R20 65Z05 82C40 82D10 PDF BibTeX XML Cite \textit{E. V. Chizhonkov} and \textit{A. A. Frolov}, Russ. J. Numer. Anal. Math. Model. 38, No. 2, 63--74 (2023; Zbl 07681029) Full Text: DOI OpenURL
Stević, Stevo; Iričanin, Bratislav; Kosmala, Witold On a class of difference equations with interlacing indices of the fourth order. (English) Zbl 07680738 Acta Appl. Math. 184, Paper No. 8, 15 p. (2023). MSC: 39A20 PDF BibTeX XML Cite \textit{S. Stević} et al., Acta Appl. Math. 184, Paper No. 8, 15 p. (2023; Zbl 07680738) Full Text: DOI OpenURL
Nijhoff, Frank W.; Sun, Ying-ying; Zhang, Da-jun Elliptic solutions of Boussinesq type lattice equations and the elliptic \(N\)th root of unity. (English) Zbl 07678856 Commun. Math. Phys. 399, No. 2, 599-650 (2023). MSC: 39A14 39A36 37K60 PDF BibTeX XML Cite \textit{F. W. Nijhoff} et al., Commun. Math. Phys. 399, No. 2, 599--650 (2023; Zbl 07678856) Full Text: DOI arXiv OpenURL
Guo, Youming; Li, Tingting Fractional-order modeling and optimal control of a new online game addiction model based on real data. (English) Zbl 07677516 Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107221, 22 p. (2023). MSC: 91D30 26A33 34C60 34D23 49K21 49N90 65M06 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{T. Li}, Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107221, 22 p. (2023; Zbl 07677516) Full Text: DOI OpenURL
Sharma, Amit; Rai, Pratima Analysis of a higher order uniformly convergent method for singularly perturbed parabolic delay problems. (English) Zbl 07677319 Appl. Math. Comput. 448, Article ID 127906, 23 p. (2023). MSC: 65M06 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Appl. Math. Comput. 448, Article ID 127906, 23 p. (2023; Zbl 07677319) Full Text: DOI OpenURL
Peng, Cheng; Liu, Shihao; Yang, Zhouwang SDF-based ILW: inverse Lax-Wendroff method with the signed distance function representation of the geometric boundary. (English) Zbl 07677218 Commun. Comput. Phys. 33, No. 2, 538-567 (2023). MSC: 65M25 65M06 PDF BibTeX XML Cite \textit{C. Peng} et al., Commun. Comput. Phys. 33, No. 2, 538--567 (2023; Zbl 07677218) Full Text: DOI OpenURL
Park, Jea-Hyun; Salgado, Abner J.; Wise, Steven M. Benchmark computations of the phase field crystal and functionalized Cahn-Hilliard equations via fully implicit, Nesterov accelerated schemes. (English) Zbl 07677212 Commun. Comput. Phys. 33, No. 2, 367-398 (2023). MSC: 74S25 74S20 74N99 74E15 PDF BibTeX XML Cite \textit{J.-H. Park} et al., Commun. Comput. Phys. 33, No. 2, 367--398 (2023; Zbl 07677212) Full Text: DOI arXiv OpenURL
Wang, Jiacheng; Liu, Jinkun; Ji, Biao; He, Yundong; Xia, Sigang; Zhou, Yongping Vibration suppression and boundary control for nonlinear flexible rotating manipulator in three-dimensional space subject to output restrictions. (English) Zbl 07676841 Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107151, 15 p. (2023). MSC: 93C85 93C20 93D30 65M06 PDF BibTeX XML Cite \textit{J. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107151, 15 p. (2023; Zbl 07676841) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; Graef, John R.; Laledj, Nadjet Uniqueness and Ulam stability for implicit fractional \(q\)-difference equations via Picard operators theory. (English) Zbl 07676816 Int. J. Dyn. Syst. Differ. Equ. 13, No. 1, 58-75 (2023). MSC: 39A13 26A33 39A30 47H10 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Int. J. Dyn. Syst. Differ. Equ. 13, No. 1, 58--75 (2023; Zbl 07676816) Full Text: DOI OpenURL
Sharma, Nitika; Kaushik, Aditya A uniformly convergent difference method for singularly perturbed parabolic partial differential equations with large delay and integral boundary condition. (English) Zbl 07676697 J. Appl. Math. Comput. 69, No. 1, 1071-1093 (2023). MSC: 65Mxx 65Qxx 35Kxx PDF BibTeX XML Cite \textit{N. Sharma} and \textit{A. Kaushik}, J. Appl. Math. Comput. 69, No. 1, 1071--1093 (2023; Zbl 07676697) Full Text: DOI OpenURL
Stević, Stevo On a class of recursive relations for calculating square roots of numbers. (English) Zbl 07676692 J. Appl. Math. Comput. 69, No. 1, 973-987 (2023). MSC: 39A20 41A44 65D20 PDF BibTeX XML Cite \textit{S. Stević}, J. Appl. Math. Comput. 69, No. 1, 973--987 (2023; Zbl 07676692) Full Text: DOI OpenURL
Wang, Shaohong; Zhou, Zhan Periodic solutions for a second-order partial difference equation. (English) Zbl 07676680 J. Appl. Math. Comput. 69, No. 1, 731-752 (2023). MSC: 39A14 39A23 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Zhou}, J. Appl. Math. Comput. 69, No. 1, 731--752 (2023; Zbl 07676680) Full Text: DOI OpenURL
Zhang, Haixiang; Liu, Yuan; Yang, Xuehua An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space. (English) Zbl 07676676 J. Appl. Math. Comput. 69, No. 1, 651-674 (2023). MSC: 65R20 45K05 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Appl. Math. Comput. 69, No. 1, 651--674 (2023; Zbl 07676676) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Amirali, Ilhame; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition. (English) Zbl 07676669 J. Appl. Math. Comput. 69, No. 1, 505-528 (2023). MSC: 65L03 65L11 45B05 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Appl. Math. Comput. 69, No. 1, 505--528 (2023; Zbl 07676669) Full Text: DOI OpenURL
Zhang, Yaoyao; Wang, Zhibo Numerical simulation for time-fractional diffusion-wave equations with time delay. (English) Zbl 07676653 J. Appl. Math. Comput. 69, No. 1, 137-157 (2023). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Wang}, J. Appl. Math. Comput. 69, No. 1, 137--157 (2023; Zbl 07676653) Full Text: DOI OpenURL
Aswin, V. S.; Riyasudheen, T. K.; Awasthi, Ashish Differential quadrature parallel algorithms for solving systems of convection-diffusion and reaction models. (English) Zbl 07676520 Numer. Algorithms 93, No. 1, 321-346 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{V. S. Aswin} et al., Numer. Algorithms 93, No. 1, 321--346 (2023; Zbl 07676520) Full Text: DOI OpenURL
Maurya, Rahul Kumar; Singh, Vineet Kumar A high-order adaptive numerical algorithm for fractional diffusion wave equation on non-uniform meshes. (English) Zbl 07676506 Numer. Algorithms 92, No. 3, 1905-1950 (2023). MSC: 65D05 65D15 65D30 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{R. K. Maurya} and \textit{V. K. Singh}, Numer. Algorithms 92, No. 3, 1905--1950 (2023; Zbl 07676506) Full Text: DOI OpenURL
Wang, Zhenming; Yang, Xiaozhong; Gao, Xin A new fast predictor-corrector method for nonlinear time-fractional reaction-diffusion equation with nonhomogeneous terms. (English) Zbl 07675836 Discrete Contin. Dyn. Syst., Ser. B 28, No. 7, 3898-3924 (2023). MSC: 65M06 65N06 65M12 65N12 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 7, 3898--3924 (2023; Zbl 07675836) Full Text: DOI OpenURL
Chen, Feichao; Li, Desheng On the stable manifolds of difference equations with infinite delay. (English) Zbl 07675819 Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3487-3506 (2023). MSC: 37D10 39A10 39A12 34D35 34K19 PDF BibTeX XML Cite \textit{F. Chen} and \textit{D. Li}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3487--3506 (2023; Zbl 07675819) Full Text: DOI OpenURL
Wen, Xian; Yu, Xuhong; Wang, Zhongqing A Legendre dual-Petrov-Galerkin spectral element method for the Kawahara-type equations. (English) Zbl 07675813 Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3349-3372 (2023). MSC: 65M70 65M60 65M06 65N35 65N30 76B25 76B15 37K06 35C08 42C10 46E35 35Q35 35Q53 PDF BibTeX XML Cite \textit{X. Wen} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 6, 3349--3372 (2023; Zbl 07675813) Full Text: DOI OpenURL
Wang, Hongze Ground state of the discrete elliptic operator and its application. (English) Zbl 07675807 Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 3233-3251 (2023). MSC: 47A75 39A24 35K57 PDF BibTeX XML Cite \textit{H. Wang}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 3233--3251 (2023; Zbl 07675807) Full Text: DOI OpenURL
Lv, Xiaolin; Liang, Wei; Yu, Yadan; Zhang, Yongjun Anti-control of chaos in coupled delay difference equations based on snap-back repellers. (English) Zbl 07675779 Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2593-2602 (2023). MSC: 39A60 39A33 39A12 34H10 93C55 PDF BibTeX XML Cite \textit{X. Lv} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2593--2602 (2023; Zbl 07675779) Full Text: DOI OpenURL
Štoudková Růžičková, Viera Riccati matrix differential equation and the discrete order preserving property. (English) Zbl 07675581 Arch. Math., Brno 59, No. 1, 125-131 (2023). MSC: 34A40 39A22 PDF BibTeX XML Cite \textit{V. Štoudková Růžičková}, Arch. Math., Brno 59, No. 1, 125--131 (2023; Zbl 07675581) Full Text: DOI OpenURL
Onitsuka, Masakazu Approximation of limit cycle of differential systems with variable coefficients. (English) Zbl 07675577 Arch. Math., Brno 59, No. 1, 85-97 (2023). MSC: 34C05 34C07 34D10 34A12 39A30 PDF BibTeX XML Cite \textit{M. Onitsuka}, Arch. Math., Brno 59, No. 1, 85--97 (2023; Zbl 07675577) Full Text: DOI OpenURL
Takemura, Kouichi On symmetry of \(q\)-Painlevé equations and associated linear equations. (English) Zbl 07675560 RIMS Kôkyûroku Bessatsu B91, 103-119 (2023). MSC: 33E17 39A13 PDF BibTeX XML Cite \textit{K. Takemura}, RIMS Kôkyûroku Bessatsu B91, 103--119 (2023; Zbl 07675560) Full Text: arXiv Link OpenURL
Park, Kanam A \(3 \times 3\) Lax form and \(q\)-Painlevé equations of type \(E^{(1)}_6\). (Japanese. English summary) Zbl 07675559 RIMS Kôkyûroku Bessatsu B91, 87-102 (2023). MSC: 34M56 14H70 39A13 PDF BibTeX XML Cite \textit{K. Park}, RIMS Kôkyûroku Bessatsu B91, 87--102 (2023; Zbl 07675559) Full Text: Link OpenURL
Tinoco-Guerrero, Gerardo; Arias-Rojas, Heriberto; Guzmán-Torres, José Alberto; Román-Gutiérrez, Ricardo; Tinoco-Ruiz, José Gerardo A meshless finite difference scheme applied to the numerical solution of wave equation in highly irregular space regions. (English) Zbl 07674307 Comput. Math. Appl. 136, 25-33 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{G. Tinoco-Guerrero} et al., Comput. Math. Appl. 136, 25--33 (2023; Zbl 07674307) Full Text: DOI OpenURL
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas A characteristic boundary condition for multispeed lattice Boltzmann methods. (English) Zbl 07674033 Commun. Comput. Phys. 33, No. 1, 101-117 (2023). MSC: 76M28 76P05 76M20 PDF BibTeX XML Cite \textit{F. Klass} et al., Commun. Comput. Phys. 33, No. 1, 101--117 (2023; Zbl 07674033) Full Text: DOI OpenURL
Levi, Mark; Zhou, Jing Arnold tongues in area-preserving maps. (English) Zbl 07673751 Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 32, 18 p. (2023). MSC: 70K42 70K60 35Q70 39A23 PDF BibTeX XML Cite \textit{M. Levi} and \textit{J. Zhou}, Arch. Ration. Mech. Anal. 247, No. 3, Paper No. 32, 18 p. (2023; Zbl 07673751) Full Text: DOI arXiv OpenURL
Mohanty, R. K.; Sharma, Divya A new 2- level compact off-step implicit method in exponential form for the solution of fourth order nonlinear parabolic equations. (English) Zbl 07673480 J. Math. Chem. 61, No. 5, 1165-1204 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 65N06 65M12 65M22 35K55 35K52 35Q92 35Q53 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{D. Sharma}, J. Math. Chem. 61, No. 5, 1165--1204 (2023; Zbl 07673480) Full Text: DOI OpenURL
Cao, Jian; Zhou, Hong-Li; Arjika, Sama Generalized \(q\)-difference equations for \((q, c)\)-hypergeometric polynomials and some applications. (English) Zbl 07673427 Ramanujan J. 60, No. 4, 1033-1067 (2023). Reviewer: Uğur Duran (Iskenderun) MSC: 05A30 33D15 33D45 05A40 11B65 PDF BibTeX XML Cite \textit{J. Cao} et al., Ramanujan J. 60, No. 4, 1033--1067 (2023; Zbl 07673427) Full Text: DOI OpenURL
Giesl, Peter; Hafstein, Sigurdur; Kawan, Christoph Review on contraction analysis and computation of contraction metrics. (English) Zbl 07673037 J. Comput. Dyn. 10, No. 1, 1-47 (2023). MSC: 37C75 37D05 37M22 37-01 37C05 39A30 34D20 PDF BibTeX XML Cite \textit{P. Giesl} et al., J. Comput. Dyn. 10, No. 1, 1--47 (2023; Zbl 07673037) Full Text: DOI arXiv OpenURL
Zhao, Hou Yu; Luo, Ye A functional equation related to Whitehead’s equation on groups. (English) Zbl 07672925 Aequationes Math. 97, No. 2, 329-340 (2023). MSC: 39B52 39A70 PDF BibTeX XML Cite \textit{H. Y. Zhao} and \textit{Y. Luo}, Aequationes Math. 97, No. 2, 329--340 (2023; Zbl 07672925) Full Text: DOI OpenURL
Ogawara, Hiroshi Differential transcendence of solutions for \(q\)-difference equation of Ramanujan function. (English) Zbl 07672798 Filipuk, Galina (ed.) et al., Recent trends in formal and analytic solutions of diff. equations. Virtual conference, University of Alcalá, Alcalá de Henares, Spain, June 28 – July 2, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 782, 143-153 (2023). Reviewer: Alexander B. Levin (Washington) MSC: 39A13 12H10 33D15 PDF BibTeX XML Cite \textit{H. Ogawara}, Contemp. Math. 782, 143--153 (2023; Zbl 07672798) Full Text: DOI OpenURL
Sasaki, Shoko; Takagi, Shun; Takemura, Kouichi \(q\)-Heun equation and initial-value space of \(q\)-Painlevé equation. (English) Zbl 07672797 Filipuk, Galina (ed.) et al., Recent trends in formal and analytic solutions of diff. equations. Virtual conference, University of Alcalá, Alcalá de Henares, Spain, June 28 – July 2, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 782, 119-142 (2023). Reviewer: Mengkun Zhu (Jinan) MSC: 39A13 33E17 33D05 33D70 PDF BibTeX XML Cite \textit{S. Sasaki} et al., Contemp. Math. 782, 119--142 (2023; Zbl 07672797) Full Text: DOI arXiv OpenURL
Ding, Jie; Ji, Xiang A structure-preserving JKO scheme for the size-modified Poisson-Nernst-Planck-Cahn-Hilliard equations. (English) Zbl 07672348 Numer. Math., Theory Methods Appl. 16, No. 1, 204-229 (2023). MSC: 35K55 35J05 65M06 65M12 PDF BibTeX XML Cite \textit{J. Ding} and \textit{X. Ji}, Numer. Math., Theory Methods Appl. 16, No. 1, 204--229 (2023; Zbl 07672348) Full Text: DOI OpenURL
Li, Panchi; Yang, Lei; Lan, Jin; Du, Rui; Chen, Jingrun A second-order semi-implicit method for the inertial Landau-Lifshitz-Gilbert equation. (English) Zbl 07672347 Numer. Math., Theory Methods Appl. 16, No. 1, 182-203 (2023). MSC: 35Q99 65Z05 65M06 PDF BibTeX XML Cite \textit{P. Li} et al., Numer. Math., Theory Methods Appl. 16, No. 1, 182--203 (2023; Zbl 07672347) Full Text: DOI arXiv OpenURL
Bian, Shasha; Cheng, Yue; Guo, Boling; Wang, Tingchun Error estimate of a new conservative finite difference scheme for the Klein-Gordon-Dirac system. (English) Zbl 07672345 Numer. Math., Theory Methods Appl. 16, No. 1, 140-164 (2023). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{S. Bian} et al., Numer. Math., Theory Methods Appl. 16, No. 1, 140--164 (2023; Zbl 07672345) Full Text: DOI OpenURL
Kaya, Adem Application of adapted-bubbles to the Helmholtz equation with large wavenumbers in 2D. (English) Zbl 07672341 Numer. Math., Theory Methods Appl. 16, No. 1, 26-57 (2023). MSC: 65N30 65N06 PDF BibTeX XML Cite \textit{A. Kaya}, Numer. Math., Theory Methods Appl. 16, No. 1, 26--57 (2023; Zbl 07672341) Full Text: DOI arXiv OpenURL
Stegliński, Robert On local and nonlocal discrete \(p\)-Laplacian equations via Clark’s theorem. (English) Zbl 07671639 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 73, 16 p. (2023). MSC: 39A12 34C37 35A15 PDF BibTeX XML Cite \textit{R. Stegliński}, Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 73, 16 p. (2023; Zbl 07671639) Full Text: DOI OpenURL
Nafiri, S. Uniform polynomial decay and approximation in control of a family of abstract thermoelastic models. (English) Zbl 07671522 J. Dyn. Control Syst. 29, No. 1, 209-227 (2023). MSC: 35B40 35B27 35K90 35L90 74F05 93C20 93D20 65M06 65M60 65M70 PDF BibTeX XML Cite \textit{S. Nafiri}, J. Dyn. Control Syst. 29, No. 1, 209--227 (2023; Zbl 07671522) Full Text: DOI OpenURL
Haghi, Majid; Ilati, Mohammad; Dehghan, Mehdi A radial basis function-Hermite finite difference (RBF-HFD) method for the cubic-quintic complex Ginzburg-Landau equation. (English) Zbl 07671207 Comput. Appl. Math. 42, No. 3, Paper No. 115, 17 p. (2023). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{M. Haghi} et al., Comput. Appl. Math. 42, No. 3, Paper No. 115, 17 p. (2023; Zbl 07671207) Full Text: DOI OpenURL
Halder, Joydev; Tumuluri, Suman Kumar A numerical scheme for a diffusion equation with nonlocal nonlinear boundary condition. (English) Zbl 07671198 Comput. Appl. Math. 42, No. 2, Paper No. 84, 21 p. (2023). MSC: 65M12 92D25 PDF BibTeX XML Cite \textit{J. Halder} and \textit{S. K. Tumuluri}, Comput. Appl. Math. 42, No. 2, Paper No. 84, 21 p. (2023; Zbl 07671198) Full Text: DOI arXiv OpenURL
Zouraris, Georgios E. Error estimation of the relaxation finite difference scheme for the nonlinear Schrödinger equation. (English) Zbl 07670868 SIAM J. Numer. Anal. 61, No. 1, 365-397 (2023). MSC: 65M12 65M06 PDF BibTeX XML Cite \textit{G. E. Zouraris}, SIAM J. Numer. Anal. 61, No. 1, 365--397 (2023; Zbl 07670868) Full Text: DOI arXiv OpenURL
Stevic, Stevo On some classes of solvable difference equations related to iteration processes. (English) Zbl 07670563 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 5, 23 p. (2023). MSC: 39A45 PDF BibTeX XML Cite \textit{S. Stevic}, Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 5, 23 p. (2023; Zbl 07670563) Full Text: DOI OpenURL
Coulombel, Jean-François The Green’s function of the Lax-Wendroff and beam-warming schemes. (La fonction de Green des schémas de Lax-Wendroff et beam-warming.) (English. French summary) Zbl 07670366 Ann. Math. Blaise Pascal 29, No. 2, 247-294 (2023). MSC: 65M06 65M12 35L02 PDF BibTeX XML Cite \textit{J.-F. Coulombel}, Ann. Math. Blaise Pascal 29, No. 2, 247--294 (2023; Zbl 07670366) Full Text: DOI arXiv OpenURL
Jia, Yu; Su, Liyun; He, Yong; He, Lin; Song, Aimin An efficient numerical method for the robust optimal investment problem with general utility functions. (English) Zbl 07669006 J. Ind. Manag. Optim. 19, No. 8, 6200-6217 (2023). MSC: 58F15 58F17 53C35 PDF BibTeX XML Cite \textit{Y. Jia} et al., J. Ind. Manag. Optim. 19, No. 8, 6200--6217 (2023; Zbl 07669006) Full Text: DOI OpenURL
Tela, Guesh Yfter; Zhao, Song-Lin; Zhang, Da-Jun On the fourth-order lattice Gel’fand-Dikii equations. (English) Zbl 07667624 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 007, 30 p. (2023). MSC: 35Q53 35C08 37K60 37K35 37K10 35G05 39A36 PDF BibTeX XML Cite \textit{G. Y. Tela} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 007, 30 p. (2023; Zbl 07667624) Full Text: DOI arXiv OpenURL
Ashyralyev, Allaberen; Vlasov, Victor V.; Ashyralyyev, Charyyar On the stability of hyperbolic difference equations with unbounded delay term. (English) Zbl 1505.65229 Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 27, 21 p. (2023). MSC: 65L03 65L20 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 27, 21 p. (2023; Zbl 1505.65229) Full Text: DOI OpenURL
Teunissen, Jannis; Schiavello, Francesca Geometric multigrid method for solving Poisson’s equation on octree grids with irregular boundaries. (English) Zbl 07666749 Comput. Phys. Commun. 286, Article ID 108665, 8 p. (2023). MSC: 65N55 65N50 65N06 65F10 78A30 78A35 PDF BibTeX XML Cite \textit{J. Teunissen} and \textit{F. Schiavello}, Comput. Phys. Commun. 286, Article ID 108665, 8 p. (2023; Zbl 07666749) Full Text: DOI arXiv OpenURL
Liu, Zepeng; Jiang, Yan; Zhang, Mengping; Liu, Qingyuan High order finite difference WENO methods for shallow water equations on curvilinear meshes. (English) Zbl 07666155 Commun. Appl. Math. Comput. 5, No. 1, 485-528 (2023). MSC: 65M06 PDF BibTeX XML Cite \textit{Z. Liu} et al., Commun. Appl. Math. Comput. 5, No. 1, 485--528 (2023; Zbl 07666155) Full Text: DOI OpenURL
Li, Linjin; Qiu, Jingmei; Russo, Giovanni A high-order semi-Lagrangian finite difference method for nonlinear Vlasov and BGK models. (English) Zbl 07666146 Commun. Appl. Math. Comput. 5, No. 1, 170-198 (2023). MSC: 65M25 PDF BibTeX XML Cite \textit{L. Li} et al., Commun. Appl. Math. Comput. 5, No. 1, 170--198 (2023; Zbl 07666146) Full Text: DOI OpenURL
Christlieb, Andrew; Link, Matthew; Yang, Hyoseon; Chang, Ruimeng High-order semi-Lagrangian WENO schemes based on non-polynomial space for the Vlasov equation. (English) Zbl 07666144 Commun. Appl. Math. Comput. 5, No. 1, 116-142 (2023). MSC: 35Q83 65D05 65D15 65M06 65M22 PDF BibTeX XML Cite \textit{A. Christlieb} et al., Commun. Appl. Math. Comput. 5, No. 1, 116--142 (2023; Zbl 07666144) Full Text: DOI OpenURL
Campbell, John M. Applications of Zeilberger’s algorithm to Ramanujan-inspired series involving harmonic-type numbers. (English) Zbl 07665546 DML, Discrete Math. Lett. 11, 7-13 (2023). MSC: 33F10 39A10 PDF BibTeX XML Cite \textit{J. M. Campbell}, DML, Discrete Math. Lett. 11, 7--13 (2023; Zbl 07665546) Full Text: DOI OpenURL
Abedian, Rooholah A third-order weighted essentially non-oscillatory-flux limiter scheme for two-dimensional incompressible Navier-Stokes equations. (English) Zbl 07665290 Comput. Methods Differ. Equ. 11, No. 1, 1-11 (2023). MSC: 35Q30 35L99 65M06 PDF BibTeX XML Cite \textit{R. Abedian}, Comput. Methods Differ. Equ. 11, No. 1, 1--11 (2023; Zbl 07665290) Full Text: DOI OpenURL
Fukuda, Akiko; Segawa, Etsuo; Watanabe, Sennosuke Generalized discrete and ultradiscrete Burgers equations derived through the correlated random walk. (English) Zbl 07664959 J. Difference Equ. Appl. 29, No. 1, 84-101 (2023). MSC: 39A14 39A60 82C41 76A30 37B15 PDF BibTeX XML Cite \textit{A. Fukuda} et al., J. Difference Equ. Appl. 29, No. 1, 84--101 (2023; Zbl 07664959) Full Text: DOI OpenURL
Poochinapan, Kanyuta; Wongsaijai, Ben Novel advances in high-order numerical algorithm for evaluation of the shallow water wave equations. (English) Zbl 07661850 Adv. Contin. Discrete Models 2023, Paper No. 13, 27 p. (2023). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{K. Poochinapan} and \textit{B. Wongsaijai}, Adv. Contin. Discrete Models 2023, Paper No. 13, 27 p. (2023; Zbl 07661850) Full Text: DOI OpenURL
Lapin, Alexander V.; Shaydurov, Vladimir V.; Yanbarisov, Ruslan M. Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion. (English) Zbl 07661229 Russ. J. Numer. Anal. Math. Model. 38, No. 1, 23-35 (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 65M15 76R50 26A33 35R11 PDF BibTeX XML Cite \textit{A. V. Lapin} et al., Russ. J. Numer. Anal. Math. Model. 38, No. 1, 23--35 (2023; Zbl 07661229) Full Text: DOI OpenURL
Lizama, Carlos; Murillo-Arcila, Marina The semidiscrete damped wave equation with a fractional Laplacian. (English) Zbl 07660708 Proc. Am. Math. Soc. 151, No. 5, 1987-1999 (2023). MSC: 35R11 39A06 26A33 44A10 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, Proc. Am. Math. Soc. 151, No. 5, 1987--1999 (2023; Zbl 07660708) Full Text: DOI OpenURL
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 1506.65115 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 1506.65115) Full Text: DOI OpenURL
Mei, Peng; Zhou, Zhan Homoclinic solutions for partial difference equations with mixed nonlinearities. (English) Zbl 07658949 J. Geom. Anal. 33, No. 4, Paper No. 117, 18 p. (2023). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A14 39A12 35B38 PDF BibTeX XML Cite \textit{P. Mei} and \textit{Z. Zhou}, J. Geom. Anal. 33, No. 4, Paper No. 117, 18 p. (2023; Zbl 07658949) Full Text: DOI OpenURL
Allahverdiev, Bilender; Tuna, Huseyin Nonlinear singular Hahn-Sturm-Liouville problems on \([\omega_0,\infty)\). (English) Zbl 07658493 Gulf J. Math. 14, No. 1, 1-12 (2023). MSC: 39A13 39A70 47N20 PDF BibTeX XML Cite \textit{B. Allahverdiev} and \textit{H. Tuna}, Gulf J. Math. 14, No. 1, 1--12 (2023; Zbl 07658493) Full Text: DOI OpenURL
Tripathy, A. K.; Chhatria, G. N. Oscillation criteria for first order neutral impulsive difference equations with constant coefficients. (English) Zbl 07657676 Differ. Equ. Dyn. Syst. 31, No. 1, 209-222 (2023). MSC: 39A21 39A12 34K40 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{G. N. Chhatria}, Differ. Equ. Dyn. Syst. 31, No. 1, 209--222 (2023; Zbl 07657676) Full Text: DOI OpenURL
El Rafei, Farah Existence, uniqueness and approximation of solutions to the stochastic Landau-Lifshitz-Gilbert equation on the real line. (English) Zbl 07657553 Bull. Aust. Math. Soc. 107, No. 1, 171-172 (2023). MSC: 35R60 65B15 65M06 PDF BibTeX XML Cite \textit{F. El Rafei}, Bull. Aust. Math. Soc. 107, No. 1, 171--172 (2023; Zbl 07657553) Full Text: DOI OpenURL
Dwivedi, Kushal Dhar; Gómez-Aguilar, J. F. An efficient numerical method to solve ordinary differential equations using Fibonacci neural networks. (English) Zbl 07657525 Comput. Appl. Math. 42, No. 1, Paper No. 54, 16 p. (2023). MSC: 92B20 33E30 49M15 40Axx PDF BibTeX XML Cite \textit{K. D. Dwivedi} and \textit{J. F. Gómez-Aguilar}, Comput. Appl. Math. 42, No. 1, Paper No. 54, 16 p. (2023; Zbl 07657525) Full Text: DOI OpenURL
Rutka, Przemysław; Smarzewski, Ryszard The electrostatic equilibrium problem for classical discrete orthogonal polynomials. (English) Zbl 1505.65146 Math. Comput. 92, No. 341, 1331-1348 (2023). MSC: 65D20 41A10 33D45 PDF BibTeX XML Cite \textit{P. Rutka} and \textit{R. Smarzewski}, Math. Comput. 92, No. 341, 1331--1348 (2023; Zbl 1505.65146) Full Text: DOI OpenURL
Imbert-Gérard, Lise-Marie; Moiola, Andrea; Stocker, Paul A space-time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients. (English) Zbl 07657099 Math. Comput. 92, No. 341, 1211-1249 (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M15 65M12 41A10 41A25 76Q05 76H05 35Q35 PDF BibTeX XML Cite \textit{L.-M. Imbert-Gérard} et al., Math. Comput. 92, No. 341, 1211--1249 (2023; Zbl 07657099) Full Text: DOI arXiv OpenURL
Chen, Hao; Qiu, Wenlin; Zaky, Mahmoud A.; Hendy, Ahmed S. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. (English) Zbl 07656896 Calcolo 60, No. 1, Paper No. 13, 30 p. (2023). MSC: 65M06 65N06 65M55 65M12 65M15 65M22 45K05 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{H. Chen} et al., Calcolo 60, No. 1, Paper No. 13, 30 p. (2023; Zbl 07656896) Full Text: DOI arXiv OpenURL
Wang, Xiaofeng An energy-preserving finite difference scheme with fourth-order accuracy for the generalized Camassa-Holm equation. (English) Zbl 07656618 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107121, 20 p. (2023). MSC: 65M06 65N06 65M12 65M15 35B30 35A01 35A02 35Q53 PDF BibTeX XML Cite \textit{X. Wang}, Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107121, 20 p. (2023; Zbl 07656618) Full Text: DOI OpenURL
Ma, Tingting; Zheng, Qianqian; Fu, Yayun Optimal error estimation of two fast structure-preserving algorithms for the Riesz fractional sine-Gordon equation. (English) Zbl 07656575 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107067, 15 p. (2023). MSC: 65M06 65N06 65M12 15B05 35C08 26A33 35R11 35Q53 PDF BibTeX XML Cite \textit{T. Ma} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107067, 15 p. (2023; Zbl 07656575) Full Text: DOI OpenURL
Li, Huijuan; Mohamed, Alhussein; Gao, Chenghua Positive solutions for second-order singular difference equation with nonlinear boundary conditions. (English) Zbl 07656351 J. Math. Res. Appl. 43, No. 1, 101-108 (2023). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{H. Li} et al., J. Math. Res. Appl. 43, No. 1, 101--108 (2023; Zbl 07656351) Full Text: DOI OpenURL
Tao, Lei; Long, Jianren On properties of meromorphic solutions for certain \(q\)-difference equation. (English) Zbl 07656349 J. Math. Res. Appl. 43, No. 1, 83-90 (2023). MSC: 30D35 39A45 PDF BibTeX XML Cite \textit{L. Tao} and \textit{J. Long}, J. Math. Res. Appl. 43, No. 1, 83--90 (2023; Zbl 07656349) Full Text: DOI OpenURL
Majumder, Sujoy; Mahato, Lata On the meromorphic solutions of a certain type of nonlinear difference-differential equation. (English) Zbl 07655814 Math. Bohem. 148, No. 1, 73-94 (2023). MSC: 34M05 30D35 33E30 30D30 PDF BibTeX XML Cite \textit{S. Majumder} and \textit{L. Mahato}, Math. Bohem. 148, No. 1, 73--94 (2023; Zbl 07655814) Full Text: DOI OpenURL
Ayyappan, Govindasamy; Chatzarakis, George E.; Kumar, Thaniarasu; Thandapani, Ethiraj Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations. (English) Zbl 07655811 Math. Bohem. 148, No. 1, 35-47 (2023). MSC: 39A10 PDF BibTeX XML Cite \textit{G. Ayyappan} et al., Math. Bohem. 148, No. 1, 35--47 (2023; Zbl 07655811) Full Text: DOI OpenURL
Wang, Haifeng; Sun, Yabing; Qian, Xu; Song, Songhe A high-order compact difference scheme on graded mesh for time-fractional Burgers’ equation. (English) Zbl 07655427 Comput. Appl. Math. 42, No. 1, Paper No. 18, 22 p. (2023). MSC: 65M06 PDF BibTeX XML Cite \textit{H. Wang} et al., Comput. Appl. Math. 42, No. 1, Paper No. 18, 22 p. (2023; Zbl 07655427) Full Text: DOI OpenURL
Liu, Li-Bin; Liao, Yige; Long, Guangqing A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 07655421 Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023; Zbl 07655421) Full Text: DOI OpenURL
Neelan, A. Arun Govind; Chandran, R. Jishnu; Diaz, Manuel A.; Bürger, Raimund An efficient three-level weighted essentially non-oscillatory scheme for hyperbolic equations. (English) Zbl 07655387 Comput. Appl. Math. 42, No. 2, Paper No. 70, 23 p. (2023). MSC: 65M08 65M06 65N08 65L06 65M12 35F61 35L50 76N15 76J20 76L05 76Q05 35Q31 PDF BibTeX XML Cite \textit{A. A. G. Neelan} et al., Comput. Appl. Math. 42, No. 2, Paper No. 70, 23 p. (2023; Zbl 07655387) Full Text: DOI OpenURL
Singh, Anshima; Kumar, Sunil A convergent exponential B-spline collocation method for a time-fractional telegraph equation. (English) Zbl 1505.65250 Comput. Appl. Math. 42, No. 2, Paper No. 79, 20 p. (2023). MSC: 65M06 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{A. Singh} and \textit{S. Kumar}, Comput. Appl. Math. 42, No. 2, Paper No. 79, 20 p. (2023; Zbl 1505.65250) Full Text: DOI OpenURL