Chetverikov, Vladimir N. Coverings and multivector pseudosymmetries of differential equations. (English) Zbl 07315193 Differ. Geom. Appl. 74, Article ID 101705, 14 p. (2021). MSC: 35A30 58J70 58J72 PDF BibTeX XML Cite \textit{V. N. Chetverikov}, Differ. Geom. Appl. 74, Article ID 101705, 14 p. (2021; Zbl 07315193) Full Text: DOI
Zhang, Guoliang; Zheng, Shaoqin; Xiong, Tao A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. (English) Zbl 07300784 Electron Res. Arch. 29, No. 1, 1819-1839 (2021). MSC: 65M06 65M25 65L06 PDF BibTeX XML Cite \textit{G. Zhang} et al., Electron Res. Arch. 29, No. 1, 1819--1839 (2021; Zbl 07300784) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 07285709 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 07285709) Full Text: DOI
Holden, Helge; Karlsen, Kenneth H.; Pang, Peter H. C. The Hunter-Saxton equation with noise. (English) Zbl 1451.35266 J. Differ. Equations 270, 725-786 (2021). MSC: 35R60 35L60 60H15 PDF BibTeX XML Cite \textit{H. Holden} et al., J. Differ. Equations 270, 725--786 (2021; Zbl 1451.35266) Full Text: DOI
Gong, Xiaoqian; Kawski, Matthias Analysis of a nonlinear hyperbolic conservation law with measure-valued data. (English) Zbl 07315493 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 457-464 (2020). MSC: 35R06 35L65 65M25 93C20 PDF BibTeX XML Cite \textit{X. Gong} and \textit{M. Kawski}, AIMS Ser. Appl. Math. 10, 457--464 (2020; Zbl 07315493)
Buckdahn, Rainer; Keller, Christian; Ma, Jin; Zhang, Jianfeng Fully nonlinear stochastic and rough PDEs: classical and viscosity solutions. (English) Zbl 07311488 Probab. Uncertain. Quant. Risk 5, Paper No. 7, 58 p. (2020). MSC: 60L20 35R60 60H15 PDF BibTeX XML Cite \textit{R. Buckdahn} et al., Probab. Uncertain. Quant. Risk 5, Paper No. 7, 58 p. (2020; Zbl 07311488) Full Text: DOI
Floridia, Giuseppe; Yamamoto, Masahiro Backward problems in time for fractional diffusion-wave equation. (English) Zbl 07305930 Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020). MSC: 35Q99 35R11 35A30 35A01 35A02 PDF BibTeX XML Cite \textit{G. Floridia} and \textit{M. Yamamoto}, Inverse Probl. 36, No. 12, Article ID 125016, 14 p. (2020; Zbl 07305930) Full Text: DOI
Popovych, Roman O.; Bihlo, Alexander Inverse problem on conservation laws. (English) Zbl 07302377 Physica D 401, Article ID 132175, 16 p. (2020). MSC: 35R30 34A55 PDF BibTeX XML Cite \textit{R. O. Popovych} and \textit{A. Bihlo}, Physica D 401, Article ID 132175, 16 p. (2020; Zbl 07302377) Full Text: DOI
Carlini, E.; Festa, A.; Forcadel, N. A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations on networks. (English) Zbl 07275253 SIAM J. Numer. Anal. 58, No. 6, 3165-3196 (2020). MSC: 65M15 65M25 49L25 90B20 PDF BibTeX XML Cite \textit{E. Carlini} et al., SIAM J. Numer. Anal. 58, No. 6, 3165--3196 (2020; Zbl 07275253) Full Text: DOI
Palin, V. V. On the passage to the limit in the construction of geometric solutions of the Riemann problem. (English. Russian original) Zbl 1451.35089 Math. Notes 108, No. 3, 356-369 (2020); translation from Mat. Zametki 108, No. 3, 380-396 (2020). MSC: 35L65 35L67 35A30 35R12 PDF BibTeX XML Cite \textit{V. V. Palin}, Math. Notes 108, No. 3, 356--369 (2020; Zbl 1451.35089); translation from Mat. Zametki 108, No. 3, 380--396 (2020) Full Text: DOI
Barsegian, Grigor; Meng, Fanning; Yuan, Wenjun Some estimates for the solutions of the first order non-algebraic classes of equations. (English) Zbl 07269812 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 2, 96-104 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 2, 35-45 (2020). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M05 34M10 PDF BibTeX XML Cite \textit{G. Barsegian} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 2, 96--104 (2020; Zbl 07269812) Full Text: DOI
Lychagin, Valentin On geometrical structures, associated with linear differential operators of the 1st order. (English) Zbl 07264819 J. Geom. Phys. 158, Article ID 103836, 9 p. (2020). MSC: 47B 58J70 53C05 35A30 35G05 PDF BibTeX XML Cite \textit{V. Lychagin}, J. Geom. Phys. 158, Article ID 103836, 9 p. (2020; Zbl 07264819) Full Text: DOI
Serdyukova, S. I. Simulation of dynamical processes in long Josephson junctions: computation of current-voltage characteristics and round error growth estimation for a second-order difference scheme. (English. Russian original) Zbl 1451.78045 Comput. Math. Math. Phys. 60, No. 1, 171-178 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 159-166 (2020). MSC: 78M20 65L06 78A55 PDF BibTeX XML Cite \textit{S. I. Serdyukova}, Comput. Math. Math. Phys. 60, No. 1, 171--178 (2020; Zbl 1451.78045); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 159--166 (2020) Full Text: DOI
Braun, Francisco; Dias, Luis Renato Gonçalves; Venato-Santos, Jean On topological approaches to the Jacobian conjecture in \(\mathbb{C}^n\). (English) Zbl 1446.14038 Proc. Edinb. Math. Soc., II. Ser. 63, No. 3, 666-675 (2020). Reviewer: Yan Dan (Changsha) MSC: 14R15 14D06 58K15 57R45 35F05 35A30 PDF BibTeX XML Cite \textit{F. Braun} et al., Proc. Edinb. Math. Soc., II. Ser. 63, No. 3, 666--675 (2020; Zbl 1446.14038) Full Text: DOI
Arregui, Iñigo; Salvador, Beatriz; Ševčovič, Daniel; Vázquez, Carlos PDE models for American options with counterparty risk and two stochastic factors: mathematical analysis and numerical solution. (English) Zbl 1448.91291 Comput. Math. Appl. 79, No. 5, 1525-1542 (2020). MSC: 91G20 60G40 91G60 35Q91 35R60 65M25 65M60 PDF BibTeX XML Cite \textit{I. Arregui} et al., Comput. Math. Appl. 79, No. 5, 1525--1542 (2020; Zbl 1448.91291) Full Text: DOI
Kaur, Bikramjeet; Gupta, R. K. Time fractional (2+1)-dimensional Wu-Zhang system: dispersion analysis, similarity reductions, conservation laws, and exact solutions. (English) Zbl 1450.35272 Comput. Math. Appl. 79, No. 4, 1031-1048 (2020). MSC: 35R11 35A30 35B06 PDF BibTeX XML Cite \textit{B. Kaur} and \textit{R. K. Gupta}, Comput. Math. Appl. 79, No. 4, 1031--1048 (2020; Zbl 1450.35272) Full Text: DOI
Dettmann, Carl P.; Jungers, Raphael M.; Mason, Paolo Lower bounds and dense discontinuity phenomena for the stabilizability radius of linear switched systems. (English) Zbl 1451.93269 Syst. Control Lett. 142, Article ID 104737, 5 p. (2020). MSC: 93D05 93C55 93C30 93C05 PDF BibTeX XML Cite \textit{C. P. Dettmann} et al., Syst. Control Lett. 142, Article ID 104737, 5 p. (2020; Zbl 1451.93269) Full Text: DOI
McMillan, Benjamin B. Geometry and conservation laws for a class of second-order parabolic equations. I: Geometry. (English) Zbl 1448.35015 J. Geom. Phys. 157, Article ID 103824, 29 p. (2020). MSC: 35A30 35K55 58A15 35K93 35K96 PDF BibTeX XML Cite \textit{B. B. McMillan}, J. Geom. Phys. 157, Article ID 103824, 29 p. (2020; Zbl 1448.35015) Full Text: DOI
Banaru, M. B. On the six-dimensional sphere with a nearly Kählerian structure. (English. Russian original) Zbl 07248479 J. Math. Sci., New York 245, No. 5, 553-567 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 146, 3-16 (2018). MSC: 53C15 53C56 53C55 PDF BibTeX XML Cite \textit{M. B. Banaru}, J. Math. Sci., New York 245, No. 5, 553--567 (2020; Zbl 07248479); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 146, 3--16 (2018) Full Text: DOI
Kyrylych, V. M.; Slyusarchuk, O. Z. Boundary value problems with nonlocal conditions for hyperbolic systems of equations with two independent variables. (English) Zbl 1447.35216 Mat. Stud. 53, No. 2, 159-180 (2020). MSC: 35L57 35R09 PDF BibTeX XML Cite \textit{V. M. Kyrylych} and \textit{O. Z. Slyusarchuk}, Mat. Stud. 53, No. 2, 159--180 (2020; Zbl 1447.35216) Full Text: DOI
De Vecchi, Francesco C.; Morando, Paola The geometry of differential constraints for a class of evolution PDEs. (English) Zbl 07241754 J. Geom. Phys. 156, Article ID 103771, 22 p. (2020). Reviewer: Boris S. Kruglikov (Tromsø) MSC: 35A30 35B06 35R60 PDF BibTeX XML Cite \textit{F. C. De Vecchi} and \textit{P. Morando}, J. Geom. Phys. 156, Article ID 103771, 22 p. (2020; Zbl 07241754) Full Text: DOI
Chong, Carsten; Delerue, Thomas Normal approximation of the solution to the stochastic heat equation with Lévy noise. (English) Zbl 07240587 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 2, 362-401 (2020). MSC: 60F05 60F17 60G55 60H15 46E35 60G48 PDF BibTeX XML Cite \textit{C. Chong} and \textit{T. Delerue}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 2, 362--401 (2020; Zbl 07240587) Full Text: DOI
Zharinov, V. V. Algebra of gauge theories. (English. Russian original) Zbl 1445.81039 Theor. Math. Phys. 203, No. 2, 584-595 (2020); translation from Teor. Mat. Fiz. 203, No. 2, 179-191 (2020). MSC: 81T13 70S15 14D21 12H05 14A22 35A30 PDF BibTeX XML Cite \textit{V. V. Zharinov}, Theor. Math. Phys. 203, No. 2, 584--595 (2020; Zbl 1445.81039); translation from Teor. Mat. Fiz. 203, No. 2, 179--191 (2020) Full Text: DOI
Saleh, Rash; Sadat, Rahma; Kassem, Magda Optimal solutions of a \((3 + 1)\)-dimensional B-Kadomtsev-Petviashvii equation. (English) Zbl 1440.35298 Math. Methods Appl. Sci. 43, No. 4, 1775-1787 (2020). MSC: 35Q53 35A30 35R03 34C14 PDF BibTeX XML Cite \textit{R. Saleh} et al., Math. Methods Appl. Sci. 43, No. 4, 1775--1787 (2020; Zbl 1440.35298) Full Text: DOI
Fellner, Klemens; Hughes, Barry D. Solutions of a non-local aggregation equation: universal bounds, concavity changes, and efficient numerical solutions. (English) Zbl 1445.35294 Math. Methods Appl. Sci. 43, No. 8, 5398-5429 (2020). MSC: 35R09 35F55 35L45 45K05 65M25 35Q92 PDF BibTeX XML Cite \textit{K. Fellner} and \textit{B. D. Hughes}, Math. Methods Appl. Sci. 43, No. 8, 5398--5429 (2020; Zbl 1445.35294) Full Text: DOI
Lychagin, Valentin On equivalence of the second order linear differential operators, acting in vector bundles. (English) Zbl 1437.58021 J. Geom. Phys. 155, Article ID 103749, 5 p. (2020). MSC: 58J70 53C05 35A30 35G05 PDF BibTeX XML Cite \textit{V. Lychagin}, J. Geom. Phys. 155, Article ID 103749, 5 p. (2020; Zbl 1437.58021) Full Text: DOI
Roos, Valentine Nonexistence of global characteristics for viscosity solutions. (English) Zbl 1442.35067 Anal. PDE 13, No. 4, 1145-1172 (2020). MSC: 35F21 35D40 49L25 PDF BibTeX XML Cite \textit{V. Roos}, Anal. PDE 13, No. 4, 1145--1172 (2020; Zbl 1442.35067) Full Text: DOI
Zaporozhets, Artur O. Control of fuel combustion in boilers. (English) Zbl 1446.93056 Studies in Systems, Decision and Control 287. Cham: Springer (ISBN 978-3-030-46298-7/hbk; 978-3-030-46299-4/ebook). xi, 123 p. (2020). MSC: 93C83 93C15 93C20 PDF BibTeX XML Cite \textit{A. O. Zaporozhets}, Control of fuel combustion in boilers. Cham: Springer (2020; Zbl 1446.93056) Full Text: DOI
Yourdkhany, Maryam; Nadjafikhah, Mehdi Symmetries, similarity invariant solution, conservation laws and exact solutions of the time-fractional harmonic oscillator equation. (English) Zbl 1444.35157 J. Geom. Phys. 153, Article ID 103661, 8 p. (2020). MSC: 35R11 35A30 58D19 70H33 PDF BibTeX XML Cite \textit{M. Yourdkhany} and \textit{M. Nadjafikhah}, J. Geom. Phys. 153, Article ID 103661, 8 p. (2020; Zbl 1444.35157) Full Text: DOI
Zhang, Jianlu Global behaviors of weak KAM solutions for exact symplectic twist maps. (English) Zbl 1444.37047 J. Differ. Equations 269, No. 7, 5730-5753 (2020). MSC: 37J11 37E40 37E45 37J40 37J46 37J51 49L25 PDF BibTeX XML Cite \textit{J. Zhang}, J. Differ. Equations 269, No. 7, 5730--5753 (2020; Zbl 1444.37047) Full Text: DOI
Tolstykh, Vladimir A. Partial differential equations. An unhurried introduction. (English) Zbl 1452.35002 De Gruyter Textbook. Berlin: De Gruyter (ISBN 978-3-11-067724-9/pbk; 978-3-11-067725-6/ebook). x, 266 p. (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35-01 35A09 35Fxx PDF BibTeX XML Cite \textit{V. A. Tolstykh}, Partial differential equations. An unhurried introduction. Berlin: De Gruyter (2020; Zbl 1452.35002) Full Text: DOI
Gelantalis, Michael; Wagner, Alfred; Westdickenberg, Maria G. Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus. (English) Zbl 1443.49010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111842, 22 p. (2020). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 49J21 35A30 PDF BibTeX XML Cite \textit{M. Gelantalis} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111842, 22 p. (2020; Zbl 1443.49010) Full Text: DOI
Hildebrandt, Florian; Rœlly, Sylvie Pinned diffusions and Markov bridges. (English) Zbl 07202134 J. Theor. Probab. 33, No. 2, 906-917 (2020). MSC: 60G15 60H10 60J60 PDF BibTeX XML Cite \textit{F. Hildebrandt} and \textit{S. Rœlly}, J. Theor. Probab. 33, No. 2, 906--917 (2020; Zbl 07202134) Full Text: DOI
Hashemi, Mir Sajjad; Baleanu, Dumitru Lie symmetry analysis of fractional differential equations. (English) Zbl 1436.35001 Boca Raton, FL: CRC Press (ISBN 978-0-367-44186-9/hbk; 978-1-003-00855-2/ebook). 204 p. (2020). MSC: 35-01 35A30 35R11 PDF BibTeX XML Cite \textit{M. S. Hashemi} and \textit{D. Baleanu}, Lie symmetry analysis of fractional differential equations. Boca Raton, FL: CRC Press (2020; Zbl 1436.35001) Full Text: DOI
Yegorov, Ivan; Grognard, Frédéric; Mailleret, Ludovic; Halkett, Fabien; Bernhard, Pierre A dynamic game approach to uninvadable strategies for biotrophic pathogens. (English) Zbl 1437.91089 Dyn. Games Appl. 10, No. 1, 257-296 (2020). MSC: 91A25 91A23 91A80 92D30 PDF BibTeX XML Cite \textit{I. Yegorov} et al., Dyn. Games Appl. 10, No. 1, 257--296 (2020; Zbl 1437.91089) Full Text: DOI
Craddock, Mark; Grasselli, Martino Lie symmetry methods for local volatility models. (English) Zbl 1444.60063 Stochastic Processes Appl. 130, No. 6, 3802-3841 (2020). MSC: 60H15 91G20 35B06 35A30 PDF BibTeX XML Cite \textit{M. Craddock} and \textit{M. Grasselli}, Stochastic Processes Appl. 130, No. 6, 3802--3841 (2020; Zbl 1444.60063) Full Text: DOI
Abdeljawad, Ahmed; Ascanelli, Alessia; Coriasco, Sandro Deterministic and stochastic Cauchy problems for a class of weakly hyperbolic operators on \(\mathbb{R}^n\). (English) Zbl 07191796 Monatsh. Math. 192, No. 1, 1-38 (2020). MSC: 58J40 35S05 35S30 47G30 58J45 PDF BibTeX XML Cite \textit{A. Abdeljawad} et al., Monatsh. Math. 192, No. 1, 1--38 (2020; Zbl 07191796) Full Text: DOI
Krantz, Steven G.; Radulescu, Vicentiu D. Perspectives of geometric analysis in PDEs. (English) Zbl 1437.35002 J. Geom. Anal. 30, No. 2, 1411 (2020). MSC: 35-06 35A30 35R01 PDF BibTeX XML Cite \textit{S. G. Krantz} and \textit{V. D. Radulescu}, J. Geom. Anal. 30, No. 2, 1411 (2020; Zbl 1437.35002) Full Text: DOI
Chen, Chuanjun; Liu, Huan; Zheng, Xiangcheng; Wang, Hong A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. (English) Zbl 1437.65180 Comput. Math. Appl. 79, No. 9, 2771-2783 (2020). MSC: 65N30 65M25 65M55 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{C. Chen} et al., Comput. Math. Appl. 79, No. 9, 2771--2783 (2020; Zbl 1437.65180) Full Text: DOI
Sáez, S.; de la Rosa, R.; Recio, E.; Garrido, T. M.; Bruzón, M. S. Lie symmetries and conservation laws for a generalized \((2+1)\)-dimensional nonlinear evolution equation. (English) Zbl 1436.35023 J. Math. Chem. 58, No. 4, 775-798 (2020). MSC: 35B06 35A30 PDF BibTeX XML Cite \textit{S. Sáez} et al., J. Math. Chem. 58, No. 4, 775--798 (2020; Zbl 1436.35023) Full Text: DOI
Huo, Saisai; Wei, Changhua Classical solutions to relativistic Burgers equations in FLRW space-times. (English) Zbl 1444.53042 Sci. China, Math. 63, No. 2, 357-370 (2020). MSC: 53C50 35Q75 PDF BibTeX XML Cite \textit{S. Huo} and \textit{C. Wei}, Sci. China, Math. 63, No. 2, 357--370 (2020; Zbl 1444.53042) Full Text: DOI
Tayyan, B. A.; Sakka, A. H. Lie symmetry analysis of some conformable fractional partial differential equations. (English) Zbl 1436.35324 Arab. J. Math. 9, No. 1, 201-212 (2020). MSC: 35R11 35A30 35Q53 PDF BibTeX XML Cite \textit{B. A. Tayyan} and \textit{A. H. Sakka}, Arab. J. Math. 9, No. 1, 201--212 (2020; Zbl 1436.35324) Full Text: DOI
Lorenzoni, P.; Vitolo, R. Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds. (English) Zbl 1439.37071 J. Geom. Phys. 149, Article ID 103573, 8 p. (2020). Reviewer: Tihomir Valchev (Sofia) MSC: 37K25 37K06 37K10 58A50 46S60 35A30 PDF BibTeX XML Cite \textit{P. Lorenzoni} and \textit{R. Vitolo}, J. Geom. Phys. 149, Article ID 103573, 8 p. (2020; Zbl 1439.37071) Full Text: DOI
Lychagin, Valentin; Yumaguzhin, Valeriy On structure of linear differential operators, acting on line bundles. (English) Zbl 07174298 J. Geom. Phys. 148, Article ID 103549, 27 p. (2020). MSC: 58J70 53C05 35A30 35G05 53A55 PDF BibTeX XML Cite \textit{V. Lychagin} and \textit{V. Yumaguzhin}, J. Geom. Phys. 148, Article ID 103549, 27 p. (2020; Zbl 07174298) Full Text: DOI
Cui, Ming; Li, Fangxia; Liang, Dong High-order characteristic-finite volume methods for aerosol dynamic equations. (English) Zbl 1447.65047 J. Comput. Appl. Math. 370, Article ID 112593, 16 p. (2020). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M15 65N08 65N15 65M25 65D05 65M06 35R09 92D40 35Q92 PDF BibTeX XML Cite \textit{M. Cui} et al., J. Comput. Appl. Math. 370, Article ID 112593, 16 p. (2020; Zbl 1447.65047) Full Text: DOI
Shoshani, Oriel; Dykman, Mark I.; Shaw, Steven W. Tuning linear and nonlinear characteristics of a resonator via nonlinear interaction with a secondary resonator. (English) Zbl 1430.70066 Nonlinear Dyn. 99, No. 1, 433-443 (2020). MSC: 70K30 34C15 PDF BibTeX XML Cite \textit{O. Shoshani} et al., Nonlinear Dyn. 99, No. 1, 433--443 (2020; Zbl 1430.70066) Full Text: DOI
Zhang, Katherine Zhiyuan Benjamin-Ono soliton dynamics in a slowly varying potential. (English) Zbl 1433.35349 Nonlinearity 33, No. 3, 1064-1093 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35Q51 37K40 35A30 44A15 35B20 PDF BibTeX XML Cite \textit{K. Z. Zhang}, Nonlinearity 33, No. 3, 1064--1093 (2020; Zbl 1433.35349) Full Text: DOI
Bressloff, Paul C.; Lawley, Sean D.; Murphy, Patrick Effective permeability of a gap junction with age-structured switching. (English) Zbl 1431.92041 SIAM J. Appl. Math. 80, No. 1, 312-337 (2020). MSC: 92C37 92C30 35R60 35Q92 PDF BibTeX XML Cite \textit{P. C. Bressloff} et al., SIAM J. Appl. Math. 80, No. 1, 312--337 (2020; Zbl 1431.92041) Full Text: DOI Link
Si, Zhiyong; Lei, Yanfang; Tong, Zhang Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations. (English) Zbl 1440.65148 Numer. Algorithms 83, No. 2, 669-700 (2020). MSC: 65M60 65N30 65M06 65M25 65M12 65M15 26A33 35R11 76D05 80A19 35Q30 PDF BibTeX XML Cite \textit{Z. Si} et al., Numer. Algorithms 83, No. 2, 669--700 (2020; Zbl 1440.65148) Full Text: DOI
Guo, Yu; Luo, Albert C. J. Bifurcation dynamics of a damped parametric pendulum. (English) Zbl 07159264 Synthesis Lectures on Mechanical Engineering 22. San Rafael, CA: Morgan & Claypool Publishers (ISBN 978-1-68173-686-0/hbk; 978-1-68173-684-6/pbk; 978-1-68173-685-3/ebook). xiv, 84 p. (2020). Reviewer: Vasile Marinca (Timişoara) MSC: 70-02 34-02 37-02 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{A. C. J. Luo}, Bifurcation dynamics of a damped parametric pendulum. San Rafael, CA: Morgan \& Claypool Publishers (2020; Zbl 07159264) Full Text: DOI
Tayyan, B. A.; Sakka, A. H. Symmetries and exact solutions of conformable fractional partial differential equations. (English) Zbl 1429.35205 Palest. J. Math. 9, No. 1, 300-311 (2020). MSC: 35R11 35A30 PDF BibTeX XML Cite \textit{B. A. Tayyan} and \textit{A. H. Sakka}, Palest. J. Math. 9, No. 1, 300--311 (2020; Zbl 1429.35205) Full Text: Link
Bak, Soyoon; Kim, Philsu; Kim, Dojin A semi-Lagrangian approach for numerical simulation of coupled Burgers’ equations. (English) Zbl 07263940 Commun. Nonlinear Sci. Numer. Simul. 69, 31-44 (2019). MSC: 35K61 65M25 65K05 PDF BibTeX XML Cite \textit{S. Bak} et al., Commun. Nonlinear Sci. Numer. Simul. 69, 31--44 (2019; Zbl 07263940) Full Text: DOI
Lu, Changna; Xie, Luoyan; Yang, Hongwei Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation. (English) Zbl 1442.35517 Comput. Math. Appl. 77, No. 12, 3154-3171 (2019). MSC: 35R11 35A30 35Q53 PDF BibTeX XML Cite \textit{C. Lu} et al., Comput. Math. Appl. 77, No. 12, 3154--3171 (2019; Zbl 1442.35517) Full Text: DOI
Kumar, T. Sravan; Kumar, B. Rushi Effect of homogeneous-heterogeneous reactions in MHD stagnation point nanofluid flow toward a cylinder with nonuniform heat source or sink. (English) Zbl 1445.80009 Kumar, B. Rushi (ed.) et al., Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1–3, 2017. Volume II. Selected papers. Cham: Birkhäuser. Trends Math., 287-299 (2019). MSC: 80A32 80A21 80A19 76V05 76W05 35A30 65L06 65L10 76T20 PDF BibTeX XML Cite \textit{T. S. Kumar} and \textit{B. R. Kumar}, in: Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1--3, 2017. Volume II. Selected papers. Cham: Birkhäuser. 287--299 (2019; Zbl 1445.80009) Full Text: DOI
Reddy, Seethi Reddy Reddisekhar; Reddy, P. Bala Anki Numerical solution of steady Powell-Eyring fluid over a stretching cylinder with binary chemical reaction and Arrhenius activation energy. (English) Zbl 1445.80010 Kumar, B. Rushi (ed.) et al., Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1–3, 2017. Volume II. Selected papers. Cham: Birkhäuser. Trends Math., 275-285 (2019). MSC: 80M99 35A30 65L06 65L10 80A32 80A19 76A05 76V05 76W05 PDF BibTeX XML Cite \textit{S. R. R. Reddy} and \textit{P. B. A. Reddy}, in: Applied mathematics and scientific computing. International conference on advances in mathematical sciences, ICAMS, Vellore, India, December 1--3, 2017. Volume II. Selected papers. Cham: Birkhäuser. 275--285 (2019; Zbl 1445.80010) Full Text: DOI
Svinina, S. V. On a quasi-linear partial differential algebraic system of equations. (English. Russian original) Zbl 1435.35122 Comput. Math. Math. Phys. 59, No. 11, 1791-1805 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1856-1871 (2019). MSC: 35F20 35A01 PDF BibTeX XML Cite \textit{S. V. Svinina}, Comput. Math. Math. Phys. 59, No. 11, 1791--1805 (2019; Zbl 1435.35122); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1856--1871 (2019) Full Text: DOI
Chung, Yun-Chi; Wu, Yu-Ren Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method. (English) Zbl 1430.70059 Nonlinear Dyn. 98, No. 1, 129-149 (2019). MSC: 70K30 70E55 65L06 PDF BibTeX XML Cite \textit{Y.-C. Chung} and \textit{Y.-R. Wu}, Nonlinear Dyn. 98, No. 1, 129--149 (2019; Zbl 1430.70059) Full Text: DOI
Garshasbi, Morteza Determination of unknown functions in a mathematical model of ductal carcinoma in situ. (English) Zbl 1430.35231 Numer. Methods Partial Differ. Equations 35, No. 6, 2000-2016 (2019). MSC: 35Q92 92C37 35R30 35B35 92C50 35A02 65M32 65M30 65M06 65J20 35B65 65M12 65M25 65D30 35R60 PDF BibTeX XML Cite \textit{M. Garshasbi}, Numer. Methods Partial Differ. Equations 35, No. 6, 2000--2016 (2019; Zbl 1430.35231) Full Text: DOI
Böhle, Tobias; Kuehn, Christian Mathematical analysis of nonlocal PDEs for network generation. (English) Zbl 1433.35398 Math. Model. Nat. Phenom. 14, No. 5, Paper No. 506, 20 p. (2019). MSC: 35Q82 35L03 05C82 35B65 82C20 34D08 PDF BibTeX XML Cite \textit{T. Böhle} and \textit{C. Kuehn}, Math. Model. Nat. Phenom. 14, No. 5, Paper No. 506, 20 p. (2019; Zbl 1433.35398) Full Text: DOI
Svinina, S. V.; Svinin, A. K. Existence of solution to some mixed problems for linear differential-algebraic systems of partial differential equations. (English. Russian original) Zbl 1437.35163 Russ. Math. 63, No. 4, 64-74 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 73-84 (2019). MSC: 35F46 34A09 35A01 35A02 PDF BibTeX XML Cite \textit{S. V. Svinina} and \textit{A. K. Svinin}, Russ. Math. 63, No. 4, 64--74 (2019; Zbl 1437.35163); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 73--84 (2019) Full Text: DOI
Repin, O. A. Nonlocal problem with Saigo operators for mixed type equation of the third order. (English. Russian original) Zbl 1430.35164 Russ. Math. 63, No. 1, 55-60 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 1, 63-68 (2019). MSC: 35M12 45K05 PDF BibTeX XML Cite \textit{O. A. Repin}, Russ. Math. 63, No. 1, 55--60 (2019; Zbl 1430.35164); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 1, 63--68 (2019) Full Text: DOI
Yang, Hengzhan; Fu, Yueyuan; Gao, Song; Qian, Fucai PDF control of nonlinear stochastic systems based on MGC method. (Chinese. English summary) Zbl 1449.93244 Control Decis. 34, No. 7, 1463-1468 (2019). MSC: 93E03 93C20 35Q84 93C10 62P30 60H40 PDF BibTeX XML Cite \textit{H. Yang} et al., Control Decis. 34, No. 7, 1463--1468 (2019; Zbl 1449.93244) Full Text: DOI
Albu, A. F.; Zubov, V. I. One feature of using the general Lagrange multiplier method. (English. Russian original) Zbl 1431.49001 Comput. Math. Math. Phys. 59, No. 9, 1422-1433 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 9, 1482-1494 (2019). MSC: 49J20 PDF BibTeX XML Cite \textit{A. F. Albu} and \textit{V. I. Zubov}, Comput. Math. Math. Phys. 59, No. 9, 1422--1433 (2019; Zbl 1431.49001); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 9, 1482--1494 (2019) Full Text: DOI
Svinina, S. V.; Svinin, A. K. On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index \((1,0)\). (English. Russian original) Zbl 1434.35024 Russ. Math. 63, No. 5, 63-74 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 5, 70-82 (2019). MSC: 35M33 35A01 15A22 15A21 35A09 PDF BibTeX XML Cite \textit{S. V. Svinina} and \textit{A. K. Svinin}, Russ. Math. 63, No. 5, 63--74 (2019; Zbl 1434.35024); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 5, 70--82 (2019) Full Text: DOI
Reza Hejazi, S.; Hosseinpour, Soleiman; Lashkarian, Elham Approximate symmetries, conservation laws and numerical solutions for a class of perturbed linear wave type system. (English) Zbl 1427.76197 Quaest. Math. 42, No. 10, 1393-1409 (2019). MSC: 76M60 35A30 35Q35 34L16 PDF BibTeX XML Cite \textit{S. Reza Hejazi} et al., Quaest. Math. 42, No. 10, 1393--1409 (2019; Zbl 1427.76197) Full Text: DOI
Lu, Rong-Wu; Xu, Xi-Xiang; Zhang, Ning Construction of solutions for an integrable differential-difference equation by Darboux-Bäcklund transformation. (English) Zbl 1428.34005 Appl. Math. Comput. 361, 389-397 (2019). MSC: 34A05 34A25 35A30 37K10 37K35 PDF BibTeX XML Cite \textit{R.-W. Lu} et al., Appl. Math. Comput. 361, 389--397 (2019; Zbl 1428.34005) Full Text: DOI
Opanasenko, S. Equivalence groupoid of a class of general Burgers-Korteweg-de Vries equations with space-dependent coefficients. (English) Zbl 1438.35364 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 131-154 (2019). Reviewer: O. Zhaliĭ (Kyïv) MSC: 35Q53 22E30 22F05 35A30 PDF BibTeX XML Cite \textit{S. Opanasenko}, Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 131--154 (2019; Zbl 1438.35364)
Dos Santos Cardoso-Bihlo, E.; Bihlo, A.; Popovych, R. O. Differential invariants for a class of diffusion equations. (English) Zbl 1438.35007 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 50-65 (2019). Reviewer: I. A. Yegorchenko (Kyïv) MSC: 35A30 35K57 PDF BibTeX XML Cite \textit{E. Dos Santos Cardoso-Bihlo} et al., Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 50--65 (2019; Zbl 1438.35007)
Biagi, Stefano An application of a global lifting method for homogeneous Hörmander vector fields to the Gibbons conjecture. (English) Zbl 1428.35013 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 49, 30 p. (2019). MSC: 35A30 35B06 35B08 35B51 35J70 35R03 PDF BibTeX XML Cite \textit{S. Biagi}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 49, 30 p. (2019; Zbl 1428.35013) Full Text: DOI
Banaru, G. A. N. V. Stepanov and his geometric theory of ordinary differential equations. (English. Russian original) Zbl 1429.53018 J. Math. Sci., New York 241, No. 3, 245-250 (2019); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 139, 3-8 (2017). MSC: 53A55 34A26 PDF BibTeX XML Cite \textit{G. A. Banaru}, J. Math. Sci., New York 241, No. 3, 245--250 (2019; Zbl 1429.53018); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 139, 3--8 (2017) Full Text: DOI
Levi, Decio; Rodríguez, Miguel A.; Thomova, Zora Construction of partial differential equations with conditional symmetries. (English) Zbl 1425.35156 Kuru, Şengül (ed.) et al., Integrability, supersymmetry and coherent states. A volume in honour of Professor Véronique Hussin. In part selected contributions from the 6th international workshop on new challenges in quantum mechanics: integrability and supersymmetry, Valladolid, Spain, June 27–30, 2017. Cham: Springer. CRM Ser. Math. Phys., 375-386 (2019). MSC: 35Q35 35Q53 35A30 35B06 76B15 58J70 PDF BibTeX XML Cite \textit{D. Levi} et al., in: Integrability, supersymmetry and coherent states. A volume in honour of Professor Véronique Hussin. In part selected contributions from the 6th international workshop on new challenges in quantum mechanics: integrability and supersymmetry, Valladolid, Spain, June 27--30, 2017. Cham: Springer. 375--386 (2019; Zbl 1425.35156) Full Text: DOI
Abu zeid, M.; Ali, Khalid K.; Shaalan, M. A.; Raslan, K. R. Numerical study of thermal radiation and mass transfer effects on free convection flow over a moving vertical porous plate using cubic B-spline collocation method. (English) Zbl 1434.65158 J. Egypt. Math. Soc. 27, Paper No. 36, 17 p. (2019). MSC: 65M22 35A30 65L60 65D07 41A15 80A21 76R10 76S05 35Q35 PDF BibTeX XML Cite \textit{M. Abu zeid} et al., J. Egypt. Math. Soc. 27, Paper No. 36, 17 p. (2019; Zbl 1434.65158) Full Text: DOI
Li, Changzhao; Zhang, Juan Lie symmetry analysis and exact solutions of generalized fractional Zakharov-Kuznetsov equations. (English) Zbl 1425.35216 Symmetry 11, No. 5, Paper No. 601, 12 p. (2019). MSC: 35R11 35A30 35Q53 35B06 35C05 PDF BibTeX XML Cite \textit{C. Li} and \textit{J. Zhang}, Symmetry 11, No. 5, Paper No. 601, 12 p. (2019; Zbl 1425.35216) Full Text: DOI
Ismail, N. S.; Arifin, N. M.; Nazar, R.; Bachok, N. Stability analysis of stagnation-point flow and heat transfer over an exponentially shrinking sheet with heat generation. (English) Zbl 1427.80004 Malays. J. Math. Sci. 13, No. 2, 107-122 (2019). MSC: 80A20 76E09 35A30 65L10 PDF BibTeX XML Cite \textit{N. S. Ismail} et al., Malays. J. Math. Sci. 13, No. 2, 107--122 (2019; Zbl 1427.80004) Full Text: Link
Ali, Mohamed R. A truncation method for solving the time-fractional Benjamin-Ono equation. (English) Zbl 1442.35369 J. Appl. Math. 2019, Article ID 3456848, 7 p. (2019). MSC: 35Q53 35A30 35C07 35R11 PDF BibTeX XML Cite \textit{M. R. Ali}, J. Appl. Math. 2019, Article ID 3456848, 7 p. (2019; Zbl 1442.35369) Full Text: DOI
Lychagin, Valentin; Yumaguzhin, Valeriy On equivalence of third order linear differential operators on two-dimensional manifolds. (English) Zbl 1428.58027 J. Geom. Phys. 146, Article ID 103507, 18 p. (2019). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 58J70 53C05 35A30 35G05 53A55 58A20 PDF BibTeX XML Cite \textit{V. Lychagin} and \textit{V. Yumaguzhin}, J. Geom. Phys. 146, Article ID 103507, 18 p. (2019; Zbl 1428.58027) Full Text: DOI
Barbagallo, Annamaria; Esposito, Vincenzo A priori estimates in Sobolev spaces for a class of hyperbolic operators in presence of transition. (English) Zbl 1426.35046 J. Hyperbolic Differ. Equ. 16, No. 2, 245-270 (2019). MSC: 35B45 47G30 35S05 35L10 PDF BibTeX XML Cite \textit{A. Barbagallo} and \textit{V. Esposito}, J. Hyperbolic Differ. Equ. 16, No. 2, 245--270 (2019; Zbl 1426.35046) Full Text: DOI
Li, Wenting; Huang, Yingying; Jiang, Kun; Li, Wei A new Lie symmetric method based on the differential-difference characteristics algorithm. (Chinese. English summary) Zbl 1438.35009 J. Nat. Sci. Heilongjiang Univ. 36, No. 2, 141-148 (2019). MSC: 35A30 37K10 PDF BibTeX XML Cite \textit{W. Li} et al., J. Nat. Sci. Heilongjiang Univ. 36, No. 2, 141--148 (2019; Zbl 1438.35009) Full Text: DOI
Lai, King Fai Differential equations and Lie group representations. (Chinese. English summary) Zbl 1438.11140 Adv. Math., Beijing 48, No. 3, 257-301 (2019). MSC: 11S80 14M15 16S32 20G05 22E45 22E50 35A30 PDF BibTeX XML Cite \textit{K. F. Lai}, Adv. Math., Beijing 48, No. 3, 257--301 (2019; Zbl 1438.11140) Full Text: DOI
Xu, Jingbo; Cheng, Xiaoliang; Chen, Liang Multi-parameter bifurcations of differential equations of general Clairaut type. (Chinese. English summary) Zbl 1438.35014 Acta Math. Appl. Sin. 42, No. 2, 220-228 (2019). MSC: 35A30 35B32 35F20 PDF BibTeX XML Cite \textit{J. Xu} et al., Acta Math. Appl. Sin. 42, No. 2, 220--228 (2019; Zbl 1438.35014)
Kushner, Alexei; Lychagin, Valentin V.; Slovák, Jan Lectures on geometry of Monge-Ampère equations with Maple. (English) Zbl 1447.35005 Kycia, Radosław A. (ed.) et al., Nonlinear PDEs, their geometry, and applications. Proceedings of the Wisła 18 summer school, Wisła, Poland, August 20–30, 2018. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 53-94 (2019). MSC: 35-02 35A30 35J96 58A10 58A20 PDF BibTeX XML Cite \textit{A. Kushner} et al., in: Nonlinear PDEs, their geometry, and applications. Proceedings of the Wisła 18 summer school, Wisła, Poland, August 20--30, 2018. Cham: Birkhäuser. 53--94 (2019; Zbl 1447.35005) Full Text: DOI
Slavova, A.; Popivanov, P. Regularity and solvability of pseudo-differential operators with double characteristics. (English) Zbl 1428.35012 Mediterr. J. Math. 16, No. 5, Paper No. 121, 17 p. (2019). Reviewer: Ravshan Ashurov (Tashkent) MSC: 35A27 35A20 35A18 35H10 35H20 35S05 PDF BibTeX XML Cite \textit{A. Slavova} and \textit{P. Popivanov}, Mediterr. J. Math. 16, No. 5, Paper No. 121, 17 p. (2019; Zbl 1428.35012) Full Text: DOI
Dai, Huiju; Li, Lianzhong; Wang, Qi; Sha, An Lie symmetry analysis, Bäcklund transformation and exact solutions for a class of fourth-order partial differential equations. (Chinese. English summary) Zbl 1438.35006 J. East China Norm. Univ., Nat. Sci. Ed., No. 1, 24-31 (2019). MSC: 35A30 35G20 37K35 PDF BibTeX XML Cite \textit{H. Dai} et al., J. East China Norm. Univ., Nat. Sci. Ed. , No. 1, 24--31 (2019; Zbl 1438.35006)
Cariñena, J. F.; Grabowski, J.; De Lucas, J. Quasi-Lie schemes for PDEs. (English) Zbl 1423.35012 Int. J. Geom. Methods Mod. Phys. 16, No. 7, Article ID 1950096, 36 p. (2019). MSC: 35A30 17B66 22E70 37K35 81T10 81T40 81R12 PDF BibTeX XML Cite \textit{J. F. Cariñena} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 7, Article ID 1950096, 36 p. (2019; Zbl 1423.35012) Full Text: DOI
Khorshidi, M.; Goodarzi, Kh. Complete symmetry and \(\mu\)-symmetry analysis of the Kawahara-KdV type equation. (English) Zbl 1426.58009 Nonlinear Dyn. Syst. Theory 19, No. 1, Spec. Iss., 170-177 (2019). MSC: 58J70 35Q53 35A30 PDF BibTeX XML Cite \textit{M. Khorshidi} and \textit{Kh. Goodarzi}, Nonlinear Dyn. Syst. Theory 19, No. 1, 170--177 (2019; Zbl 1426.58009)
Hermosilla, Cristopher; Wolenski, Peter A characteristic method for fully convex Bolza problems over arcs of bounded variation. (English) Zbl 1420.49037 SIAM J. Control Optim. 57, No. 4, 2873-2901 (2019). MSC: 49N15 49N25 49K15 PDF BibTeX XML Cite \textit{C. Hermosilla} and \textit{P. Wolenski}, SIAM J. Control Optim. 57, No. 4, 2873--2901 (2019; Zbl 1420.49037) Full Text: DOI
Andreev, Aleksandr Anatol’evich; Yakovleva, Yuliya Olegovna The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations. (Russian. English summary) Zbl 1438.74034 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 1, 186-194 (2019). MSC: 74E35 74K20 PDF BibTeX XML Cite \textit{A. A. Andreev} and \textit{Y. O. Yakovleva}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 1, 186--194 (2019; Zbl 1438.74034) Full Text: DOI MNR
Lakoba, T. I.; Deng, Z. Stability analysis of the numerical method of characteristics applied to a class of energy-preserving hyperbolic systems. II: Nonreflecting boundary conditions. (English) Zbl 1419.65045 J. Comput. Appl. Math. 356, 267-292 (2019). MSC: 65M25 65L12 15B05 15A18 PDF BibTeX XML Cite \textit{T. I. Lakoba} and \textit{Z. Deng}, J. Comput. Appl. Math. 356, 267--292 (2019; Zbl 1419.65045) Full Text: DOI
Rosa, M.; Camacho, J. C.; Bruzón, M. S.; Gandarias, M. L. Conservation laws, symmetries, and exact solutions of the classical Burgers-Fisher equation in two dimensions. (English) Zbl 1416.35148 J. Comput. Appl. Math. 354, 545-550 (2019). MSC: 35K59 35A30 35Q92 PDF BibTeX XML Cite \textit{M. Rosa} et al., J. Comput. Appl. Math. 354, 545--550 (2019; Zbl 1416.35148) Full Text: DOI
D’Acunto, B.; Frunzo, L.; Luongo, V.; Mattei, M. R. Free boundary approach for the attachment in the initial phase of multispecies biofilm growth. (English) Zbl 1415.35293 Z. Angew. Math. Phys. 70, No. 3, Paper No. 91, 16 p. (2019). MSC: 35R35 35L45 35L60 35Q92 92D25 PDF BibTeX XML Cite \textit{B. D'Acunto} et al., Z. Angew. Math. Phys. 70, No. 3, Paper No. 91, 16 p. (2019; Zbl 1415.35293) Full Text: DOI
Kuehn, Christian PDE dynamics. An introduction. (English) Zbl 1451.35001 Mathematical Modeling and Computation 23. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-1-61197-565-9/pbk). xiii, 245 p. (2019). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35-01 37-01 PDF BibTeX XML Cite \textit{C. Kuehn}, PDE dynamics. An introduction. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2019; Zbl 1451.35001)
Steinbauer, R. Book review of: N. H. Ibragimov, Tensors and Riemannian geometry. With applications to differential equations. (English) Zbl 1412.00014 Monatsh. Math. 189, No. 2, 383 (2019). MSC: 00A17 53-01 53B20 53B50 35A30 53B30 PDF BibTeX XML Cite \textit{R. Steinbauer}, Monatsh. Math. 189, No. 2, 383 (2019; Zbl 1412.00014) Full Text: DOI
Smith, Abraham D. Involutive tableaux, characteristic varieties, and rank-one varieties in the geometric study of PDEs. (English) Zbl 1423.58002 Gutt, Jan (ed.) et al., Geometry of Lagrangian Grassmannians and nonlinear PDEs, Warsaw, Poland, September 5–9, 2016. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 117, 57-112 (2019). Reviewer: Masoud Sabzevari (Shahr-e Kord) MSC: 58A15 35A30 PDF BibTeX XML Cite \textit{A. D. Smith}, Banach Cent. Publ. 117, 57--112 (2019; Zbl 1423.58002) Full Text: DOI arXiv
Gutt, Jan; Manno, Gianni; Moreno, Giovanni Geometry of Lagrangian Grassmannians and nonlinear PDEs. (English) Zbl 1420.35018 Gutt, Jan (ed.) et al., Geometry of Lagrangian Grassmannians and nonlinear PDEs, Warsaw, Poland, September 5–9, 2016. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 117, 9-44 (2019). MSC: 35A30 53C30 53D10 14M15 PDF BibTeX XML Cite \textit{J. Gutt} et al., Banach Cent. Publ. 117, 9--44 (2019; Zbl 1420.35018) Full Text: DOI
Bacchelli, Valeria; Pierotti, Dario; Micheletti, Stefano; Perotto, Simona Parameter identification for the linear wave equation with Robin boundary condition. (English) Zbl 1411.35281 J. Inverse Ill-Posed Probl. 27, No. 1, 25-41 (2019). MSC: 35R30 35L05 35L20 35C05 65M60 65L09 PDF BibTeX XML Cite \textit{V. Bacchelli} et al., J. Inverse Ill-Posed Probl. 27, No. 1, 25--41 (2019; Zbl 1411.35281) Full Text: DOI
Gutt, Jan (ed.); Manno, Gianni (ed.); Moreno, Giovanni (ed.) Geometry of Lagrangian Grassmannians and nonlinear PDEs, Warsaw, Poland, September 5–9, 2016. (English) Zbl 1416.35008 Banach Center Publications 117. Warsaw: Polish Academy of Sciences, Institute of Mathematics (ISBN 978-83-86806-43-0/pbk). 258 p. (2019). MSC: 35-06 35A30 58A15 14M17 53C30 53D10 53A35 00B25 PDF BibTeX XML Cite \textit{J. Gutt} (ed.) et al., Geometry of Lagrangian Grassmannians and nonlinear PDEs, Warsaw, Poland, September 5--9, 2016. Warsaw: Polish Academy of Sciences, Institute of Mathematics (2019; Zbl 1416.35008) Full Text: Link
Lin, Alex Tong; Chow, Yat Tin; Osher, Stanley J. A splitting method for overcoming the curse of dimensionality in Hamilton-Jacobi equations arising from nonlinear optimal control and differential games with applications to trajectory generation. (English) Zbl 07034982 Commun. Math. Sci. 16, No. 7, 1933-1973 (2018). MSC: 65 49N70 35F21 49K20 49K35 49L99 49M99 65M25 90C26 90C46 90C47 93B40 PDF BibTeX XML Cite \textit{A. T. Lin} et al., Commun. Math. Sci. 16, No. 7, 1933--1973 (2019; Zbl 07034982) Full Text: DOI
Gerencsér, Máté; Gyöngy, István A Feynman-Kac formula for stochastic Dirichlet problems. (English) Zbl 1418.60076 Stochastic Processes Appl. 129, No. 3, 995-1012 (2019). MSC: 60H15 35K20 65M25 PDF BibTeX XML Cite \textit{M. Gerencsér} and \textit{I. Gyöngy}, Stochastic Processes Appl. 129, No. 3, 995--1012 (2019; Zbl 1418.60076) Full Text: DOI
Alekseevsky, Dmitri V.; Gutt, Jan; Manno, Gianni; Moreno, Giovanni Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds. (English) Zbl 1407.35007 Commun. Contemp. Math. 21, No. 1, Article ID 1750089, 54 p. (2019). MSC: 35A30 58J70 53C30 53D10 17B08 17B10 35B06 PDF BibTeX XML Cite \textit{D. V. Alekseevsky} et al., Commun. Contemp. Math. 21, No. 1, Article ID 1750089, 54 p. (2019; Zbl 1407.35007) Full Text: DOI
Kaplan, Melike; San, Sait; Bekir, Ahmet On the exact solutions and conservation laws to the Benjamin-Ono equation. (English) Zbl 07303027 J. Appl. Anal. Comput. 8, No. 1, 1-9 (2018). MSC: 35Q53 35A30 35C05 PDF BibTeX XML Cite \textit{M. Kaplan} et al., J. Appl. Anal. Comput. 8, No. 1, 1--9 (2018; Zbl 07303027) Full Text: DOI