Dwivedi, Kushal Dhar; Gómez-Aguilar, J. F. An efficient numerical method to solve ordinary differential equations using Fibonacci neural networks. (English) Zbl 07657525 Comput. Appl. Math. 42, No. 1, Paper No. 54, 16 p. (2023). MSC: 92B20 33E30 49M15 40Axx PDF BibTeX XML Cite \textit{K. D. Dwivedi} and \textit{J. F. Gómez-Aguilar}, Comput. Appl. Math. 42, No. 1, Paper No. 54, 16 p. (2023; Zbl 07657525) Full Text: DOI OpenURL
Majumder, Sujoy; Mahato, Lata On the meromorphic solutions of a certain type of nonlinear difference-differential equation. (English) Zbl 07655814 Math. Bohem. 148, No. 1, 73-94 (2023). MSC: 34M05 30D35 33E30 30D30 PDF BibTeX XML Cite \textit{S. Majumder} and \textit{L. Mahato}, Math. Bohem. 148, No. 1, 73--94 (2023; Zbl 07655814) Full Text: DOI OpenURL
Patra, Asim An epidemiology model involving high-order linear Fredholm integro-differential-difference equations via a novel balancing collocation technique. (English) Zbl 07614143 J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023). MSC: 65R20 45J05 45B05 30D15 65L10 PDF BibTeX XML Cite \textit{A. Patra}, J. Comput. Appl. Math. 421, Article ID 114851, 26 p. (2023; Zbl 07614143) Full Text: DOI OpenURL
Bahba, Fida; Ghabi, Rabiaa Harmonic analysis associated with the Heckman-Opdam-Jacobi operator on \(\mathbb{R}^{d+1}\). (English) Zbl 07663685 Anal. Theory Appl. 38, No. 4, 417-438 (2022). MSC: 33E30 42B10 44A15 35K05 PDF BibTeX XML Cite \textit{F. Bahba} and \textit{R. Ghabi}, Anal. Theory Appl. 38, No. 4, 417--438 (2022; Zbl 07663685) Full Text: DOI OpenURL
Ivanov, N. O. On generalized solutions of the first boundary value problem for differential-difference equations with variable coefficients. (English) Zbl 07659173 Lobachevskii J. Math. 43, No. 10, 2660-2674 (2022). MSC: 34Kxx 39Axx 93Cxx PDF BibTeX XML Cite \textit{N. O. Ivanov}, Lobachevskii J. Math. 43, No. 10, 2660--2674 (2022; Zbl 07659173) Full Text: DOI OpenURL
Hesameddini, Esmail; Shahbazi, Mehdi Application of Bernstein polynomials for solving Fredholm integro-differential-difference equations. (English) Zbl 07657205 Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475-493 (2022). MSC: 65R20 65M12 54H25 45E10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475--493 (2022; Zbl 07657205) Full Text: DOI OpenURL
Goryunov, V. E.; Preobrazhenskaya, M. M. Quasi-stability of coexisting attractors of a neurodynamic model with delay. (English. Russian original) Zbl 07653474 J. Math. Sci., New York 268, No. 1, 24-45 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 26-47 (2019). MSC: 34D05 34D08 34D45 65K05 PDF BibTeX XML Cite \textit{V. E. Goryunov} and \textit{M. M. Preobrazhenskaya}, J. Math. Sci., New York 268, No. 1, 24--45 (2022; Zbl 07653474); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 26--47 (2019) Full Text: DOI OpenURL
Xu, Hong Yan; Zhang, Keyu; Zheng, Xiumin Entire and meromorphic solutions for several Fermat type partial differential difference equations in \(\mathbb{C}^2\). (English) Zbl 07639797 Rocky Mt. J. Math. 52, No. 6, 2169-2187 (2022). MSC: 32W50 35M30 39A45 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., Rocky Mt. J. Math. 52, No. 6, 2169--2187 (2022; Zbl 07639797) Full Text: DOI Link OpenURL
Zaitseva, N. V. Classical solutions of a multidimensional hyperbolic differential-difference equation with shifts of various directions in the potentials. (English. Russian original) Zbl 07638260 Math. Notes 112, No. 6, 872-880 (2022); translation from Mat. Zametki 112, No. 6, 810-819 (2022). MSC: 35A22 35L10 35R10 47E07 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Math. Notes 112, No. 6, 872--880 (2022; Zbl 07638260); translation from Mat. Zametki 112, No. 6, 810--819 (2022) Full Text: DOI OpenURL
Tertychniy, Sergey I. Special functions emerging from symmetries of the space of solutions to special double confluent Heun equation. (English) Zbl 07619043 Eur. J. Math. 8, No. 4, 1623-1654 (2022). MSC: 33E30 34A05 34M03 34M35 34M45 58D19 PDF BibTeX XML Cite \textit{S. I. Tertychniy}, Eur. J. Math. 8, No. 4, 1623--1654 (2022; Zbl 07619043) Full Text: DOI arXiv OpenURL
Ruan, Yong Bin; Wen, Yao Xiong Quantum \(K\)-theory and \(q\)-difference equations. (English) Zbl 07615086 Acta Math. Sin., Engl. Ser. 38, No. 10, 1677-1704 (2022). MSC: 39A13 33E30 33D05 05A30 11B65 14N35 PDF BibTeX XML Cite \textit{Y. B. Ruan} and \textit{Y. X. Wen}, Acta Math. Sin., Engl. Ser. 38, No. 10, 1677--1704 (2022; Zbl 07615086) Full Text: DOI arXiv OpenURL
Liiko, V. V. Mixed boundary value problems for strongly elliptic differential-difference equations in a bounded domain. (English. Russian original) Zbl 1501.35157 Differ. Equ. 58, No. 9, 1211-1216 (2022); translation from Differ. Uravn. 58, No. 9, 1220-1225 (2022). MSC: 35J25 47E07 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{V. V. Liiko}, Differ. Equ. 58, No. 9, 1211--1216 (2022; Zbl 1501.35157); translation from Differ. Uravn. 58, No. 9, 1220--1225 (2022) Full Text: DOI OpenURL
Adimy, Mostafa; Chekroun, Abdennasser; El Abdllaoui, Abderrahim; Marzorati, Arsène Discrete maturity and delay differential-difference model of hematopoietic cell dynamics with applications to acute myelogenous leukemia. (English) Zbl 07612059 J. Biol. Syst. 30, No. 3, 497-527 (2022). MSC: 92C37 92C15 92C32 35Q92 34K60 39A60 PDF BibTeX XML Cite \textit{M. Adimy} et al., J. Biol. Syst. 30, No. 3, 497--527 (2022; Zbl 07612059) Full Text: DOI OpenURL
Salas, Alvaro H. Elementary solution to a damped and forced cubic-quintic Duffing equation. (English) Zbl 07604271 Int. J. Math. Comput. Sci. 17, No. 4, 1643-1647 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{A. H. Salas}, Int. J. Math. Comput. Sci. 17, No. 4, 1643--1647 (2022; Zbl 07604271) Full Text: Link OpenURL
Salas, Alvaro H.; Castillo, Jairo E.; Martínez H., Lorenzo J. Analytical and numerical solutions to the Kapitza pendulum equation. (English) Zbl 07604260 Int. J. Math. Comput. Sci. 17, No. 4, 1529-1534 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 4, 1529--1534 (2022; Zbl 07604260) Full Text: Link OpenURL
Xu, Hong Yan; Li, Hong; Yu, Meiying Malmquist-type theorems on some complex differential-difference equations. (English) Zbl 1500.39011 Open Math. 20, 809-819 (2022). MSC: 39A45 39A14 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., Open Math. 20, 809--819 (2022; Zbl 1500.39011) Full Text: DOI OpenURL
Hao, Wen-Jie; Chen, Jun-Fan Entire solutions of a certain type of nonlinear differential-difference equations. (English) Zbl 07597936 Acta Math. Vietnam. 47, No. 4, 731-741 (2022). MSC: 34K41 34M05 30D35 34M10 PDF BibTeX XML Cite \textit{W.-J. Hao} and \textit{J.-F. Chen}, Acta Math. Vietnam. 47, No. 4, 731--741 (2022; Zbl 07597936) Full Text: DOI OpenURL
Gao, L. K.; Liu, K.; Liu, X. L. Exponential polynomials as solutions of nonlinear differential-difference equations. (English) Zbl 1502.30082 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 2, 77-89 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 2, 14-29 (2022). MSC: 30D15 47E07 PDF BibTeX XML Cite \textit{L. K. Gao} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 2, 77--89 (2022; Zbl 1502.30082) Full Text: DOI OpenURL
Lin, Hongjin; Chen, Junfan; Lin, Shuqing Uniqueness of meromorphic solutions for a class of complex linear differential-difference equations. (English) Zbl 07589873 J. Math. Res. Appl. 42, No. 4, 331-348 (2022). MSC: 34M05 39A06 30D35 PDF BibTeX XML Cite \textit{H. Lin} et al., J. Math. Res. Appl. 42, No. 4, 331--348 (2022; Zbl 07589873) Full Text: DOI OpenURL
Mukiawa, Soh Edwin; Omaba, McSylvester Ejighikeme; Enyi, Cyril Dennis; Apalara, Tijani A. General decay estimate for coupled plate problem with memory. (English) Zbl 1497.35052 Results Appl. Math. 15, Article ID 100306, 14 p. (2022). MSC: 35B40 35L57 35L71 35R09 33E30 74K20 PDF BibTeX XML Cite \textit{S. E. Mukiawa} et al., Results Appl. Math. 15, Article ID 100306, 14 p. (2022; Zbl 1497.35052) Full Text: DOI OpenURL
Banerjee, Abhijit; Biswas, Tania Characterization of exponential polynomial as solution of certain type of nonlinear delay-differential equation. (English) Zbl 07581987 Turk. J. Math. 46, No. 6, 2272-2291 (2022). MSC: 34K41 30D35 PDF BibTeX XML Cite \textit{A. Banerjee} and \textit{T. Biswas}, Turk. J. Math. 46, No. 6, 2272--2291 (2022; Zbl 07581987) Full Text: DOI arXiv OpenURL
Xu, Hong Yan; Yu, Meiying; Zhang, Keyu The study of solutions of several systems of nonlinear partial differential difference equations. (English) Zbl 1495.35086 J. Funct. Spaces 2022, Article ID 4449502, 14 p. (2022). MSC: 35F20 39A14 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., J. Funct. Spaces 2022, Article ID 4449502, 14 p. (2022; Zbl 1495.35086) Full Text: DOI OpenURL
Nunes, Cláudia; Pimentel, Rita; Prior, Ana The solution to a differential-difference equation arising in optimal stopping of a jump-diffusion process. (English) Zbl 1502.37101 REVSTAT 20, No. 1, 85-100 (2022). MSC: 37N35 37H10 60G40 60J65 PDF BibTeX XML Cite \textit{C. Nunes} et al., REVSTAT 20, No. 1, 85--100 (2022; Zbl 1502.37101) Full Text: DOI OpenURL
Lefebvre, Mario First-passage problems for diffusion processes with state-dependent jumps. (English) Zbl 07535570 Commun. Stat., Theory Methods 51, No. 9, 2908-2918 (2022). MSC: 60J75 60J60 PDF BibTeX XML Cite \textit{M. Lefebvre}, Commun. Stat., Theory Methods 51, No. 9, 2908--2918 (2022; Zbl 07535570) Full Text: DOI OpenURL
Area, I.; Tefo, Y. Guemo Monic bivariate polynomials on quadratic and \(q\)-quadratic lattices. (English) Zbl 07524871 Mediterr. J. Math. 19, No. 3, Paper No. 132, 18 p. (2022). MSC: 33D50 33D45 33C45 33E30 PDF BibTeX XML Cite \textit{I. Area} and \textit{Y. G. Tefo}, Mediterr. J. Math. 19, No. 3, Paper No. 132, 18 p. (2022; Zbl 07524871) Full Text: DOI OpenURL
Bellaama, Rachid; Belaïdi, Benharrat Growth properties of meromorphic solutions of some higher-order linear differential-difference equations. (English) Zbl 1492.30072 Analysis, München 42, No. 2, 71-88 (2022). MSC: 30D35 34K06 34K12 PDF BibTeX XML Cite \textit{R. Bellaama} and \textit{B. Belaïdi}, Analysis, München 42, No. 2, 71--88 (2022; Zbl 1492.30072) Full Text: DOI OpenURL
Zheng, X.-M.; Xu, H.-Y. Entire solutions for some Fermat type functional equations concerning difference and partial differential in \(\mathbb{C}^2\). (English) Zbl 1499.30292 Anal. Math. 48, No. 1, 199-226 (2022). Reviewer: Katsuya Ishizaki (Chiba) MSC: 30D35 35M30 32W50 39A45 PDF BibTeX XML Cite \textit{X. M. Zheng} and \textit{H. Y. Xu}, Anal. Math. 48, No. 1, 199--226 (2022; Zbl 1499.30292) Full Text: DOI OpenURL
Liiko, V. V.; Skubachevskii, A. L. Smoothness of solutions to the mixed problem for elliptic differential-difference equation in cylinder. (English) Zbl 1485.39032 Complex Var. Elliptic Equ. 67, No. 2, 462-477 (2022). MSC: 39A70 39A14 47E07 PDF BibTeX XML Cite \textit{V. V. Liiko} and \textit{A. L. Skubachevskii}, Complex Var. Elliptic Equ. 67, No. 2, 462--477 (2022; Zbl 1485.39032) Full Text: DOI OpenURL
Melikdzhanian, D. Yu.; Ishkhanyan, A. M. Generalized-hypergeometric solutions of the biconfluent Heun equation. (English) Zbl 1501.33002 Ramanujan J. 57, No. 1, 37-53 (2022). MSC: 33C15 33E30 34B30 34M03 PDF BibTeX XML Cite \textit{D. Yu. Melikdzhanian} and \textit{A. M. Ishkhanyan}, Ramanujan J. 57, No. 1, 37--53 (2022; Zbl 1501.33002) Full Text: DOI arXiv OpenURL
Daba, Imiru Takele; Duressa, Gemechis File Collocation method using artificial viscosity for time dependent singularly perturbed differential-difference equations. (English) Zbl 07431722 Math. Comput. Simul. 192, 201-220 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Math. Comput. Simul. 192, 201--220 (2022; Zbl 07431722) Full Text: DOI OpenURL
Dilcher, Karl; Ulas, Maciej Some properties of a class of sparse polynomials. (English) Zbl 1475.05093 J. Math. Anal. Appl. 505, No. 1, Article ID 125449, 18 p. (2022). MSC: 05C31 05A10 11T06 PDF BibTeX XML Cite \textit{K. Dilcher} and \textit{M. Ulas}, J. Math. Anal. Appl. 505, No. 1, Article ID 125449, 18 p. (2022; Zbl 1475.05093) Full Text: DOI arXiv OpenURL
Zemlyanukhin, Aleksandr I.; Bochkarev, Andrey V.; Ratushny, Aleksandr V. Exact solutions to the four-component Merola-Ragnisco-Tu lattice equations. (English) Zbl 07643790 Altenbach, Holm (ed.) et al., Nonlinear mechanics of complex structures. From theory to engineering applications. Cham: Springer. Adv. Struct. Mater. 157, 457-469 (2021). MSC: 70-XX PDF BibTeX XML Cite \textit{A. I. Zemlyanukhin} et al., Adv. Struct. Mater. 157, 457--469 (2021; Zbl 07643790) Full Text: DOI OpenURL
Gui, Xian Min; Xu, Hong Yan; Tang, Wen Ju; Wang, Hua Entire solutions for several complex partial differential-difference equations of Fermat type in \(\mathbb{C}^2\). (English) Zbl 07642663 Open Math. 19, 1416-1434 (2021). MSC: 35B08 35M30 32W50 39A45 30D35 47E07 PDF BibTeX XML Cite \textit{X. M. Gui} et al., Open Math. 19, 1416--1434 (2021; Zbl 07642663) Full Text: DOI OpenURL
Lalu, M.; Phaneendra, K.; Emineni, Siva Prasad Numerical approach for differential-difference equations having layer behaviour with small or large delay using non-polynomial spline. (English) Zbl 07621655 Soft Comput. 25, No. 21, 13709-13722 (2021). MSC: 65Lxx PDF BibTeX XML Cite \textit{M. Lalu} et al., Soft Comput. 25, No. 21, 13709--13722 (2021; Zbl 07621655) Full Text: DOI OpenURL
Habibullin, I. T.; Kuznetsova, M. N. An algebraic criterion of the Darboux integrability of differential-difference equations and systems. (English) Zbl 07620316 J. Phys. A, Math. Theor. 54, No. 50, Article ID 505201, 20 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{I. T. Habibullin} and \textit{M. N. Kuznetsova}, J. Phys. A, Math. Theor. 54, No. 50, Article ID 505201, 20 p. (2021; Zbl 07620316) Full Text: DOI arXiv OpenURL
Biswas, Nityagopal Growth of solutions of linear differential-difference equations with coefficients having the same logarithmic order. (English) Zbl 1494.30060 Korean J. Math. 29, No. 3, 473-481 (2021). MSC: 30D35 34K06 34K12 PDF BibTeX XML Cite \textit{N. Biswas}, Korean J. Math. 29, No. 3, 473--481 (2021; Zbl 1494.30060) Full Text: DOI OpenURL
Akhavan Ghassabzade, Fahimeh; Saberi-Nadjafi, Jafar; Soheili, Ali Reza A method based on the meshless approach for the numerical solution of the singularly perturbed differential-difference equation arising in the modeling of neuronal variability. (English) Zbl 1499.65314 Casp. J. Math. Sci. 10, No. 2, 210-223 (2021). MSC: 65L10 65L11 65L50 65L70 PDF BibTeX XML Cite \textit{F. Akhavan Ghassabzade} et al., Casp. J. Math. Sci. 10, No. 2, 210--223 (2021; Zbl 1499.65314) Full Text: DOI OpenURL
Xu, Hong Yan; Meng, Da Wei; Liu, Sanyang; Wang, Hua Entire solutions for several second-order partial differential-difference equations of Fermat type with two complex variables. (English) Zbl 1487.30031 Adv. Difference Equ. 2021, Paper No. 52, 24 p. (2021). MSC: 30D35 30D30 35M30 32W50 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., Adv. Difference Equ. 2021, Paper No. 52, 24 p. (2021; Zbl 1487.30031) Full Text: DOI OpenURL
Xu, Hong Yan; Xuan, Zu Xing; Luo, Jun; Liu, Si Min On the entire solutions for several partial differential difference equations (systems) of Fermat type in \(\mathbb{C}^2\). (English) Zbl 1484.32024 AIMS Math. 6, No. 2, 2003-2017 (2021). MSC: 32H30 30D35 35M30 39A45 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., AIMS Math. 6, No. 2, 2003--2017 (2021; Zbl 1484.32024) Full Text: DOI OpenURL
Zaĭtseva, Natal’ya Vladimirovna Hyperbolic differential-difference equations with nonlocal potentials. (Russian. English summary) Zbl 1499.35609 Ufim. Mat. Zh. 13, No. 3, 37-44 (2021); translation in Ufa Math. J. 13, No. 3, 36-43 (2021). MSC: 35R10 35L10 PDF BibTeX XML Cite \textit{N. V. Zaĭtseva}, Ufim. Mat. Zh. 13, No. 3, 37--44 (2021; Zbl 1499.35609); translation in Ufa Math. J. 13, No. 3, 36--43 (2021) Full Text: DOI MNR OpenURL
Lunyk, T. V.; Cherevko, I. M. Delay modeling of mathematical models of biology and immunology. (Ukrainian. English summary) Zbl 1499.65262 Bukovyn. Mat. Zh. 9, No. 2, 92-98 (2021). MSC: 65L03 65L12 92-08 92D25 PDF BibTeX XML Cite \textit{T. V. Lunyk} and \textit{I. M. Cherevko}, Bukovyn. Mat. Zh. 9, No. 2, 92--98 (2021; Zbl 1499.65262) Full Text: DOI OpenURL
Luo, Jun; Xu, Hong Yan; Hu, Fen Entire solutions for several general quadratic trinomial differential difference equations. (English) Zbl 1489.39022 Open Math. 19, 1018-1028 (2021). Reviewer: Risto Korhonen (Joensuu) MSC: 39A45 30D35 30D20 30D05 34K41 PDF BibTeX XML Cite \textit{J. Luo} et al., Open Math. 19, 1018--1028 (2021; Zbl 1489.39022) Full Text: DOI OpenURL
Wang, Yan; Xu, Li; Wang, Yu-Jin; Liu, Jian-Gen Lie group analysis of fractal differential-difference equations. (English) Zbl 1490.39010 Fractals 29, No. 7, Article ID 2150197, 7 p. (2021). MSC: 39A13 39A14 34K04 35B06 35R11 35Q51 34A08 26A33 70G65 PDF BibTeX XML Cite \textit{Y. Wang} et al., Fractals 29, No. 7, Article ID 2150197, 7 p. (2021; Zbl 1490.39010) Full Text: DOI OpenURL
Audu, Johnson D.; Mukiawa, Soh Edwin; Almeida Júnior, Dilberto S. General decay estimate for a two-dimensional plate equation with time-varying feedback and time-varying coefficient. (English) Zbl 1481.35044 Results Appl. Math. 12, Article ID 100219, 12 p. (2021). MSC: 35B40 35L35 35L76 33E30 74K20 45M10 PDF BibTeX XML Cite \textit{J. D. Audu} et al., Results Appl. Math. 12, Article ID 100219, 12 p. (2021; Zbl 1481.35044) Full Text: DOI OpenURL
Xu, Hongyan; Wang, Nan; Liu, Lin The existence and forms of entire solutions of generalized Fermat type differential and differential difference equations. (Chinese. English summary) Zbl 1488.34489 J. Nanchang Univ., Nat. Sci. 45, No. 1, 11-14, 19 (2021). MSC: 34M05 30D35 34K41 PDF BibTeX XML Cite \textit{H. Xu} et al., J. Nanchang Univ., Nat. Sci. 45, No. 1, 11--14, 19 (2021; Zbl 1488.34489) OpenURL
Inc, Mustafa; Partohaghighi, Mohammad; Akinlar, Mehmet Ali; Weber, Gerhard-Wilhelm New solutions of hyperbolic telegraph equation. (English) Zbl 1497.35022 J. Dyn. Games 8, No. 2, 129-138 (2021). MSC: 35A35 35L10 33E30 65M22 65J15 PDF BibTeX XML Cite \textit{M. Inc} et al., J. Dyn. Games 8, No. 2, 129--138 (2021; Zbl 1497.35022) Full Text: DOI OpenURL
Droghei, Riccardo On a solution of a fractional hyper-Bessel differential equation by means of a multi-index special function. (English) Zbl 1498.34020 Fract. Calc. Appl. Anal. 24, No. 5, 1559-1570 (2021). MSC: 34A08 26A33 35R11 33E12 33E30 PDF BibTeX XML Cite \textit{R. Droghei}, Fract. Calc. Appl. Anal. 24, No. 5, 1559--1570 (2021; Zbl 1498.34020) Full Text: DOI arXiv OpenURL
Zhuravlev, Nikolai B.; Rossovskii, Leonid E. Spectral radius formula for a parametric family of functional operators. (English) Zbl 1480.35143 Regul. Chaotic Dyn. 26, No. 4, 392-401 (2021). MSC: 35J25 39A13 PDF BibTeX XML Cite \textit{N. B. Zhuravlev} and \textit{L. E. Rossovskii}, Regul. Chaotic Dyn. 26, No. 4, 392--401 (2021; Zbl 1480.35143) Full Text: DOI OpenURL
Zhou, Cai-lian; Xu, Song; Xie, Lie-jun Linear Fredholm integro-differential-difference equations and their effective computation. (English) Zbl 1490.34071 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 475-486 (2021). MSC: 34K06 39A06 45A05 45B05 65D15 PDF BibTeX XML Cite \textit{C.-l. Zhou} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 475--486 (2021; Zbl 1490.34071) Full Text: DOI OpenURL
Ranjan, Rakesh; Prasad, Hari Shankar A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts. (English) Zbl 1475.65057 J. Appl. Math. Comput. 65, No. 1-2, 403-427 (2021). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{R. Ranjan} and \textit{H. S. Prasad}, J. Appl. Math. Comput. 65, No. 1--2, 403--427 (2021; Zbl 1475.65057) Full Text: DOI OpenURL
Xiao, Qiang; Zeng, Zhigang; Huang, Tingwen; Lewis, Frank L. Positivity and stability of coupled differential-difference equations with time-varying delay on time scales. (English) Zbl 1478.93529 Automatica 131, Article ID 109774, 7 p. (2021). MSC: 93D20 93C23 39A30 34K20 PDF BibTeX XML Cite \textit{Q. Xiao} et al., Automatica 131, Article ID 109774, 7 p. (2021; Zbl 1478.93529) Full Text: DOI OpenURL
Öztürk, Yalçın; Demir, Atılım Ilker A spectral collocation matrix method for solving linear Fredholm integro-differential-difference equations. (English) Zbl 1476.65346 Comput. Appl. Math. 40, No. 6, Paper No. 218, 17 p. (2021). MSC: 65R20 45J05 34B10 34K06 PDF BibTeX XML Cite \textit{Y. Öztürk} and \textit{A. I. Demir}, Comput. Appl. Math. 40, No. 6, Paper No. 218, 17 p. (2021; Zbl 1476.65346) Full Text: DOI OpenURL
Biswas, Nityagopal; Datta, Sanjib Kumar; Chakraborty, Gorachand Growth properties of solutions of complex linear differential-difference equations with coefficients having the same logarithmic order in the unit disc. (English) Zbl 1488.30188 J. Indian Math. Soc., New Ser. 88, No. 3-4, 237-249 (2021). MSC: 30D35 34K06 34K12 PDF BibTeX XML Cite \textit{N. Biswas} et al., J. Indian Math. Soc., New Ser. 88, No. 3--4, 237--249 (2021; Zbl 1488.30188) OpenURL
Zaitseva, N. V. Classical solutions of hyperbolic equations with nonlocal potentials. (English. Russian original) Zbl 1477.35102 Dokl. Math. 103, No. 3, 127-129 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 37-40 (2021). MSC: 35L10 35A09 35R10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Dokl. Math. 103, No. 3, 127--129 (2021; Zbl 1477.35102); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 37--40 (2021) Full Text: DOI OpenURL
Chen, Jun-Fan; Lin, Shu-Qing On the existence of solutions of Fermat-type differential-difference equations. (English) Zbl 07418966 Bull. Korean Math. Soc. 58, No. 4, 983-1002 (2021). MSC: 34K41 34M05 30D35 PDF BibTeX XML Cite \textit{J.-F. Chen} and \textit{S.-Q. Lin}, Bull. Korean Math. Soc. 58, No. 4, 983--1002 (2021; Zbl 07418966) Full Text: DOI OpenURL
Wu, Lihao; Zhang, Ranran; Huang, Zhibo Entire solutions to a certain type of differential-difference equations. (Chinese. English summary) Zbl 1488.34432 Acta Math. Sin., Chin. Ser. 64, No. 3, 471-478 (2021). MSC: 34K41 34M05 PDF BibTeX XML Cite \textit{L. Wu} et al., Acta Math. Sin., Chin. Ser. 64, No. 3, 471--478 (2021; Zbl 1488.34432) OpenURL
Kato, Masaki Differential algebraicity of the multiple elliptic gamma function for a rational period. (English) Zbl 1481.33015 Funkc. Ekvacioj, Ser. Int. 64, No. 2, 225-235 (2021). MSC: 33E30 34M04 PDF BibTeX XML Cite \textit{M. Kato}, Funkc. Ekvacioj, Ser. Int. 64, No. 2, 225--235 (2021; Zbl 1481.33015) Full Text: DOI OpenURL
Khalid, Muhammad; Khan, Fareeha Sami; Sultana, Mariam A highly accurate numerical method for solving nonlinear time-fractional differential difference equation. (English) Zbl 1484.65167 Math. Methods Appl. Sci. 44, No. 10, 8243-8253 (2021). MSC: 65L99 34A08 65Q99 PDF BibTeX XML Cite \textit{M. Khalid} et al., Math. Methods Appl. Sci. 44, No. 10, 8243--8253 (2021; Zbl 1484.65167) Full Text: DOI OpenURL
Preobrazhenskaya, M. M. Discrete traveling waves in a relay system of Mackey-Glass equations with two delays. (English. Russian original) Zbl 1496.34106 Theor. Math. Phys. 207, No. 3, 827-840 (2021); translation from Teor. Mat. Fiz. 207, No. 3, 489-504 (2021). Reviewer: Ábel Garab (Klagenfurt) MSC: 34K13 34K17 92D25 34K39 PDF BibTeX XML Cite \textit{M. M. Preobrazhenskaya}, Theor. Math. Phys. 207, No. 3, 827--840 (2021; Zbl 1496.34106); translation from Teor. Mat. Fiz. 207, No. 3, 489--504 (2021) Full Text: DOI OpenURL
Khan, Subuhi; Wani, Shahid Ahmad Some families of differential equations associated with the 2-iterated 2D Appell and related polynomials. (English) Zbl 1480.45009 Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 53, 17 p. (2021). MSC: 45J05 33C65 33C47 33E30 PDF BibTeX XML Cite \textit{S. Khan} and \textit{S. A. Wani}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 53, 17 p. (2021; Zbl 1480.45009) Full Text: DOI OpenURL
Liiko, V. V. Mixed boundary value problem for strongly elliptic differential difference equations in a bounded domain. (English) Zbl 1468.35051 Russ. J. Math. Phys. 28, No. 2, 270-274 (2021). MSC: 35J25 39A05 35A01 35A02 PDF BibTeX XML Cite \textit{V. V. Liiko}, Russ. J. Math. Phys. 28, No. 2, 270--274 (2021; Zbl 1468.35051) Full Text: DOI OpenURL
Lin, Shuqing; Chen, Junfan The non-existence of solutions of a certain type of nonlinear complex differential-difference equations. (Chinese. English summary) Zbl 1488.34430 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 69-80 (2021). MSC: 34K41 34M05 30D35 PDF BibTeX XML Cite \textit{S. Lin} and \textit{J. Chen}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 69--80 (2021; Zbl 1488.34430) OpenURL
Solonukha, O. V. The first boundary value problem for quasilinear parabolic differential-difference equations. (English) Zbl 1466.35254 Lobachevskii J. Math. 42, No. 5, 1067-1077 (2021). MSC: 35K59 35K20 47H05 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Lobachevskii J. Math. 42, No. 5, 1067--1077 (2021; Zbl 1466.35254) Full Text: DOI OpenURL
Lefebvre, Mario Moments of first-passage places for jump-diffusion processes. (English) Zbl 1459.60163 Sankhyā, Ser. A 83, No. 1, 245-253 (2021). MSC: 60J60 60H10 60J70 PDF BibTeX XML Cite \textit{M. Lefebvre}, Sankhyā, Ser. A 83, No. 1, 245--253 (2021; Zbl 1459.60163) Full Text: DOI OpenURL
Zarubin, Aleksandr Nikolaevich Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation. (Russian. English summary) Zbl 1474.35495 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 1, 35-50 (2021). MSC: 35M12 PDF BibTeX XML Cite \textit{A. N. Zarubin}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 1, 35--50 (2021; Zbl 1474.35495) Full Text: DOI MNR OpenURL
Ramesh, V. P.; Priyanga, B. Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations. (English) Zbl 1468.65109 Differ. Equ. Dyn. Syst. 29, No. 1, 239-263 (2021). MSC: 65M06 65N06 65M12 35K20 35K67 35B45 35R07 PDF BibTeX XML Cite \textit{V. P. Ramesh} and \textit{B. Priyanga}, Differ. Equ. Dyn. Syst. 29, No. 1, 239--263 (2021; Zbl 1468.65109) Full Text: DOI OpenURL
Schmidt, Heinz-Jürgen; Schnack, Jürgen; Holthaus, Martin Floquet theory of the analytical solution of a periodically driven two-level system. (English) Zbl 1460.81126 Appl. Anal. 100, No. 5, 992-1009 (2021). MSC: 81V80 34L40 33E30 33C15 PDF BibTeX XML Cite \textit{H.-J. Schmidt} et al., Appl. Anal. 100, No. 5, 992--1009 (2021; Zbl 1460.81126) Full Text: DOI arXiv OpenURL
Zaitseva, N. V. Classical solutions of hyperbolic differential-difference equations with several nonlocal terms. (English) Zbl 1459.35370 Lobachevskii J. Math. 42, No. 1, 231-236 (2021). MSC: 35R10 35L10 35A01 39A12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Lobachevskii J. Math. 42, No. 1, 231--236 (2021; Zbl 1459.35370) Full Text: DOI OpenURL
Lefebvre, Mario; Moutassim, Abderrazak Exact solutions to the homing problem for a Wiener process with jumps. (English) Zbl 1467.93331 Optimization 70, No. 2, 307-319 (2021). Reviewer: Heinrich Hering (Rockenberg) MSC: 93E20 60J70 93C15 PDF BibTeX XML Cite \textit{M. Lefebvre} and \textit{A. Moutassim}, Optimization 70, No. 2, 307--319 (2021; Zbl 1467.93331) Full Text: DOI OpenURL
Garifullin, R. N.; Yamilov, R. I. On the integrability of lattice equations with two continuum limits. (English. Russian original) Zbl 1456.37082 J. Math. Sci., New York 252, No. 2, 283-289 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 159-164 (2018). MSC: 37K60 39A36 39A12 PDF BibTeX XML Cite \textit{R. N. Garifullin} and \textit{R. I. Yamilov}, J. Math. Sci., New York 252, No. 2, 283--289 (2021; Zbl 1456.37082); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 159--164 (2018) Full Text: DOI arXiv OpenURL
Ranjan, Rakesh; Prasad, H. S. An exponentially fitted scheme for solving singularly perturbed delay problems. (English) Zbl 07619265 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 40, No. 1, Math., 161-176 (2020). MSC: 65L10 65L11 65L12 PDF BibTeX XML Cite \textit{R. Ranjan} and \textit{H. S. Prasad}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 40, No. 1, Math., 161--176 (2020; Zbl 07619265) Full Text: Link OpenURL
Wang, Hua; Xu, Hong Yan; Tu, Jin The existence and forms of solutions for some Fermat-type differential-difference equations. (English) Zbl 1484.30040 AIMS Math. 5, No. 1, 685-700 (2020). MSC: 30D05 30D35 39A13 39B72 PDF BibTeX XML Cite \textit{H. Wang} et al., AIMS Math. 5, No. 1, 685--700 (2020; Zbl 1484.30040) Full Text: DOI OpenURL
Xu, Mei; Wang, Bingxian The step-type contrast structure for a second order semi-linear singularly perturbed differential-difference equation. (English) Zbl 1486.34143 Adv. Difference Equ. 2020, Paper No. 561, 11 p. (2020). MSC: 34K26 34K37 26A33 65L10 34K10 34E05 PDF BibTeX XML Cite \textit{M. Xu} and \textit{B. Wang}, Adv. Difference Equ. 2020, Paper No. 561, 11 p. (2020; Zbl 1486.34143) Full Text: DOI OpenURL
Fendzi Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete Tanh method. (English) Zbl 1495.35189 Chaos Solitons Fractals 131, Article ID 109486, 10 p. (2020). MSC: 35R11 26A33 35C07 PDF BibTeX XML Cite \textit{E. Fendzi Donfack} et al., Chaos Solitons Fractals 131, Article ID 109486, 10 p. (2020; Zbl 1495.35189) Full Text: DOI OpenURL
Cimen, Erkan Uniformly convergent numerical method for a singularly perturbed differential difference equation with mixed type. (English) Zbl 07410007 Bull. Belg. Math. Soc. - Simon Stevin 27, No. 5, 755-774 (2020). MSC: 65L03 34K06 34K26 PDF BibTeX XML Cite \textit{E. Cimen}, Bull. Belg. Math. Soc. - Simon Stevin 27, No. 5, 755--774 (2020; Zbl 07410007) Full Text: DOI OpenURL
Debela, Habtamu Garoma; Kejela, Solomon Bati; Negassa, Ayana Deressa Exponentially fitted numerical method for singularly perturbed differential-difference equations. (English) Zbl 1469.65130 Int. J. Differ. Equ. 2020, Article ID 5768323, 13 p. (2020). MSC: 65L11 65L03 PDF BibTeX XML Cite \textit{H. G. Debela} et al., Int. J. Differ. Equ. 2020, Article ID 5768323, 13 p. (2020; Zbl 1469.65130) Full Text: DOI OpenURL
Qi, Zhi Theory of fundamental Bessel functions of high rank. (English) Zbl 1464.33001 Memoirs of the American Mathematical Society 1303. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4325-2/pbk; 978-1-4704-6405-9/ebook). vii, 123 p. (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 33-02 33E20 33E30 44A20 PDF BibTeX XML Cite \textit{Z. Qi}, Theory of fundamental Bessel functions of high rank. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1464.33001) Full Text: DOI arXiv OpenURL
Ilika, S. A.; Tuzyk, I. I.; Cherevko, I. M. Approximation of non-asymptotic quasi-polynomial roots of neutral type differential-difference equations. (Ukrainian. English summary) Zbl 1488.65116 Bukovyn. Mat. Zh. 8, No. 1, 110-117 (2020). MSC: 65H05 34K20 34K40 65Q10 PDF BibTeX XML Cite \textit{S. A. Ilika} et al., Bukovyn. Mat. Zh. 8, No. 1, 110--117 (2020; Zbl 1488.65116) Full Text: DOI OpenURL
Dong, Xianjing Existence and uniqueness of entire solutions to a linear differential-difference equation of infinite order. (English) Zbl 1462.34109 Houston J. Math. 46, No. 1, 13-26 (2020). MSC: 34K41 34K06 34M03 30D35 34M05 PDF BibTeX XML Cite \textit{X. Dong}, Houston J. Math. 46, No. 1, 13--26 (2020; Zbl 1462.34109) Full Text: Link OpenURL
Ayano, Takanori; Bukhshtaber, Viktor Matveevich Analytical and number-theoretical properties of the two-dimensional sigma function. (Russian. English summary) Zbl 1455.11037 Chebyshevskiĭ Sb. 21, No. 1(73), 9-50 (2020). MSC: 11B68 14H30 14H40 33E30 33-02 PDF BibTeX XML Cite \textit{T. Ayano} and \textit{V. M. Bukhshtaber}, Chebyshevskiĭ Sb. 21, No. 1(73), 9--50 (2020; Zbl 1455.11037) Full Text: DOI arXiv MNR OpenURL
Ren, Guozhen; Gao, Lingyun Meromorphic solutions of a type of complex differential-difference equations. (English) Zbl 1463.34362 Math. Appl. 33, No. 3, 607-613 (2020). MSC: 34M05 30D35 39A45 PDF BibTeX XML Cite \textit{G. Ren} and \textit{L. Gao}, Math. Appl. 33, No. 3, 607--613 (2020; Zbl 1463.34362) OpenURL
Li, Wenting; Jiang, Kun; Li, Binbin Nonclassical symmetry analysis of a class of differential-difference equations. (Chinese. English summary) Zbl 1474.37081 J. Nat. Sci. Heilongjiang Univ. 37, No. 2, 144-148 (2020). MSC: 37K06 70G65 PDF BibTeX XML Cite \textit{W. Li} et al., J. Nat. Sci. Heilongjiang Univ. 37, No. 2, 144--148 (2020; Zbl 1474.37081) Full Text: DOI OpenURL
Solonukha, O. V. Generalized solutions of quasilinear elliptic differential-difference equations. (English. Russian original) Zbl 1455.35113 Comput. Math. Math. Phys. 60, No. 12, 2019-2031 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 12, 2085-2097 (2020). MSC: 35J62 35J25 35A01 35A02 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Comput. Math. Math. Phys. 60, No. 12, 2019--2031 (2020; Zbl 1455.35113); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 12, 2085--2097 (2020) Full Text: DOI OpenURL
Karp, D. B.; Melnikov, Y. B.; Turuntaeva, I. V. Hypergeometric representations and differential-difference relations for some kernels appearing in mathematical physics. (English) Zbl 1463.47139 Anal. Math. 46, No. 3, 535-554 (2020). Reviewer: Luigi Rodino (Torino) MSC: 47G10 45A05 33C20 33C05 PDF BibTeX XML Cite \textit{D. B. Karp} et al., Anal. Math. 46, No. 3, 535--554 (2020; Zbl 1463.47139) Full Text: DOI arXiv OpenURL
Garifullin, R. N.; Yamilov, R. I. Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure. (English. Russian original) Zbl 1454.39027 Theor. Math. Phys. 205, No. 1, 1264-1278 (2020); translation from Teor. Mat. Fiz. 205, No. 1, 23-40 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A36 37K60 37K06 PDF BibTeX XML Cite \textit{R. N. Garifullin} and \textit{R. I. Yamilov}, Theor. Math. Phys. 205, No. 1, 1264--1278 (2020; Zbl 1454.39027); translation from Teor. Mat. Fiz. 205, No. 1, 23--40 (2020) Full Text: DOI arXiv OpenURL
Ngoc, Pham Huu Anh Stability of coupled functional differential-difference equations. (English) Zbl 1453.93203 Int. J. Control 93, No. 8, 1920-1930 (2020). MSC: 93D23 93C23 34K20 PDF BibTeX XML Cite \textit{P. H. A. Ngoc}, Int. J. Control 93, No. 8, 1920--1930 (2020; Zbl 1453.93203) Full Text: DOI OpenURL
Wani, Shahid Ahmad; Khan, Subuhi Certain properties and applications of the 2D Sheffer and related polynomials. (English) Zbl 1452.33005 Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 947-971 (2020). MSC: 33E30 15A30 PDF BibTeX XML Cite \textit{S. A. Wani} and \textit{S. Khan}, Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 947--971 (2020; Zbl 1452.33005) Full Text: DOI OpenURL
Popov, V. A. Elliptic functional differential equations with degenerations. (English) Zbl 1471.35291 Lobachevskii J. Math. 41, No. 5, 869-894 (2020). MSC: 35R10 35J25 39A14 39A27 PDF BibTeX XML Cite \textit{V. A. Popov}, Lobachevskii J. Math. 41, No. 5, 869--894 (2020; Zbl 1471.35291) Full Text: DOI OpenURL
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 1463.65227 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M06 65M12 35K20 35B25 65D07 35B45 35B50 35R07 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 1463.65227) Full Text: DOI OpenURL
Glyzin, S. D.; Preobrazhenskaya, M. M. Mechanism of appearing complex relaxation oscillations in a system of two synaptically coupled neurons. (English. Russian original) Zbl 1452.34075 J. Math. Sci., New York 249, No. 6, 894-910 (2020); translation from Probl. Mat. Anal. 103, 71-84 (2020). Reviewer: Robert Vrabel (Trnava) MSC: 34K13 34K26 34K60 92C20 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{M. M. Preobrazhenskaya}, J. Math. Sci., New York 249, No. 6, 894--910 (2020; Zbl 1452.34075); translation from Probl. Mat. Anal. 103, 71--84 (2020) Full Text: DOI OpenURL
Bollati, Julieta; Semitiel, Jose A.; Natale, Maria F.; Tarzia, Domingo A. Existence and uniqueness of the \(p\)-generalized modified error function. (English) Zbl 1461.34048 Electron. J. Differ. Equ. 2020, Paper No. 35, 11 p. (2020). Reviewer: Alessandro Calamai (Ancona) MSC: 34B18 34B15 47H10 33E30 PDF BibTeX XML Cite \textit{J. Bollati} et al., Electron. J. Differ. Equ. 2020, Paper No. 35, 11 p. (2020; Zbl 1461.34048) Full Text: arXiv Link OpenURL
Preobrazhenskaya, M. M. A relay Mackey-Glass model with two delays. (English. Russian original) Zbl 1448.92070 Theor. Math. Phys. 203, No. 1, 524-534 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 106-118 (2020). MSC: 92C37 92D25 34K13 PDF BibTeX XML Cite \textit{M. M. Preobrazhenskaya}, Theor. Math. Phys. 203, No. 1, 524--534 (2020; Zbl 1448.92070); translation from Teor. Mat. Fiz. 203, No. 1, 106--118 (2020) Full Text: DOI OpenURL
Kojima, Kentaro; Sato, Tsukasa; Takemura, Kouichi Ultradiscrete limit of the spectral polynomial of the \(q\)-Heun equation. (English) Zbl 1445.39005 Filipuk, Galina (ed.) et al., Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2–15, 2018. Berlin: De Gruyter. De Gruyter Proc. Math., 297-312 (2020). MSC: 39A13 39A12 33E30 PDF BibTeX XML Cite \textit{K. Kojima} et al., in: Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2--15, 2018. Berlin: De Gruyter. 297--312 (2020; Zbl 1445.39005) Full Text: DOI arXiv OpenURL
Liiko, V. V.; Skubachevskii, A. L. Mixed problems for strongly elliptic differential-difference equations in a cylinder. (English. Russian original) Zbl 1442.39023 Math. Notes 107, No. 5, 770-790 (2020); translation from Mat. Zametki 107, No. 5, 693-716 (2020). MSC: 39A70 39A12 35J99 PDF BibTeX XML Cite \textit{V. V. Liiko} and \textit{A. L. Skubachevskii}, Math. Notes 107, No. 5, 770--790 (2020; Zbl 1442.39023); translation from Mat. Zametki 107, No. 5, 693--716 (2020) Full Text: DOI OpenURL
Wani, Shahid Ahmad; Khan, Subuhi; Naikoo, Shakeel Ahmad Differential and integral equations for the Laguerre-Gould-Hopper-based Appell and related polynomials. (English) Zbl 1488.33076 Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 617-646 (2020). MSC: 33E30 33C45 33C65 PDF BibTeX XML Cite \textit{S. A. Wani} et al., Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 617--646 (2020; Zbl 1488.33076) Full Text: DOI OpenURL
Atai, Farrokh; Langmann, Edwin Exact solutions by integrals of the non-stationary elliptic Calogero-Sutherland equation. (English) Zbl 1445.37043 J. Integrable Syst. 5, Article ID xyaa001, 26 p. (2020). MSC: 37J38 37J35 37K10 33E30 81Q80 PDF BibTeX XML Cite \textit{F. Atai} and \textit{E. Langmann}, J. Integrable Syst. 5, Article ID xyaa001, 26 p. (2020; Zbl 1445.37043) Full Text: DOI arXiv OpenURL
Magal, P.; Webb, G. F.; Wu, Yixiang A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees. (English) Zbl 1443.92161 J. Math. Biol. 80, No. 7, 2363-2393 (2020). MSC: 92D25 92D40 92D45 PDF BibTeX XML Cite \textit{P. Magal} et al., J. Math. Biol. 80, No. 7, 2363--2393 (2020; Zbl 1443.92161) Full Text: DOI OpenURL
Cheng, Jin Fa On the complex difference equation of hypergeometric type on non-uniform lattices. (English) Zbl 1440.39007 Acta Math. Sin., Engl. Ser. 36, No. 5, 487-511 (2020). MSC: 39A45 33C45 33D45 33E30 33E50 PDF BibTeX XML Cite \textit{J. F. Cheng}, Acta Math. Sin., Engl. Ser. 36, No. 5, 487--511 (2020; Zbl 1440.39007) Full Text: DOI arXiv OpenURL
Dariescu, Marina-Aura; Dariescu, Ciprian; Stelea, Cristian Massless fermions on static general prolate metrics and their Heun solutions. (English) Zbl 1434.81026 Mod. Phys. Lett. A 35, No. 7, Article ID 2050036, 17 p. (2020). MSC: 81Q05 81Q70 53B50 81Q35 33E30 PDF BibTeX XML Cite \textit{M.-A. Dariescu} et al., Mod. Phys. Lett. A 35, No. 7, Article ID 2050036, 17 p. (2020; Zbl 1434.81026) Full Text: DOI arXiv OpenURL
Qi, Xiaoguang; Yang, Lianzhong Uniqueness of meromorphic functions concerning their shifts and derivatives. (English) Zbl 1437.30013 Comput. Methods Funct. Theory 20, No. 1, 159-178 (2020). MSC: 30D35 39A10 PDF BibTeX XML Cite \textit{X. Qi} and \textit{L. Yang}, Comput. Methods Funct. Theory 20, No. 1, 159--178 (2020; Zbl 1437.30013) Full Text: DOI OpenURL