Didier, Gustavo; Kanamori, Shigeki; Sabzikar, Farzad On multivariate fractional random fields: tempering and operator-stable laws. (English) Zbl 07315345 J. Math. Anal. Appl. 495, No. 1, Article ID 124659, 41 p. (2021). MSC: 60 46 PDF BibTeX XML Cite \textit{G. Didier} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124659, 41 p. (2021; Zbl 07315345) Full Text: DOI
Markus Melenk, Jens; Rieder, Alexander hp-FEM for the fractional heat equation. (English) Zbl 07315156 IMA J. Numer. Anal. 41, No. 1, 412-454 (2021). MSC: 65 PDF BibTeX XML Cite \textit{J. Markus Melenk} and \textit{A. Rieder}, IMA J. Numer. Anal. 41, No. 1, 412--454 (2021; Zbl 07315156) Full Text: DOI
Cancès, Clément; Chainais-Hillairet, Claire; Fuhrmann, Jürgen; Gaudeul, Benoît A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model. (English) Zbl 07315152 IMA J. Numer. Anal. 41, No. 1, 271-314 (2021). MSC: 65 PDF BibTeX XML Cite \textit{C. Cancès} et al., IMA J. Numer. Anal. 41, No. 1, 271--314 (2021; Zbl 07315152) Full Text: DOI
Zhu, Linhe; Liu, Wenshan Spatial dynamics and optimization method for a network propagation model in a shifting environment. (English) Zbl 07314933 Discrete Contin. Dyn. Syst. 41, No. 4, 1843-1874 (2021). MSC: 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{W. Liu}, Discrete Contin. Dyn. Syst. 41, No. 4, 1843--1874 (2021; Zbl 07314933) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92 35 92D25 92D40 35F20 35K55 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35A01 35K57 35K58 35Q92 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Augner, Björn; Bothe, Dieter The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. (English) Zbl 07314571 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533-574 (2021). MSC: 35K57 35K51 80A30 92E20 PDF BibTeX XML Cite \textit{B. Augner} and \textit{D. Bothe}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533--574 (2021; Zbl 07314571) Full Text: DOI
Andreianov, Boris; Maliki, Mohamed On classes of well-posedness for quasilinear diffusion equations in the whole space. (English) Zbl 07314570 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505-531 (2021). MSC: 35J62 35A02 37L05 35J70 35D30 PDF BibTeX XML Cite \textit{B. Andreianov} and \textit{M. Maliki}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505--531 (2021; Zbl 07314570) Full Text: DOI
Laamri, El Haj; Pierre, Michel Stationary reaction-diffusion systems in \(L^1\) revisited. (English) Zbl 07314568 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455-464 (2021). MSC: 35K10 35K40 35K57 PDF BibTeX XML Cite \textit{E. H. Laamri} and \textit{M. Pierre}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455--464 (2021; Zbl 07314568) Full Text: DOI
Heida, Martin; Neukamm, Stefan; Varga, Mario Stochastic homogenization of \(\Lambda\)-convex gradient flows. (English) Zbl 07314565 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427-453 (2021). MSC: 49J40 74Q10 35K57 60H30 PDF BibTeX XML Cite \textit{M. Heida} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427--453 (2021; Zbl 07314565) Full Text: DOI
Frenzel, Thomas; Liero, Matthias Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. (English) Zbl 07314564 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395-425 (2021). MSC: 35K20 35K10 35K57 49S99 PDF BibTeX XML Cite \textit{T. Frenzel} and \textit{M. Liero}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395--425 (2021; Zbl 07314564) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Luise, Giulia; Savaré, Giuseppe Contraction and regularizing properties of heat flows in metric measure spaces. (English) Zbl 07314558 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 273-297 (2021). MSC: 49Q20 47D07 30L99 PDF BibTeX XML Cite \textit{G. Luise} and \textit{G. Savaré}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 273--297 (2021; Zbl 07314558) Full Text: DOI
Briani, Maya; Caramellino, Lucia; Terenzi, Giulia Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusion with application to the Bates model. (English) Zbl 07314379 SIAM J. Numer. Anal. 59, No. 1, 477-502 (2021). MSC: 60H35 65C20 91G60 PDF BibTeX XML Cite \textit{M. Briani} et al., SIAM J. Numer. Anal. 59, No. 1, 477--502 (2021; Zbl 07314379) Full Text: DOI
Zhu, Neng; Liu, Zhengrong; Wang, Fang; Zhao, Kun Asymptotic dynamics of a system of conservation laws from chemotaxis. (English) Zbl 07314365 Discrete Contin. Dyn. Syst. 41, No. 2, 813-847 (2021). MSC: 35B40 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{N. Zhu} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 813--847 (2021; Zbl 07314365) Full Text: DOI
Tao, Youshan; Winkler, Michael Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. (English) Zbl 07314171 Discrete Contin. Dyn. Syst. 41, No. 1, 439-454 (2021). MSC: 35B44 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Discrete Contin. Dyn. Syst. 41, No. 1, 439--454 (2021; Zbl 07314171) Full Text: DOI
Ninomiya, Hirokazu Entire solutions of the Allen-Cahn-Nagumo equation in a multi-dimensional space. (English) Zbl 07314169 Discrete Contin. Dyn. Syst. 41, No. 1, 395-412 (2021). MSC: 35K57 35C07 35B40 35B06 PDF BibTeX XML Cite \textit{H. Ninomiya}, Discrete Contin. Dyn. Syst. 41, No. 1, 395--412 (2021; Zbl 07314169) Full Text: DOI
Dipierro, Serena; Pellacci, Benedetta; Valdinoci, Enrico; Verzini, Gianmaria Time-fractional equations with reaction terms: fundamental solutions and asymptotics. (English) Zbl 07314164 Discrete Contin. Dyn. Syst. 41, No. 1, 257-275 (2021). MSC: 35R11 35C15 35B40 35K57 35K08 26A33 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 257--275 (2021; Zbl 07314164) Full Text: DOI
Lefebvre, Mario; Moutassim, Abderrazak Exact solutions to the homing problem for a Wiener process with jumps. (English) Zbl 07313468 Optimization 70, No. 2, 307-319 (2021). MSC: 93E20 60J70 93C15 PDF BibTeX XML Cite \textit{M. Lefebvre} and \textit{A. Moutassim}, Optimization 70, No. 2, 307--319 (2021; Zbl 07313468) Full Text: DOI
Meglioli, Giulia; Punzo, Fabio Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density. (English) Zbl 07312796 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112187, 22 p. (2021). MSC: 35B44 35B51 35K57 35K59 35K65 PDF BibTeX XML Cite \textit{G. Meglioli} and \textit{F. Punzo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112187, 22 p. (2021; Zbl 07312796) Full Text: DOI
Hobson, David The shape of the value function under Poisson optimal stopping. (English) Zbl 07312690 Stochastic Processes Appl. 133, 229-246 (2021). MSC: 60G40 PDF BibTeX XML Cite \textit{D. Hobson}, Stochastic Processes Appl. 133, 229--246 (2021; Zbl 07312690) Full Text: DOI
Barrasso, Adrien; Russo, Francesco Martingale driven BSDEs, PDEs and other related deterministic problems. (English) Zbl 07312689 Stochastic Processes Appl. 133, 193-228 (2021). MSC: 60H30 60H10 35S05 60J35 60J60 60J75 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Stochastic Processes Appl. 133, 193--228 (2021; Zbl 07312689) Full Text: DOI
Gradinaru, Mihai; Haugomat, Tristan Locally Feller processes and martingale local problems. (English) Zbl 07312687 Stochastic Processes Appl. 133, 129-165 (2021). MSC: 60J25 60G44 60J35 60B10 60J75 47D07 PDF BibTeX XML Cite \textit{M. Gradinaru} and \textit{T. Haugomat}, Stochastic Processes Appl. 133, 129--165 (2021; Zbl 07312687) Full Text: DOI
Zhu, Xuanchen; Chen, Haofeng; Luan, Weiling On the study of cyclic plasticity behaviour of primary electrode particle for lithium-ion battery. (English) Zbl 07312427 Eur. J. Mech., A, Solids 86, Article ID 104175, 12 p. (2021). MSC: 74 PDF BibTeX XML Cite \textit{X. Zhu} et al., Eur. J. Mech., A, Solids 86, Article ID 104175, 12 p. (2021; Zbl 07312427) Full Text: DOI
Fadai, Nabil T. Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model. (English) Zbl 07312083 Nonlinearity 34, No. 2, 725-743 (2021). MSC: 35C07 35K57 34B16 41A60 PDF BibTeX XML Cite \textit{N. T. Fadai}, Nonlinearity 34, No. 2, 725--743 (2021; Zbl 07312083) Full Text: DOI
Ducrot, Arnaud; Giletti, Thomas; Guo, Jong-Shenq; Shimojo, Masahiko Asymptotic spreading speeds for a predator-prey system with two predators and one prey. (English) Zbl 07312081 Nonlinearity 34, No. 2, 669-704 (2021). MSC: 35K45 35K57 35K55 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Nonlinearity 34, No. 2, 669--704 (2021; Zbl 07312081) Full Text: DOI
Lucero Lorca, José Pablo; Kanschat, Guido Multilevel Schwarz preconditioners for singularly perturbed symmetric reaction-diffusion systems. (English) Zbl 07311975 ETNA, Electron. Trans. Numer. Anal. 54, 89-107 (2021). MSC: 65N55 65N30 65J10 65F08 PDF BibTeX XML Cite \textit{J. P. Lucero Lorca} and \textit{G. Kanschat}, ETNA, Electron. Trans. Numer. Anal. 54, 89--107 (2021; Zbl 07311975) Full Text: DOI Link
Jeong, ShinJa; Kim, Mi-Young Computational aspects of the multiscale discontinuous Galerkin method for convection-diffusion-reaction problems. (English) Zbl 07311265 Electron Res. Arch. 29, No. 2, 1991-2006 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65N22 65F08 65F10 PDF BibTeX XML Cite \textit{S. Jeong} and \textit{M.-Y. Kim}, Electron Res. Arch. 29, No. 2, 1991--2006 (2021; Zbl 07311265) Full Text: DOI
Li, Dingshi; Wang, Xuemin Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. (English) Zbl 07311264 Electron Res. Arch. 29, No. 2, 1969-1990 (2021). MSC: 37C 35R60 35K57 35B40 PDF BibTeX XML Cite \textit{D. Li} and \textit{X. Wang}, Electron Res. Arch. 29, No. 2, 1969--1990 (2021; Zbl 07311264) Full Text: DOI
Cao, Waixiang; Wang, Chunmei New primal-dual weak Galerkin finite element methods for convection-diffusion problems. (English) Zbl 07311185 Appl. Numer. Math. 162, 171-191 (2021). MSC: 65 PDF BibTeX XML Cite \textit{W. Cao} and \textit{C. Wang}, Appl. Numer. Math. 162, 171--191 (2021; Zbl 07311185) Full Text: DOI
Bohaienko, Vsevolod On the recurrent computation of fractional operator with Mittag-Leffler kernel. (English) Zbl 07311183 Appl. Numer. Math. 162, 137-149 (2021). MSC: 65N 26A PDF BibTeX XML Cite \textit{V. Bohaienko}, Appl. Numer. Math. 162, 137--149 (2021; Zbl 07311183) Full Text: DOI
Gracia, Jose Luis; O’Riordan, Eugene Parameter-uniform approximations for a singularly perturbed convection-diffusion problem with a discontinuous initial condition. (English) Zbl 07311181 Appl. Numer. Math. 162, 106-123 (2021). MSC: 65L 65M 35K PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{E. O'Riordan}, Appl. Numer. Math. 162, 106--123 (2021; Zbl 07311181) Full Text: DOI
Yan, Weifang Traveling waves in a stage-structured predator-prey model with Holling type functional response. (English) Zbl 07311103 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407-434 (2021). MSC: 35K57 92D25 PDF BibTeX XML Cite \textit{W. Yan}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407--434 (2021; Zbl 07311103) Full Text: DOI
Calvez, Vincent; Carrillo, José Antonio; Hoffmann, Franca Uniqueness of stationary states for singular Keller-Segel type models. (English) Zbl 07310973 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021). MSC: 35B38 35B40 26D10 PDF BibTeX XML Cite \textit{V. Calvez} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021; Zbl 07310973) Full Text: DOI
Ishii, Yuta Concentration phenomena on \(Y\)-shaped metric graph for the Gierer-Meinhardt model with heterogeneity. (English) Zbl 07310972 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021). MSC: 35B25 35R02 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Ishii}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021; Zbl 07310972) Full Text: DOI
Bessonov, Nikolai; Bocharov, Gennady; Meyerhans, Andreas; Popov, Vladimir; Volpert, Vitaly Existence and dynamics of strains in a nonlocal reaction-diffusion model of viral evolution. (English) Zbl 07310943 SIAM J. Appl. Math. 81, No. 1, 107-128 (2021). MSC: 35K57 PDF BibTeX XML Cite \textit{N. Bessonov} et al., SIAM J. Appl. Math. 81, No. 1, 107--128 (2021; Zbl 07310943) Full Text: DOI
Lin, Xue-lei; Ng, Micheal K.; Wathen, Andy Preconditioners for multilevel Toeplitz linear systems from steady-state and evolutionary advection-diffusion equations. (English) Zbl 07310829 Appl. Numer. Math. 161, 469-488 (2021). MSC: 65N 76M 76D PDF BibTeX XML Cite \textit{X.-l. Lin} et al., Appl. Numer. Math. 161, 469--488 (2021; Zbl 07310829) Full Text: DOI
Heydari, M. H.; Avazzadeh, Z.; Atangana, A. Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations. (English) Zbl 07310826 Appl. Numer. Math. 161, 425-436 (2021). MSC: 35 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Numer. Math. 161, 425--436 (2021; Zbl 07310826) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M 35R 39A PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Quenjel, El Houssaine Nonlinear finite volume discretization for transient diffusion problems on general meshes. (English) Zbl 07310811 Appl. Numer. Math. 161, 148-168 (2021). MSC: 76M 76S 65M PDF BibTeX XML Cite \textit{E. H. Quenjel}, Appl. Numer. Math. 161, 148--168 (2021; Zbl 07310811) Full Text: DOI
Zheng, Xiangcheng; Liu, Huan; Wang, Hong; Fu, Hongfei Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions. (English) Zbl 07310800 Appl. Numer. Math. 161, 1-12 (2021). MSC: 65N 35R 35B 35J PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Numer. Math. 161, 1--12 (2021; Zbl 07310800) Full Text: DOI
Liu, Jun; Zhu, Chen; Chen, Yanping; Fu, Hongfei A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations. (English) Zbl 07310778 Appl. Numer. Math. 160, 331-348 (2021). MSC: 35K 35R 65M PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Numer. Math. 160, 331--348 (2021; Zbl 07310778) Full Text: DOI
Bhardwaj, Akanksha; Kumar, Alpesh A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. (English) Zbl 07310767 Appl. Numer. Math. 160, 146-165 (2021). MSC: 35R 65M PDF BibTeX XML Cite \textit{A. Bhardwaj} and \textit{A. Kumar}, Appl. Numer. Math. 160, 146--165 (2021; Zbl 07310767) Full Text: DOI
Cai, Zhiqiang; He, Cuiyu; Zhang, Shun Improved ZZ a posteriori error estimators for diffusion problems: discontinuous elements. (English) Zbl 07310751 Appl. Numer. Math. 159, 174-189 (2021). MSC: 35J 65N PDF BibTeX XML Cite \textit{Z. Cai} et al., Appl. Numer. Math. 159, 174--189 (2021; Zbl 07310751) Full Text: DOI
Huang, Jianfei; Zhang, Jingna; Arshad, Sadia; Tang, Yifa A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. (English) Zbl 07310750 Appl. Numer. Math. 159, 159-173 (2021). MSC: 65M 35R PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Numer. Math. 159, 159--173 (2021; Zbl 07310750) Full Text: DOI
Fukushima, Tomonori; Ikehata, Ryo; Michihisa, Hironori Thresholds for low regularity solutions to wave equations with structural damping. (English) Zbl 07310683 J. Math. Anal. Appl. 494, No. 2, Article ID 124669, 22 p. (2021). MSC: 35 60 PDF BibTeX XML Cite \textit{T. Fukushima} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124669, 22 p. (2021; Zbl 07310683) Full Text: DOI
Lee, Jihoon; Nguyen, Ngocthach Gromov-Hausdorff stability of inertial manifolds under perturbations of the domain and equation. (English) Zbl 07310656 J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021). MSC: 37 35 PDF BibTeX XML Cite \textit{J. Lee} and \textit{N. Nguyen}, J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021; Zbl 07310656) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. A method for constructing exact solutions of nonlinear delay PDEs. (English) Zbl 07310653 J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021; Zbl 07310653) Full Text: DOI
Barré, Julien; Dobson, Paul; Ottobre, Michela; Zatorska, Ewelina Fast non-mean-field networks: uniform in time averaging. (English) Zbl 07309973 SIAM J. Math. Anal. 53, No. 1, 937-972 (2021). MSC: 60K35 47D07 60J60 35Q84 35Q82 82C31 PDF BibTeX XML Cite \textit{J. Barré} et al., SIAM J. Math. Anal. 53, No. 1, 937--972 (2021; Zbl 07309973) Full Text: DOI
Pham, Trieu Duong; Reissig, Michael Semilinear mixed problems in exterior domains for \(\sigma \)-evolution equations with friction and coefficients depending on spatial variables. (English) Zbl 07309695 J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021). MSC: 35 74 PDF BibTeX XML Cite \textit{T. D. Pham} and \textit{M. Reissig}, J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021; Zbl 07309695) Full Text: DOI
Yang, C.; Rodríguez, N. Existence and stability traveling wave solutions for a system of social outbursts. (English) Zbl 07309691 J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021). MSC: 35 34 PDF BibTeX XML Cite \textit{C. Yang} and \textit{N. Rodríguez}, J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021; Zbl 07309691) Full Text: DOI
Sun, Xiang; Pan, Xiaomin; Choi, Jung-Il Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion. (English) Zbl 07309640 J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021). MSC: 76M35 76D05 76R50 80A19 PDF BibTeX XML Cite \textit{X. Sun} et al., J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021; Zbl 07309640) Full Text: DOI
Lü, Shujuan; Xu, Tao; Feng, Zhaosheng A second-order numerical method for space-time variable-order diffusion equation. (English) Zbl 07309616 J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021). MSC: 65M06 65M12 26A33 PDF BibTeX XML Cite \textit{S. Lü} et al., J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021; Zbl 07309616) Full Text: DOI
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a reaction-diffusion system with chemotaxis and non-local terms using generalized finite difference method. Study of the convergence. (English) Zbl 07309595 J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021). MSC: 92C17 35K57 65M06 PDF BibTeX XML Cite \textit{J. J. Benito} et al., J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021; Zbl 07309595) Full Text: DOI
Sheng, Wei-Jie; Wang, Mingxin; Wang, Zhi-Cheng Entire solutions of time periodic bistable Lotka-Volterra competition-diffusion systems in \(\mathbb{R}^N\). (English) Zbl 07309247 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021). MSC: 35C07 35K57 35B08 PDF BibTeX XML Cite \textit{W.-J. Sheng} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021; Zbl 07309247) Full Text: DOI
Ei, Shin-Ichiro; Ishii, Hiroshi; Kondo, Shigeru; Miura, Takashi; Tanaka, Yoshitaro Effective nonlocal kernels on reaction-diffusion networks. (English) Zbl 07309203 J. Theor. Biol. 509, Article ID 110496, 18 p. (2021). MSC: 92C42 92C40 35Q92 PDF BibTeX XML Cite \textit{S.-I. Ei} et al., J. Theor. Biol. 509, Article ID 110496, 18 p. (2021; Zbl 07309203) Full Text: DOI
Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 07308678 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 07308678) Full Text: DOI
Berestycki, Henri; Roquejoffre, Jean-Michel; Rossi, Luca Propagation of epidemics along lines with fast diffusion. (English) Zbl 07308617 Bull. Math. Biol. 83, No. 1, Paper No. 2, 34 p. (2021). MSC: 92D30 PDF BibTeX XML Cite \textit{H. Berestycki} et al., Bull. Math. Biol. 83, No. 1, Paper No. 2, 34 p. (2021; Zbl 07308617) Full Text: DOI
Yamamoto, Masakazu; Sugiyama, Yuusuke Optimal estimates for far field asymptotics of solutions to the quasi-geostrophic equation. (English) Zbl 07308531 Proc. Am. Math. Soc. 149, No. 3, 1099-1110 (2021). MSC: 35Q35 35R11 35B40 86A05 PDF BibTeX XML Cite \textit{M. Yamamoto} and \textit{Y. Sugiyama}, Proc. Am. Math. Soc. 149, No. 3, 1099--1110 (2021; Zbl 07308531) Full Text: DOI
Wiegold, Tillmann; Klinge, S.; Gilbert, R. P.; Holzapfel, G. A. Numerical simulation of the viral entry into a cell driven by receptor diffusion. (English) Zbl 07308038 Comput. Math. Appl. 84, 224-243 (2021). MSC: 74 92 PDF BibTeX XML Cite \textit{T. Wiegold} et al., Comput. Math. Appl. 84, 224--243 (2021; Zbl 07308038) Full Text: DOI
Ding, Hengfei The development of higher-order numerical differential formulas of Caputo derivative and their applications (I). (English) Zbl 07308037 Comput. Math. Appl. 84, 203-223 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{H. Ding}, Comput. Math. Appl. 84, 203--223 (2021; Zbl 07308037) Full Text: DOI
Wang, Yue; Meng, Xiangyun; Li, Yonghai The finite volume element method on the Shishkin mesh for a singularly perturbed reaction-diffusion problem. (English) Zbl 07308031 Comput. Math. Appl. 84, 112-127 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{Y. Wang} et al., Comput. Math. Appl. 84, 112--127 (2021; Zbl 07308031) Full Text: DOI
Liu, Xinfei; Yang, Xiaoyuan Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction-diffusion equation. (English) Zbl 07308027 Comput. Math. Appl. 84, 39-55 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{X. Liu} and \textit{X. Yang}, Comput. Math. Appl. 84, 39--55 (2021; Zbl 07308027) Full Text: DOI
Soleymani, Fazlollah; Zhu, Shengfeng RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function. (English) Zbl 07308009 Comput. Math. Appl. 82, 161-178 (2021). MSC: 65 91 PDF BibTeX XML Cite \textit{F. Soleymani} and \textit{S. Zhu}, Comput. Math. Appl. 82, 161--178 (2021; Zbl 07308009) Full Text: DOI
Koley, Ujjwal; Ray, Deep; Sarkar, Tanmay Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data. (English) Zbl 07307678 SIAM/ASA J. Uncertain. Quantif. 9, 65-105 (2021). MSC: 65M06 65C05 65M12 35L65 35R11 35R60 PDF BibTeX XML Cite \textit{U. Koley} et al., SIAM/ASA J. Uncertain. Quantif. 9, 65--105 (2021; Zbl 07307678) Full Text: DOI
Guo, Hongjun; Monobe, Harunori \(V\)-shaped fronts around an obstacle. (English) Zbl 07307522 Math. Ann. 379, No. 1-2, 661-689 (2021). MSC: 35A18 35B08 35B30 35C07 35K57 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H. Monobe}, Math. Ann. 379, No. 1--2, 661--689 (2021; Zbl 07307522) Full Text: DOI
Mohammed, Wael W. Fast-diffusion limit for reaction-diffusion equations with degenerate multiplicative and additive noise. (English) Zbl 07307374 J. Dyn. Differ. Equations 33, No. 1, 577-592 (2021). MSC: 60H10 60H15 35R60 PDF BibTeX XML Cite \textit{W. W. Mohammed}, J. Dyn. Differ. Equations 33, No. 1, 577--592 (2021; Zbl 07307374) Full Text: DOI
Wang, Jinliang; Wang, Jing Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. (English) Zbl 07307373 J. Dyn. Differ. Equations 33, No. 1, 549-575 (2021). MSC: 35Q92 92C60 PDF BibTeX XML Cite \textit{J. Wang} and \textit{J. Wang}, J. Dyn. Differ. Equations 33, No. 1, 549--575 (2021; Zbl 07307373) Full Text: DOI
Ge, Chuanfang; Geng, Jiansheng; Lou, Zhaowei KAM tori for completely resonant Hamiltonian derivative beam equations on \(\mathbb{T}^2\). (English) Zbl 07307372 J. Dyn. Differ. Equations 33, No. 1, 525-547 (2021). MSC: 37J40 34C27 34C15 PDF BibTeX XML Cite \textit{C. Ge} et al., J. Dyn. Differ. Equations 33, No. 1, 525--547 (2021; Zbl 07307372) Full Text: DOI
Gordon, Peter V.; Hegde, Uday G.; Hicks, Michael C. On traveling front of ignition in co-flow laminar reactive jets. (English) Zbl 07307309 SIAM J. Appl. Math. 81, No. 1, 47-59 (2021). MSC: 35C05 35C07 35C15 35K57 80A25 PDF BibTeX XML Cite \textit{P. V. Gordon} et al., SIAM J. Appl. Math. 81, No. 1, 47--59 (2021; Zbl 07307309) Full Text: DOI
Lawley, Sean D. The effects of fast inactivation on conditional first passage times of mortal diffusive searchers. (English) Zbl 07307307 SIAM J. Appl. Math. 81, No. 1, 1-24 (2021). MSC: 92C37 60G50 PDF BibTeX XML Cite \textit{S. D. Lawley}, SIAM J. Appl. Math. 81, No. 1, 1--24 (2021; Zbl 07307307) Full Text: DOI
Aguilar-Madera, C. G.; Herrera-Hernández, E. C.; Espinosa-Paredes, G.; Briones-Carrillo, J. A. On the effective diffusion in the Sierpiński carpet. (English) Zbl 07307220 Comput. Geosci. 25, No. 1, 467-473 (2021). MSC: 76S05 76R50 86A05 PDF BibTeX XML Cite \textit{C. G. Aguilar-Madera} et al., Comput. Geosci. 25, No. 1, 467--473 (2021; Zbl 07307220) Full Text: DOI
Steefel, Carl I.; Tournassat, Christophe A model for discrete fracture-clay rock interaction incorporating electrostatic effects on transport. (English) Zbl 07307217 Comput. Geosci. 25, No. 1, 395-410 (2021). MSC: 86A60 76S05 86-08 PDF BibTeX XML Cite \textit{C. I. Steefel} and \textit{C. Tournassat}, Comput. Geosci. 25, No. 1, 395--410 (2021; Zbl 07307217) Full Text: DOI
Yan, Xiang-Ping; Zhang, Cun-Hua Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. (English) Zbl 07307174 Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021). MSC: 35 92 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021; Zbl 07307174) Full Text: DOI
Roth, Jacob; Barajas-Solano, David A.; Stinis, Panos; Weare, Jonathan; Anitescu, Mihai A kinetic Monte Carlo approach for simulating cascading transmission line failure. (English) Zbl 07306712 Multiscale Model. Simul. 19, No. 1, 208-241 (2021). MSC: 60H30 68U20 37H10 PDF BibTeX XML Cite \textit{J. Roth} et al., Multiscale Model. Simul. 19, No. 1, 208--241 (2021; Zbl 07306712) Full Text: DOI
Heningburg, Vincent; Hauck, Cory D. A hybrid finite-volume, discontinuous Galerkin discretization for the radiative transport equation. (English) Zbl 07306705 Multiscale Model. Simul. 19, No. 1, 1-24 (2021). MSC: 82D75 65L60 65M08 35B40 76R50 PDF BibTeX XML Cite \textit{V. Heningburg} and \textit{C. D. Hauck}, Multiscale Model. Simul. 19, No. 1, 1--24 (2021; Zbl 07306705) Full Text: DOI
Profeta, Christophe Persistence and exit times for some additive functionals of skew Bessel processes. (English) Zbl 07306267 J. Theor. Probab. 34, No. 1, 363-390 (2021). MSC: 60J60 60G40 60G18 PDF BibTeX XML Cite \textit{C. Profeta}, J. Theor. Probab. 34, No. 1, 363--390 (2021; Zbl 07306267) Full Text: DOI
Duncan, Tyrone E. Theta functions and Brownian motion. (English) Zbl 07306252 J. Theor. Probab. 34, No. 1, 81-89 (2021). MSC: 58J65 22E65 60J90 22E67 PDF BibTeX XML Cite \textit{T. E. Duncan}, J. Theor. Probab. 34, No. 1, 81--89 (2021; Zbl 07306252) Full Text: DOI
Mongolian, Suriguga; Kao, Yonggui; Wang, Changhong; Xia, Hongwei Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks. (English) Zbl 07305992 J. Franklin Inst. 358, No. 1, 877-894 (2021). MSC: 93D09 93E15 93B70 93C27 93C20 PDF BibTeX XML Cite \textit{S. Mongolian} et al., J. Franklin Inst. 358, No. 1, 877--894 (2021; Zbl 07305992) Full Text: DOI
Dai, Feng; Liu, Bin Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy. (English) Zbl 07305972 J. Franklin Inst. 358, No. 1, 448-473 (2021). MSC: 92C50 49J20 35K57 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, J. Franklin Inst. 358, No. 1, 448--473 (2021; Zbl 07305972) Full Text: DOI
Lanznaster, D. L.; de Castro, P. B.; Emmendoerfer, H. Jr; Mendonça, P. T. R.; Silva, E. C. N.; Fancello, Eduardo A. A level-set approach based on reaction-diffusion equation applied to inversion problems in acoustic wave propagation. (English) Zbl 07305948 Inverse Probl. 37, No. 2, Article ID 025009, 25 p. (2021). MSC: 74S 74P PDF BibTeX XML Cite \textit{D. L. Lanznaster} et al., Inverse Probl. 37, No. 2, Article ID 025009, 25 p. (2021; Zbl 07305948) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 07305945 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 07305945) Full Text: DOI
Dębiec, Tomasz; Perthame, Benoît; Schmidtchen, Markus; Vauchelet, Nicolas Incompressible limit for a two-species model with coupling through Brinkman’s law in any dimension. (English. French summary) Zbl 07305904 J. Math. Pures Appl. (9) 145, 204-239 (2021). MSC: 35B45 35K57 35K55 35K65 35Q92 76N10 76S99 PDF BibTeX XML Cite \textit{T. Dębiec} et al., J. Math. Pures Appl. (9) 145, 204--239 (2021; Zbl 07305904) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Liu, Shuainan; Li, Po-Wei; Fan, Chia-Ming; Gu, Yan Localized method of fundamental solutions for two- and three-dimensional transient convection-diffusion-reaction equations. (English) Zbl 07305311 Eng. Anal. Bound. Elem. 124, 237-244 (2021). MSC: 65 74 PDF BibTeX XML Cite \textit{S. Liu} et al., Eng. Anal. Bound. Elem. 124, 237--244 (2021; Zbl 07305311) Full Text: DOI
Gholampour, Faranak; Hesameddini, Esmail; Taleei, Ameneh A stable RBF partition of unity local method for elliptic interface problems in two dimensions. (English) Zbl 07305291 Eng. Anal. Bound. Elem. 123, 220-232 (2021). MSC: 35J57 65N35 82B24 PDF BibTeX XML Cite \textit{F. Gholampour} et al., Eng. Anal. Bound. Elem. 123, 220--232 (2021; Zbl 07305291) Full Text: DOI
Carrer, J. A. M.; Solheid, B. S.; Trevelyan, J.; Seaid, M. A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem. (English) Zbl 07305266 Eng. Anal. Bound. Elem. 122, 132-144 (2021). MSC: 76 65 PDF BibTeX XML Cite \textit{J. A. M. Carrer} et al., Eng. Anal. Bound. Elem. 122, 132--144 (2021; Zbl 07305266) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35K05 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Kovtunenko, V. A.; Zubkova, A. V. Homogenization of the generalized Poisson-Nernst-Planck problem in a two-phase medium: correctors and estimates. (English) Zbl 07305244 Appl. Anal. 100, No. 2, 253-274 (2021). MSC: 35B27 35M10 82C24 PDF BibTeX XML Cite \textit{V. A. Kovtunenko} and \textit{A. V. Zubkova}, Appl. Anal. 100, No. 2, 253--274 (2021; Zbl 07305244) Full Text: DOI
Yang, Shuiping; Liu, Fawang; Feng, Libo; Turner, Ian A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients. (English) Zbl 07305240 J. Comput. Appl. Math. 388, Article ID 113337, 16 p. (2021). MSC: 65 45 PDF BibTeX XML Cite \textit{S. Yang} et al., J. Comput. Appl. Math. 388, Article ID 113337, 16 p. (2021; Zbl 07305240) Full Text: DOI
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. (English) Zbl 07305200 J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021). MSC: 65L60 34A08 65F10 PDF BibTeX XML Cite \textit{J. Jia} et al., J. Comput. Appl. Math. 388, Article ID 113234, 15 p. (2021; Zbl 07305200) Full Text: DOI
Klinge, Marcel; Hernández-Abreu, D.; Weiner, R. A comparison of one-step and two-step W-methods and peer methods with approximate matrix factorization. (English) Zbl 07305189 J. Comput. Appl. Math. 387, Article ID 112519, 17 p. (2021). MSC: 65L05 65L06 65L07 65M20 PDF BibTeX XML Cite \textit{M. Klinge} et al., J. Comput. Appl. Math. 387, Article ID 112519, 17 p. (2021; Zbl 07305189) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for the two-asset Merton jump-diffusion model. (English) Zbl 07305168 J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021). MSC: 35 45 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021; Zbl 07305168) Full Text: DOI
Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Xu, Qiuyan; An, Hengbin A class of domain decomposition based nonlinear explicit-implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. (English) Zbl 07305149 J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021). MSC: 65M55 65M06 35K55 85A25 80A21 85-08 35Q85 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{H. An}, J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021; Zbl 07305149) Full Text: DOI
Bazhlekova, Emilia; Bazhlekov, Ivan Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. (English) Zbl 07305137 J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021). MSC: 35 76 PDF BibTeX XML Cite \textit{E. Bazhlekova} and \textit{I. Bazhlekov}, J. Comput. Appl. Math. 386, Article ID 113213, 19 p. (2021; Zbl 07305137) Full Text: DOI
Tuan, Nguyen Huy; Khoa, Vo Anh; Van, Phan Thi Khanh; Au, Vo Van An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. (English) Zbl 07305070 J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021). MSC: 62L20 62F10 65J05 65J20 35K92 60H35 60H40 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021; Zbl 07305070) Full Text: DOI
Zhu, Jinghao A computational approach to non-smooth optimization by diffusion equations. (English) Zbl 07305062 J. Comput. Appl. Math. 384, Article ID 113166, 10 p. (2021). MSC: 35 49 PDF BibTeX XML Cite \textit{J. Zhu}, J. Comput. Appl. Math. 384, Article ID 113166, 10 p. (2021; Zbl 07305062) Full Text: DOI
Addona, D. Analyticity of nonsymmetric Ornstein-Uhlenbeck semigroup with respect to a weighted Gaussian measure. (English) Zbl 07303856 Potential Anal. 54, No. 1, 95-117 (2021). MSC: 47D07 46G05 47B32 PDF BibTeX XML Cite \textit{D. Addona}, Potential Anal. 54, No. 1, 95--117 (2021; Zbl 07303856) Full Text: DOI
Kolesnik, Alexander D. Markov random flights (to appear). (English) Zbl 07303764 Chapman & Hall/CRC Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-56494-0/hbk; 978-1-003-09813-3/ebook). 406 p. (2021). MSC: 60-02 60J60 60K35 PDF BibTeX XML Cite \textit{A. D. Kolesnik}, Markov random flights (to appear). Boca Raton, FL: CRC Press (2021; Zbl 07303764) Full Text: DOI