Zverev, N. A.; Zemskov, A. V. Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation. (Russian. English summary) Zbl 07642930 Mat. Model. 35, No. 1, 95-112 (2023). MSC: 74-XX 35-XX PDF BibTeX XML Cite \textit{N. A. Zverev} and \textit{A. V. Zemskov}, Mat. Model. 35, No. 1, 95--112 (2023; Zbl 07642930) Full Text: DOI MNR OpenURL
Gan, Di; Zhang, Guo-Feng Efficient ADI schemes and preconditioning for a class of high-dimensional spatial fractional diffusion equations with variable diffusion coefficients. (English) Zbl 07640804 J. Comput. Appl. Math. 423, Article ID 114938, 15 p. (2023). MSC: 65N06 65M06 65F08 65F10 65F55 65M12 65N12 15B05 65T50 26A33 35R11 PDF BibTeX XML Cite \textit{D. Gan} and \textit{G.-F. Zhang}, J. Comput. Appl. Math. 423, Article ID 114938, 15 p. (2023; Zbl 07640804) Full Text: DOI OpenURL
Pei, Ruqi; Askham, Travis; Greengard, Leslie; Jiang, Shidong A fast method for imposing periodic boundary conditions on arbitrarily-shaped lattices in two dimensions. (English) Zbl 07640549 J. Comput. Phys. 474, Article ID 111792, 35 p. (2023). MSC: 65Nxx 35Jxx 65Dxx PDF BibTeX XML Cite \textit{R. Pei} et al., J. Comput. Phys. 474, Article ID 111792, 35 p. (2023; Zbl 07640549) Full Text: DOI OpenURL
Mantzavinos, Dionyssios; Mitsotakis, Dimitrios Extended water wave systems of Boussinesq equations on a finite interval: theory and numerical analysis. (English. French summary) Zbl 07635063 J. Math. Pures Appl. (9) 169, 109-137 (2023). MSC: 35Q35 35Q86 76A25 86A05 35G46 35G61 35B65 35A01 35A02 65M60 65L06 65N30 65M12 65M15 76M10 PDF BibTeX XML Cite \textit{D. Mantzavinos} and \textit{D. Mitsotakis}, J. Math. Pures Appl. (9) 169, 109--137 (2023; Zbl 07635063) Full Text: DOI arXiv OpenURL
Khirsariya, Sagar R.; Rao, Snehal B.; Chauhan, Jignesh P. A novel hybrid technique to obtain the solution of generalized fractional-order differential equations. (English) Zbl 07627996 Math. Comput. Simul. 205, 272-290 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. R. Khirsariya} et al., Math. Comput. Simul. 205, 272--290 (2023; Zbl 07627996) Full Text: DOI OpenURL
Tang, Yuan; Qing, Hai Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models. (English) Zbl 07609337 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106808, 21 p. (2023). MSC: 74G60 74K10 74F10 74H15 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{H. Qing}, Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106808, 21 p. (2023; Zbl 07609337) Full Text: DOI OpenURL
Farkas, Matthew; Deconinck, Bernard Solving the heat equation with variable thermal conductivity. (English) Zbl 1498.35321 Appl. Math. Lett. 135, Article ID 108395, 7 p. (2023). MSC: 35K20 35A24 35A35 PDF BibTeX XML Cite \textit{M. Farkas} and \textit{B. Deconinck}, Appl. Math. Lett. 135, Article ID 108395, 7 p. (2023; Zbl 1498.35321) Full Text: DOI arXiv OpenURL
Liaqat, Muhammad Imran; Akgül, Ali A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. (English) Zbl 07642224 Chaos Solitons Fractals 162, Article ID 112487, 20 p. (2022). MSC: 26Axx 35Rxx 34Axx PDF BibTeX XML Cite \textit{M. I. Liaqat} and \textit{A. Akgül}, Chaos Solitons Fractals 162, Article ID 112487, 20 p. (2022; Zbl 07642224) Full Text: DOI OpenURL
Maayah, Banan; Moussaoui, Asma; Bushnaq, Samia; Arqub, Omar Abu The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach. (English) Zbl 07642094 Demonstr. Math. 55, 963-977 (2022). MSC: 92D30 44A10 34A08 49M27 PDF BibTeX XML Cite \textit{B. Maayah} et al., Demonstr. Math. 55, 963--977 (2022; Zbl 07642094) Full Text: DOI OpenURL
Taheri, Alireza Ghomi; Setoudeh, Farbod; Tavakoli, Mohammad Bagher; Feizi, Esmaeil Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method. (English) Zbl 07641506 Chaos Solitons Fractals 159, Article ID 112122, 16 p. (2022). MSC: 34Cxx 37Dxx 34Axx PDF BibTeX XML Cite \textit{A. G. Taheri} et al., Chaos Solitons Fractals 159, Article ID 112122, 16 p. (2022; Zbl 07641506) Full Text: DOI OpenURL
Mohamed, Mohamed. Z.; Yousif, Mohammed; Hamza, Amjad E. Solving nonlinear fractional partial differential equations using the Elzaki transform method and the homotopy perturbation method. (English) Zbl 07637311 Abstr. Appl. Anal. 2022, Article ID 4743234, 9 p. (2022). MSC: 35R11 26A33 65M06 PDF BibTeX XML Cite \textit{Mohamed. Z. Mohamed} et al., Abstr. Appl. Anal. 2022, Article ID 4743234, 9 p. (2022; Zbl 07637311) Full Text: DOI OpenURL
Li, Binjie; Luo, Hao; Xie, Xiaoping Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data. (English) Zbl 07636550 Fract. Calc. Appl. Anal. 25, No. 2, 747-782 (2022). MSC: 65M15 65M60 35R11 44A10 26A33 PDF BibTeX XML Cite \textit{B. Li} et al., Fract. Calc. Appl. Anal. 25, No. 2, 747--782 (2022; Zbl 07636550) Full Text: DOI arXiv OpenURL
Rysak, A.; Sedlmayr, M. Damping efficiency of the Duffing system with additional fractional terms. (English) Zbl 07635779 Appl. Math. Modelling 111, 521-533 (2022). MSC: 34Axx 34Cxx 26Axx PDF BibTeX XML Cite \textit{A. Rysak} and \textit{M. Sedlmayr}, Appl. Math. Modelling 111, 521--533 (2022; Zbl 07635779) Full Text: DOI OpenURL
Düz, Murat Solution of complex differential equations with variable coefficients by using reduced differential transform. (English) Zbl 07633766 Miskolc Math. Notes 23, No. 2, 621-635 (2022). MSC: 32W50 34M03 PDF BibTeX XML Cite \textit{M. Düz}, Miskolc Math. Notes 23, No. 2, 621--635 (2022; Zbl 07633766) Full Text: DOI OpenURL
Smith, D. A.; Toh, W. Y. Linear evolution equations on the half-line with dynamic boundary conditions. (English) Zbl 07629692 Eur. J. Appl. Math. 33, No. 3, 505-537 (2022). MSC: 35A22 34A08 35E15 35G16 35Q79 42A38 PDF BibTeX XML Cite \textit{D. A. Smith} and \textit{W. Y. Toh}, Eur. J. Appl. Math. 33, No. 3, 505--537 (2022; Zbl 07629692) Full Text: DOI arXiv OpenURL
Al-Qudah, Alaa; Odibat, Zaid; Shawagfeh, Nabil An optimal homotopy analysis transform method for handling nonlinear PDEs. (English) Zbl 07626568 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 260, 19 p. (2022). MSC: 65M99 44A10 65M12 34A34 35Q53 PDF BibTeX XML Cite \textit{A. Al-Qudah} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 260, 19 p. (2022; Zbl 07626568) Full Text: DOI OpenURL
Johnpillai, A. G.; Mahomed, F. M. Closed-form solutions via the invariant approach for one-factor commodity models. (English) Zbl 07625292 Quaest. Math. 45, No. 10, 1545-1558 (2022). MSC: 35B06 35A22 35C05 35Q91 34C14 PDF BibTeX XML Cite \textit{A. G. Johnpillai} and \textit{F. M. Mahomed}, Quaest. Math. 45, No. 10, 1545--1558 (2022; Zbl 07625292) Full Text: DOI OpenURL
Mehne, H. H. Differential transform method: a comprehensive review and analysis. (English) Zbl 1499.65284 Iran. J. Numer. Anal. Optim. 12, No. 3 (Spec. Iss.), 629-657 (2022). MSC: 65L05 34A08 34A25 65L10 PDF BibTeX XML Cite \textit{H. H. Mehne}, Iran. J. Numer. Anal. Optim. 12, No. 3 (Spec. Iss.), 629--657 (2022; Zbl 1499.65284) Full Text: DOI OpenURL
Kaplan, A. G.; Ablay, M. V. Exact solution of the Bagley-Torvik equation using Laplace transform method. (English) Zbl 07621519 Southeast Asian Bull. Math. 46, No. 6, 729-736 (2022). MSC: 26A33 44A10 65L05 PDF BibTeX XML Cite \textit{A. G. Kaplan} and \textit{M. V. Ablay}, Southeast Asian Bull. Math. 46, No. 6, 729--736 (2022; Zbl 07621519) Full Text: Link OpenURL
Zhang, Ruigang; Liu, Quansheng; Yang, Liangui Semi-analytical and numerical study on equatorial Rossby solitary waves under non-traditional approximation. (English) Zbl 07615419 Zeidan, Dia (ed.) et al., Numerical fluid dynamics. Methods and computations. Singapore: Springer. Forum Interdiscip. Math., 69-92 (2022). MSC: 76U65 76M99 PDF BibTeX XML Cite \textit{R. Zhang} et al., in: Numerical fluid dynamics. Methods and computations. Singapore: Springer. 69--92 (2022; Zbl 07615419) Full Text: DOI OpenURL
Wang, Kang-Le A novel variational approach to fractal Swift-Hohenberg model arising in fluid dynamics. (English) Zbl 07613771 Fractals 30, No. 7, Article ID 2250156, 7 p. (2022). MSC: 35A15 35K58 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 30, No. 7, Article ID 2250156, 7 p. (2022; Zbl 07613771) Full Text: DOI OpenURL
Wang, Kang-Jia; Shi, Feng; Liu, Jing-Hua; Si, Jing Application of the extended f-expansion method for solving the fractional Gardner equation with conformable fractional derivative. (English) Zbl 07613754 Fractals 30, No. 7, Article ID 2250139, 11 p. (2022). MSC: 35A22 35C05 35C07 35G20 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 30, No. 7, Article ID 2250139, 11 p. (2022; Zbl 07613754) Full Text: DOI OpenURL
Albak, Ibrahim M.; Abdullah, Farah Aini; Zainuddin, Zarita Corrigendum to: “Multistage analytical approximate solution of quasi-linear differential-algebraic system of index two”. (English) Zbl 07612955 Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 12, 5 p. (2022). MSC: 34A09 40A05 34A38 34A25 PDF BibTeX XML Cite \textit{I. M. Albak} et al., Aust. J. Math. Anal. Appl. 19, No. 1, Article No. 12, 5 p. (2022; Zbl 07612955) Full Text: Link OpenURL
Rashid, Saima; Butt, Saad Ihsan; Hammouch, Zakia; Bonyah, Ebenezer An efficient method for solving fractional Black-Scholes model with index and exponential decay kernels. (English) Zbl 07607185 J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 91G60 65M20 91G20 35R11 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022; Zbl 07607185) Full Text: DOI OpenURL
Khalouta, Ali On the solutions of nonlinear Caputo-Fabrizio fractional partial differential equations arising in applied mathematics. (English) Zbl 1500.35298 J. Prime Res. Math. 18, No. 2, 42-54 (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{A. Khalouta}, J. Prime Res. Math. 18, No. 2, 42--54 (2022; Zbl 1500.35298) Full Text: Link OpenURL
Tari, A.; Bildik, Necdet Numerical solution of Volterra series with error estimation. (English) Zbl 07601672 Appl. Comput. Math. 21, No. 1, 3-20 (2022). MSC: 65R20 PDF BibTeX XML Cite \textit{A. Tari} and \textit{N. Bildik}, Appl. Comput. Math. 21, No. 1, 3--20 (2022; Zbl 07601672) Full Text: Link OpenURL
Manjare, N. B.; Dinde, H. T. Variational iteration method for fractional partial differential equations – a universal approach by Sumudu transform. (English) Zbl 07601467 South East Asian J. Math. Math. Sci. 18, No. 2, 349-368 (2022). MSC: 26A33 65R10 65M12 35R11 PDF BibTeX XML Cite \textit{N. B. Manjare} and \textit{H. T. Dinde}, South East Asian J. Math. Math. Sci. 18, No. 2, 349--368 (2022; Zbl 07601467) Full Text: Link OpenURL
Christopher, Anthonysamy John; Magesh, Nanjudan Analytical and approximate solutions for conformable fractional order corona-virus (COVID-19) epidemic model. (English) Zbl 07601466 South East Asian J. Math. Math. Sci. 18, No. 2, 331-348 (2022). MSC: 34F05 92D30 65P20 PDF BibTeX XML Cite \textit{A. J. Christopher} and \textit{N. Magesh}, South East Asian J. Math. Math. Sci. 18, No. 2, 331--348 (2022; Zbl 07601466) Full Text: Link OpenURL
Hernández, Esteban; Prieur, Christophe; Cerpa, Eduardo A tracking problem for the state of charge in an electrochemical Li-ion battery model. (English) Zbl 07591227 Math. Control Relat. Fields 12, No. 3, 709-732 (2022). MSC: 35Q60 78A57 78A35 93B52 93C20 35A22 35B35 35A24 35B30 PDF BibTeX XML Cite \textit{E. Hernández} et al., Math. Control Relat. Fields 12, No. 3, 709--732 (2022; Zbl 07591227) Full Text: DOI OpenURL
Tamboli, Vahisht K.; Tandel, Priti V. Reduced differential transform method for the treatment of internal atmospheric waves phenomenon. (English) Zbl 07582592 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 174, 27 p. (2022). MSC: 35A22 35B30 35C10 35F40 35G25 39A14 PDF BibTeX XML Cite \textit{V. K. Tamboli} and \textit{P. V. Tandel}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 174, 27 p. (2022; Zbl 07582592) Full Text: DOI OpenURL
Deresse, Alemayehu Tamirie Analytical solutions to two-dimensional nonlinear telegraph equations using the conformable triple Laplace transform iterative method. (English) Zbl 1497.65201 Adv. Math. Phys. 2022, Article ID 4552179, 17 p. (2022). MSC: 65M99 35C05 35A20 44A10 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{A. T. Deresse}, Adv. Math. Phys. 2022, Article ID 4552179, 17 p. (2022; Zbl 1497.65201) Full Text: DOI OpenURL
Elbadri, Mohamed Initial value problems with generalized fractional derivatives and their solutions via generalized Laplace decomposition method. (English) Zbl 1497.65203 Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022). MSC: 65M99 35C10 44A10 26A33 35R11 PDF BibTeX XML Cite \textit{M. Elbadri}, Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022; Zbl 1497.65203) Full Text: DOI OpenURL
Aljahdaly, Noufe H.; Shah, Rasool; Naeem, Muhammed; Arefin, Mohammad Asif A comparative analysis of fractional space-time advection-dispersion equation via semi-analytical methods. (English) Zbl 1496.35414 J. Funct. Spaces 2022, Article ID 4856002, 11 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{N. H. Aljahdaly} et al., J. Funct. Spaces 2022, Article ID 4856002, 11 p. (2022; Zbl 1496.35414) Full Text: DOI OpenURL
Alshammari, Saleh; Iqbal, Naveed; Yar, Mohammad Fractional-view analysis of space-time fractional Fokker-Planck equations within Caputo operator. (English) Zbl 1496.35415 J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022). MSC: 35R11 35A22 35Q84 PDF BibTeX XML Cite \textit{S. Alshammari} et al., J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022; Zbl 1496.35415) Full Text: DOI OpenURL
Huang, Xin; Lin, Xue-Lei; Ng, Michael K.; Sun, Hai-Wei Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. (English) Zbl 07568034 Numer. Math., Theory Methods Appl. 15, No. 3, 565-591 (2022). MSC: 65F08 65N99 PDF BibTeX XML Cite \textit{X. Huang} et al., Numer. Math., Theory Methods Appl. 15, No. 3, 565--591 (2022; Zbl 07568034) Full Text: DOI arXiv OpenURL
Huang, Xin; Li, Dongfang; Sun, Hai-Wei; Zhang, Fan Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. (English) Zbl 1492.65238 J. Sci. Comput. 92, No. 2, Paper No. 41, 25 p. (2022). MSC: 65M06 35R11 15B05 65F08 65F10 PDF BibTeX XML Cite \textit{X. Huang} et al., J. Sci. Comput. 92, No. 2, Paper No. 41, 25 p. (2022; Zbl 1492.65238) Full Text: DOI OpenURL
Khalouta, Ali Closed-form solutions to some nonlinear fractional partial differential equations arising in mathematical sciences. (English) Zbl 1490.35519 Palest. J. Math. 11, Spec. Iss. II, 113-126 (2022). MSC: 35R11 PDF BibTeX XML Cite \textit{A. Khalouta}, Palest. J. Math. 11, 113--126 (2022; Zbl 1490.35519) Full Text: Link OpenURL
Akbulut, Arzu; Islam, S. M. Rayhanul Study on the Biswas-Arshed equation with the beta time derivative. (English) Zbl 1492.35406 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 167, 13 p. (2022). MSC: 35R11 35A22 35C05 PDF BibTeX XML Cite \textit{A. Akbulut} and \textit{S. M. R. Islam}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 167, 13 p. (2022; Zbl 1492.35406) Full Text: DOI OpenURL
Jani, Haresh P.; Singh, Twinkle R. Study of concentration arising in longitudinal dispersion phenomenon by aboodh transform homotopy perturbation method. (English) Zbl 07549892 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 152, 10 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{H. P. Jani} and \textit{T. R. Singh}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 152, 10 p. (2022; Zbl 07549892) Full Text: DOI OpenURL
Kamran; Ahmadian, A.; Salimi, M.; Salahshour, S. Local RBF method for transformed three dimensional sub-diffusion equations. (English) Zbl 07549887 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 147, 21 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{Kamran} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 147, 21 p. (2022; Zbl 07549887) Full Text: DOI OpenURL
Mohapatra, S. N.; Mishra, S. R.; Jena, P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model. (English) Zbl 1494.35165 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022). MSC: 35R11 35K59 35Q92 PDF BibTeX XML Cite \textit{S. N. Mohapatra} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022; Zbl 1494.35165) Full Text: DOI OpenURL
Kumar, Mukesh; Umesh Recent development of Adomian decomposition method for ordinary and partial differential equations. (English) Zbl 1499.34110 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022). MSC: 34A45 34A12 34B15 35C10 47J25 34A25 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{Umesh}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022; Zbl 1499.34110) Full Text: DOI OpenURL
Kumar, Manoj A hybrid method to solve time-space fractional PDEs with proportional delay. (English) Zbl 07541682 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022; Zbl 07541682) Full Text: DOI OpenURL
Mohammadian, Safiyeh; Mahmoudi, Yaghoub; Saei, Farhad Dastmalchi Numerical solution of fractional multi-delay differential equations. (English) Zbl 07541681 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 71, 12 p. (2022). MSC: 34-XX 26A33 PDF BibTeX XML Cite \textit{S. Mohammadian} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 71, 12 p. (2022; Zbl 07541681) Full Text: DOI OpenURL
Cai, Jiaxiang Efficient dissipation-preserving scheme for the damped nonlinear Schrödinger equation in three dimensions. (English) Zbl 07540947 Appl. Math. Lett. 132, Article ID 108129, 7 p. (2022). MSC: 65Mxx 81-XX PDF BibTeX XML Cite \textit{J. Cai}, Appl. Math. Lett. 132, Article ID 108129, 7 p. (2022; Zbl 07540947) Full Text: DOI OpenURL
Shah, Nehad Ali; El-Zahar, Essam R.; Dutt, Hina M.; Arefin, Mohammad Asif Novel evaluation of fuzzy fractional Cauchy reaction-diffusion equation. (English) Zbl 1491.35437 J. Funct. Spaces 2022, Article ID 6499384, 10 p. (2022). MSC: 35R11 35K57 35R13 PDF BibTeX XML Cite \textit{N. A. Shah} et al., J. Funct. Spaces 2022, Article ID 6499384, 10 p. (2022; Zbl 1491.35437) Full Text: DOI OpenURL
Alshammari, Mohammad; Mohammed, Wael W.; Yar, Mohammed Novel analysis of fuzzy fractional Klein-Gordon model via semianalytical method. (English) Zbl 1491.35426 J. Funct. Spaces 2022, Article ID 4020269, 9 p. (2022). MSC: 35R11 35R13 35A22 PDF BibTeX XML Cite \textit{M. Alshammari} et al., J. Funct. Spaces 2022, Article ID 4020269, 9 p. (2022; Zbl 1491.35426) Full Text: DOI OpenURL
Rashid, Saima; Sultana, Sobia; Idrees, Nazeran; Bonyah, Ebenezer On the analytical treatment for the fractional-order coupled partial differential equations via fixed point formulation and generalized fractional derivative operators. (English) Zbl 1491.35101 J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022). MSC: 35C05 35A22 35R11 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022; Zbl 1491.35101) Full Text: DOI OpenURL
Sunthrayuth, Pongsakorn; Alyousef, Haifa A.; El-Tantawy, S. A.; Khan, Adnan; Wyal, Noorolhuda Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. (English) Zbl 1491.35103 J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022). MSC: 35C05 35A22 35R11 PDF BibTeX XML Cite \textit{P. Sunthrayuth} et al., J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022; Zbl 1491.35103) Full Text: DOI OpenURL
Kuptsov, M. I.; Minaev, V. A.; Faddeev, A. O.; Yablochnikov, S. L. On the stability of integral manifolds of a system of ordinary differential equations in the critical case. (English. Russian original) Zbl 1500.34033 J. Math. Sci., New York 262, No. 6, 825-834 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 61-70 (2019). MSC: 34C45 34D35 34D20 34C20 34C05 PDF BibTeX XML Cite \textit{M. I. Kuptsov} et al., J. Math. Sci., New York 262, No. 6, 825--834 (2022; Zbl 1500.34033); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 61--70 (2019) Full Text: DOI OpenURL
Elías-Zúñiga, Alex On two-scale dimension and its application for deriving a new analytical solution for the fractal Duffing’s equation. (English) Zbl 07537377 Fractals 30, No. 3, Article ID 2250061, 10 p. (2022). MSC: 70Kxx 34Cxx 28Axx PDF BibTeX XML Cite \textit{A. Elías-Zúñiga}, Fractals 30, No. 3, Article ID 2250061, 10 p. (2022; Zbl 07537377) Full Text: DOI OpenURL
Gao, Yijin; Mayfield, Jay; Bao, Gang; Liu, Di; Luo, Songting An asymptotic Green’s function method for time-dependent Schrödinger equations with application to Kohn-Sham equations. (English) Zbl 07536771 J. Comput. Phys. 463, Article ID 111272, 21 p. (2022). MSC: 65Mxx 65Nxx 35Qxx PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Comput. Phys. 463, Article ID 111272, 21 p. (2022; Zbl 07536771) Full Text: DOI OpenURL
Bulut, Hasan; Ismael, Hajar F. Exploring new features for the perturbed Chen-Lee-Liu model via \((m+\frac{1}{G'})\)-expansion method. (English) Zbl 1490.35077 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 164-173 (2022). MSC: 35C05 35C08 35A22 35A24 PDF BibTeX XML Cite \textit{H. Bulut} and \textit{H. F. Ismael}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 164--173 (2022; Zbl 1490.35077) Full Text: DOI OpenURL
Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. (English) Zbl 1490.35523 J. Appl. Math. Comput. 68, No. 3, 2065-2082 (2022). MSC: 35R11 35R09 35A22 65R20 26A33 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Appl. Math. Comput. 68, No. 3, 2065--2082 (2022; Zbl 1490.35523) Full Text: DOI OpenURL
Özsarı, Türker; Alkan, Kıvılcım; Kalimeris, Konstantinos Dispersion estimates for the boundary integral operator associated with the fourth order Schrödinger equation posed on the half line. (English) Zbl 1490.35103 Math. Inequal. Appl. 25, No. 2, 551-571 (2022). MSC: 35C15 35A22 35A23 35B65 35Q41 PDF BibTeX XML Cite \textit{T. Özsarı} et al., Math. Inequal. Appl. 25, No. 2, 551--571 (2022; Zbl 1490.35103) Full Text: DOI arXiv OpenURL
Bairwa, R. K.; Kumar, Ajay; Singh, Karan An efficient computational technique for solving generalized time-fractional biological population model. (English) Zbl 1499.92061 South East Asian J. Math. Math. Sci. 18, No. 1, 129-146 (2022). MSC: 92D25 26A33 33E12 35R11 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., South East Asian J. Math. Math. Sci. 18, No. 1, 129--146 (2022; Zbl 1499.92061) Full Text: Link OpenURL
Ghevariya, Sanjay J. PDTM approach to solve Black Scholes equation for powered ML-payoff function. (English) Zbl 1499.91137 Comput. Methods Differ. Equ. 10, No. 2, 320-326 (2022). MSC: 91G20 PDF BibTeX XML Cite \textit{S. J. Ghevariya}, Comput. Methods Differ. Equ. 10, No. 2, 320--326 (2022; Zbl 1499.91137) Full Text: DOI OpenURL
Yasmin, Asia; Ali, Kashif; Ashraf, Muhammad Casson fluid flow with heat and mass transfer in a channel using the differential transform method. (English) Zbl 07527565 Kuwait J. Sci. 49, No. 1, Article 2, 19 p. (2022). MSC: 76A05 PDF BibTeX XML Cite \textit{A. Yasmin} et al., Kuwait J. Sci. 49, No. 1, Article 2, 19 p. (2022; Zbl 07527565) Full Text: DOI OpenURL
Bhanotar, Shailesh A.; Belgacem, Fethi Bin Muhammad Theory and applications of distinctive conformable triple Laplace and sumudu transforms decomposition methods. (English) Zbl 1499.35037 J. Partial Differ. Equations 35, No. 1, 49-77 (2022). MSC: 35A25 35M12 35Q40 35R11 PDF BibTeX XML Cite \textit{S. A. Bhanotar} and \textit{F. B. M. Belgacem}, J. Partial Differ. Equations 35, No. 1, 49--77 (2022; Zbl 1499.35037) Full Text: DOI OpenURL
Elsayed, E. M.; Shah, Rasool; Nonlaopon, Kamsing The analysis of the fractional-order Navier-Stokes equations by a novel approach. (English) Zbl 1489.35298 J. Funct. Spaces 2022, Article ID 8979447, 18 p. (2022). MSC: 35R11 35A22 35Q30 PDF BibTeX XML Cite \textit{E. M. Elsayed} et al., J. Funct. Spaces 2022, Article ID 8979447, 18 p. (2022; Zbl 1489.35298) Full Text: DOI OpenURL
Al-Maskari, Mariam; Karaa, Samir The time-fractional Cahn-Hilliard equation: analysis and approximation. (English) Zbl 1497.65158 IMA J. Numer. Anal. 42, No. 2, 1831-1865 (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M60 65M06 65N30 65D30 44A10 65M12 65M15 35B45 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{M. Al-Maskari} and \textit{S. Karaa}, IMA J. Numer. Anal. 42, No. 2, 1831--1865 (2022; Zbl 1497.65158) Full Text: DOI OpenURL
Deconinck, Bernard; Trogdon, Thomas; Yang, Xin The numerical unified transform method for initial-boundary value problems on the half-line. (English) Zbl 07524719 IMA J. Numer. Anal. 42, No. 2, 1400-1433 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{B. Deconinck} et al., IMA J. Numer. Anal. 42, No. 2, 1400--1433 (2022; Zbl 07524719) Full Text: DOI arXiv OpenURL
Duffy, Dean G. Advanced engineering mathematics. A second course. (English) Zbl 1497.00002 Advances in Applied Mathematics (Boca Raton). Boca Raton, FL: CRC Press (ISBN 978-1-032-13342-3/hbk; 978-1-032-22345-2/pbk; 978-1-003-27220-5/ebook). xvii, 447 p. (2022). Reviewer: Adhemar Bultheel (Leuven) MSC: 00A06 44-01 60-01 PDF BibTeX XML Cite \textit{D. G. Duffy}, Advanced engineering mathematics. A second course. Boca Raton, FL: CRC Press (2022; Zbl 1497.00002) Full Text: DOI OpenURL
Ren, Yiming; Feng, Hongsong; Zhao, Shan A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. (English) Zbl 07516834 J. Comput. Phys. 448, Article ID 110762, 24 p. (2022). MSC: 65Nxx 35Jxx 65Mxx PDF BibTeX XML Cite \textit{Y. Ren} et al., J. Comput. Phys. 448, Article ID 110762, 24 p. (2022; Zbl 07516834) Full Text: DOI OpenURL
Arfan, Muhammad; Shah, Kamal; Ullah, Aman; Salahshour, Soheil; Ahmadian, Ali; Ferrara, Massimiliano A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. (English) Zbl 1492.35419 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 315-338 (2022). MSC: 35R13 35R11 26A33 34A07 35L05 PDF BibTeX XML Cite \textit{M. Arfan} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 315--338 (2022; Zbl 1492.35419) Full Text: DOI OpenURL
Han, Xue-Feng; Wang, Kang-Le A novel variational perspective to fractal wave equations with variable coefficients. (English) Zbl 1485.35388 Fractals 30, No. 1, Article ID 2250026, 8 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{X.-F. Han} and \textit{K.-L. Wang}, Fractals 30, No. 1, Article ID 2250026, 8 p. (2022; Zbl 1485.35388) Full Text: DOI OpenURL
Althobaiti, Saad; Dubey, Ravi Shanker; Prasad, Jyoti Geetesh Solution of local fractional generalized Fokker-Planck equation using local fractional Mohand Adomian decomposition method. (English) Zbl 1495.35181 Fractals 30, No. 1, Article ID 2240028, 9 p. (2022). MSC: 35R11 35A22 35Q84 PDF BibTeX XML Cite \textit{S. Althobaiti} et al., Fractals 30, No. 1, Article ID 2240028, 9 p. (2022; Zbl 1495.35181) Full Text: DOI OpenURL
Rahman, Mati Ur; Arfan, Muhammad; Deebani, Wejdan; Kumam, Poom; Shah, Zahir Analysis of time-fractional Kawahara equation under Mittag-Leffler power law. (English) Zbl 1485.35403 Fractals 30, No. 1, Article ID 2240021, 13 p. (2022). MSC: 35R11 35A22 35G25 PDF BibTeX XML Cite \textit{M. U. Rahman} et al., Fractals 30, No. 1, Article ID 2240021, 13 p. (2022; Zbl 1485.35403) Full Text: DOI OpenURL
Shah, Nehad Ali; Agarwal, Praveen; Chung, Jae Dong; Althobaiti, Saad; Sayed, Samy; Aljohani, A. F.; Alkafafy, Mohamed Analysis of time-fractional Burgers and diffusion equations by using modified \(q\)-HATM. (English) Zbl 07490648 Fractals 30, No. 1, Article ID 2240012, 12 p. (2022). MSC: 65Mxx 26Axx 35Rxx PDF BibTeX XML Cite \textit{N. A. Shah} et al., Fractals 30, No. 1, Article ID 2240012, 12 p. (2022; Zbl 07490648) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Regarding new numerical results for the dynamical model of romantic relationships with fractional derivative. (English) Zbl 1492.34054 Fractals 30, No. 1, Article ID 2240009, 11 p. (2022). MSC: 34C60 34A08 91D99 34A45 PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 30, No. 1, Article ID 2240009, 11 p. (2022; Zbl 1492.34054) Full Text: DOI OpenURL
Khandelwal, Yogesh; Khandelwal, Rachana Insight on treatment of HIV-1 infection on populace of \(\mathcal{CD}4^+T\)-cells based on a fractional differential model. (English) Zbl 1499.34274 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022). MSC: 34C60 92C60 34A45 34A08 PDF BibTeX XML Cite \textit{Y. Khandelwal} and \textit{R. Khandelwal}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022; Zbl 1499.34274) Full Text: DOI OpenURL
Alesemi, Meshari; Iqbal, Naveed; Abdo, Mohammed S. Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator. (English) Zbl 1485.35372 J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022). MSC: 35R11 35A22 35K15 35K59 PDF BibTeX XML Cite \textit{M. Alesemi} et al., J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022; Zbl 1485.35372) Full Text: DOI OpenURL
Kbiri Alaoui, Mohammed; Alharbi, F. M.; Zaland, Shamsullah Novel analysis of fuzzy physical models by generalized fractional fuzzy operators. (English) Zbl 1482.35267 J. Funct. Spaces 2022, Article ID 2504031, 12 p. (2022). MSC: 35R13 03E72 35A22 35Q35 PDF BibTeX XML Cite \textit{M. Kbiri Alaoui} et al., J. Funct. Spaces 2022, Article ID 2504031, 12 p. (2022; Zbl 1482.35267) Full Text: DOI OpenURL
Fernández, Francisco M. Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”. (English) Zbl 1482.35004 J. Math. Chem. 60, No. 1, 255-259 (2022). MSC: 35A15 35A22 35C10 35K57 44A10 49K20 92E20 PDF BibTeX XML Cite \textit{F. M. Fernández}, J. Math. Chem. 60, No. 1, 255--259 (2022; Zbl 1482.35004) Full Text: DOI OpenURL
Jafari, H.; Kadkhoda, N.; Baleanu, Dumitru Lie group theory for nonlinear fractional \(K(m, n)\) type equation with variable coefficients. (English) Zbl 1479.35736 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 207-227 (2022). MSC: 35Q53 17B81 44A10 31B10 35R03 26A33 35R11 PDF BibTeX XML Cite \textit{H. Jafari} et al., Stud. Syst. Decis. Control 373, 207--227 (2022; Zbl 1479.35736) Full Text: DOI arXiv OpenURL
Jassim, Hassan Kamil; Mohammed, Mayada Gassab Natural homotopy perturbation method for solving nonlinear fractional gas dynamics equations. (English) Zbl 07637514 Int. J. Nonlinear Anal. Appl. 12, No. 1, 812-820 (2021). MSC: 35R11 74H10 PDF BibTeX XML Cite \textit{H. K. Jassim} and \textit{M. G. Mohammed}, Int. J. Nonlinear Anal. Appl. 12, No. 1, 812--820 (2021; Zbl 07637514) Full Text: DOI OpenURL
Ghobadi, Mostafa; Matinfar, Mashallah; Allahviranloo, Tofigh Numerical solution of second order IVP by fuzzy transform method. (English) Zbl 07637464 Int. J. Nonlinear Anal. Appl. 12, No. 1, 143-156 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Ghobadi} et al., Int. J. Nonlinear Anal. Appl. 12, No. 1, 143--156 (2021; Zbl 07637464) Full Text: DOI OpenURL
Khalouta, Ali The existence and uniqueness of solution for fractional Newel-Whitehead-Segel equation within Caputo-Fabrizio fractional operator. (English) Zbl 1498.34032 Appl. Appl. Math. 16, No. 2, 894-909 (2021). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{A. Khalouta}, Appl. Appl. Math. 16, No. 2, 894--909 (2021; Zbl 1498.34032) Full Text: Link OpenURL
Albak, Ibrahim M.; Abdullah, F. A.; Zainuddin, Zarita Multistage analytical approximate solution of quasi-linear differential-algebraic system of index two. (English) Zbl 07612934 Aust. J. Math. Anal. Appl. 18, No. 2, Article No. 13, 9 p. (2021); corrigendum ibid. 19, No. 1, Article No. 12, 5 p. (2022). MSC: 34A09 40A05 34A38 34A25 PDF BibTeX XML Cite \textit{I. M. Albak} et al., Aust. J. Math. Anal. Appl. 18, No. 2, Article No. 13, 9 p. (2021; Zbl 07612934) Full Text: Link OpenURL
Kelil, Abey S.; Appadu, Appanah R. Shehu-Adomian decomposition method for dispersive KdV-type equations. (English) Zbl 1497.35018 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 103-129 (2021). MSC: 35A25 35A22 34A45 PDF BibTeX XML Cite \textit{A. S. Kelil} and \textit{A. R. Appadu}, Springer Proc. Math. Stat. 381, 103--129 (2021; Zbl 1497.35018) Full Text: DOI OpenURL
Alam, M. Shamsul; Huq, M. Ashraful; Hasan, M. Kamrul; Rahman, M. Saifur A new technique for solving a class of strongly nonlinear oscillatory equations. (English) Zbl 07577279 Chaos Solitons Fractals 152, Article ID 111362, 7 p. (2021). Reviewer: J. Peter Praveen (Guntur) MSC: 34C15 34A45 PDF BibTeX XML Cite \textit{M. S. Alam} et al., Chaos Solitons Fractals 152, Article ID 111362, 7 p. (2021; Zbl 07577279) Full Text: DOI OpenURL
Ilhan, Esin; Veeresha, P.; Baskonus, Haci Mehmet Fractional approach for a mathematical model of atmospheric dynamics of CO\(_2\) gas with an efficient method. (English) Zbl 1495.86004 Chaos Solitons Fractals 152, Article ID 111347, 10 p. (2021). MSC: 86-08 86A10 35Q86 35R11 PDF BibTeX XML Cite \textit{E. Ilhan} et al., Chaos Solitons Fractals 152, Article ID 111347, 10 p. (2021; Zbl 1495.86004) Full Text: DOI OpenURL
Kamal, Raheel; Kamran; Rahmat, Gul; Ahmadian, Ali; Arshad, Noreen Izza; Salahshour, Soheil Approximation of linear one dimensional partial differential equations including fractional derivative with non-singular kernel. (English) Zbl 1494.35160 Adv. Difference Equ. 2021, Paper No. 317, 15 p. (2021). MSC: 35R11 26A33 35A35 65M06 PDF BibTeX XML Cite \textit{R. Kamal} et al., Adv. Difference Equ. 2021, Paper No. 317, 15 p. (2021; Zbl 1494.35160) Full Text: DOI OpenURL
Xu, Bo; Zhang, Yufeng; Zhang, Sheng Fractional isospectral and non-isospectral AKNS hierarchies and their analytic methods for \(N\)-fractal solutions with Mittag-Leffler functions. (English) Zbl 1494.35172 Adv. Difference Equ. 2021, Paper No. 223, 27 p. (2021). MSC: 35R11 35Q55 37K15 26A33 PDF BibTeX XML Cite \textit{B. Xu} et al., Adv. Difference Equ. 2021, Paper No. 223, 27 p. (2021; Zbl 1494.35172) Full Text: DOI OpenURL
Thabet, Sabri T. M.; Abdo, Mohammed S.; Shah, Kamal Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. (English) Zbl 1494.92150 Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021). MSC: 92D30 34A08 26A33 37N25 PDF BibTeX XML Cite \textit{S. T. M. Thabet} et al., Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021; Zbl 1494.92150) Full Text: DOI OpenURL
Sutar, Chandrashekhar S.; Chaudhari, Kamini K. Reduced differential transform for thermal stress analysis under 2-D hyperbolic heat conduction model with laser heat source. (English) Zbl 1495.35112 J. Korean Soc. Ind. Appl. Math. 25, No. 2, 54-65 (2021). MSC: 35L20 35K05 35Q74 PDF BibTeX XML Cite \textit{C. S. Sutar} and \textit{K. K. Chaudhari}, J. Korean Soc. Ind. Appl. Math. 25, No. 2, 54--65 (2021; Zbl 1495.35112) Full Text: DOI OpenURL
Zafar, Zain Ul Abadin; Ali, Nigar; Baleanu, Dumitru Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats. (English) Zbl 1498.92278 Chaos Solitons Fractals 151, Article ID 111261, 10 p. (2021). MSC: 92D30 26A33 34A08 34C60 34D23 PDF BibTeX XML Cite \textit{Z. U. A. Zafar} et al., Chaos Solitons Fractals 151, Article ID 111261, 10 p. (2021; Zbl 1498.92278) Full Text: DOI OpenURL
Sarkar, Indranil; Mukhopadhyay, Basudeb Thermo-viscoelastic interaction under dual-phase-lag model with memory-dependent derivative. (English) Zbl 1492.74022 Waves Random Complex Media 31, No. 6, 2214-2237 (2021). MSC: 74D05 74F05 74S99 PDF BibTeX XML Cite \textit{I. Sarkar} and \textit{B. Mukhopadhyay}, Waves Random Complex Media 31, No. 6, 2214--2237 (2021; Zbl 1492.74022) Full Text: DOI OpenURL
Boumaiza, Nawel; Kezzar, Mohamed; Eid, Mohamed R.; Tabet, Ismail On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity. (English) Zbl 1496.76127 Waves Random Complex Media 31, No. 6, 1550-1569 (2021). MSC: 76R05 76R10 76D10 76T20 76W05 76M20 76M99 80A19 PDF BibTeX XML Cite \textit{N. Boumaiza} et al., Waves Random Complex Media 31, No. 6, 1550--1569 (2021; Zbl 1496.76127) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G.; Magesh, N.; Nandeppanavar, M. M.; Christopher, A. John Numerical simulation for fractional Jaulent-Miodek equation associated with energy-dependent Schrödinger potential using two novel techniques. (English) Zbl 07543567 Waves Random Complex Media 31, No. 6, 1141-1162 (2021). MSC: 76M99 76X05 26A33 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Waves Random Complex Media 31, No. 6, 1141--1162 (2021; Zbl 07543567) Full Text: DOI arXiv OpenURL
Yalçın, Numan; Dedeturk, Mutlu Solutions of multiplicative ordinary differential equations via the multiplicative differential transform method. (English) Zbl 07543277 AIMS Math. 6, No. 4, 3393-3409 (2021). MSC: 34A30 34A99 35A22 PDF BibTeX XML Cite \textit{N. Yalçın} and \textit{M. Dedeturk}, AIMS Math. 6, No. 4, 3393--3409 (2021; Zbl 07543277) Full Text: DOI OpenURL
Lu, Junfeng; Sun, Yi Numerical approaches to time fractional Boussinesq-Burgers equations. (English) Zbl 07542105 Fractals 29, No. 8, Article ID 2150244, 10 p. (2021). MSC: 35Qxx 35Rxx 34Axx PDF BibTeX XML Cite \textit{J. Lu} and \textit{Y. Sun}, Fractals 29, No. 8, Article ID 2150244, 10 p. (2021; Zbl 07542105) Full Text: DOI OpenURL
Demirbileko, Ulviye; Ala, Volkan; Mamedov, Khanlar R. An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation. (English) Zbl 1490.35078 Tbil. Math. J. 14, No. 3, 59-70 (2021). MSC: 35C05 35C07 35A22 35Q53 35R11 PDF BibTeX XML Cite \textit{U. Demirbileko} et al., Tbil. Math. J. 14, No. 3, 59--70 (2021; Zbl 1490.35078) Full Text: DOI OpenURL
Sene, Ndolane Fractional advection-dispersion equation described by the Caputo left generalized fractional derivative. (English) Zbl 1490.35525 Palest. J. Math. 10, No. 2, 562-579 (2021). MSC: 35R11 35A22 35K57 76R50 PDF BibTeX XML Cite \textit{N. Sene}, Palest. J. Math. 10, No. 2, 562--579 (2021; Zbl 1490.35525) Full Text: Link OpenURL
Ahmad, Manzoor; Mishra, Rajshree; Jain, Renu Solution of time-space fractional Black-Scholes European option pricing problem through fractional reduced differential transform method. (English) Zbl 1499.91133 Fract. Differ. Calc. 11, No. 1, 1-15 (2021). MSC: 91G20 26A33 91G80 35Q91 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Fract. Differ. Calc. 11, No. 1, 1--15 (2021; Zbl 1499.91133) Full Text: DOI OpenURL
Chu, Yu-Ming; Ali Shah, Nehad; Agarwal, Praveen; Dong Chung, Jae Analysis of fractional multi-dimensional Navier-Stokes equation. (English) Zbl 1487.76055 Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021). MSC: 76M20 35R11 35Q30 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021; Zbl 1487.76055) Full Text: DOI OpenURL
Ebaid, Abdelhalim; Cattani, Carlo; Al Juhani, Amnah S.; El-Zahar, Essam R. A novel exact solution for the fractional Ambartsumian equation. (English) Zbl 1487.45005 Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021). MSC: 45J05 26A33 34K37 65L99 PDF BibTeX XML Cite \textit{A. Ebaid} et al., Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021; Zbl 1487.45005) Full Text: DOI OpenURL
Akinyemi, Lanre; Şenol, Mehmet; Huseen, Shaheed N. Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. (English) Zbl 1487.65129 Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021). MSC: 65M25 65H20 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021; Zbl 1487.65129) Full Text: DOI OpenURL
Derakhshan, Mohammadhossein Analytical solutions for the equal width equations containing generalized fractional derivative using the efficient combined method. (English) Zbl 1491.35430 Int. J. Differ. Equ. 2021, Article ID 7066398, 14 p. (2021). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{M. Derakhshan}, Int. J. Differ. Equ. 2021, Article ID 7066398, 14 p. (2021; Zbl 1491.35430) Full Text: DOI OpenURL
Mayfield, Jay; Gao, Yijin; Luo, Songting An asymptotic Green’s function method for the wave equation. (English) Zbl 07516465 J. Comput. Phys. 446, Article ID 110655, 19 p. (2021). MSC: 65Mxx 65Nxx 81Qxx PDF BibTeX XML Cite \textit{J. Mayfield} et al., J. Comput. Phys. 446, Article ID 110655, 19 p. (2021; Zbl 07516465) Full Text: DOI OpenURL