Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35A01 35K57 35K58 35Q92 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Augner, Björn; Bothe, Dieter The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. (English) Zbl 07314571 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533-574 (2021). MSC: 35K57 35K51 80A30 92E20 PDF BibTeX XML Cite \textit{B. Augner} and \textit{D. Bothe}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533--574 (2021; Zbl 07314571) Full Text: DOI
Heida, Martin; Neukamm, Stefan; Varga, Mario Stochastic homogenization of \(\Lambda\)-convex gradient flows. (English) Zbl 07314565 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427-453 (2021). MSC: 49J40 74Q10 35K57 60H30 PDF BibTeX XML Cite \textit{M. Heida} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427--453 (2021; Zbl 07314565) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Zhu, Neng; Liu, Zhengrong; Wang, Fang; Zhao, Kun Asymptotic dynamics of a system of conservation laws from chemotaxis. (English) Zbl 07314365 Discrete Contin. Dyn. Syst. 41, No. 2, 813-847 (2021). MSC: 35B40 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{N. Zhu} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 813--847 (2021; Zbl 07314365) Full Text: DOI
Tao, Youshan; Winkler, Michael Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. (English) Zbl 07314171 Discrete Contin. Dyn. Syst. 41, No. 1, 439-454 (2021). MSC: 35B44 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Discrete Contin. Dyn. Syst. 41, No. 1, 439--454 (2021; Zbl 07314171) Full Text: DOI
Dipierro, Serena; Pellacci, Benedetta; Valdinoci, Enrico; Verzini, Gianmaria Time-fractional equations with reaction terms: fundamental solutions and asymptotics. (English) Zbl 07314164 Discrete Contin. Dyn. Syst. 41, No. 1, 257-275 (2021). MSC: 35R11 35C15 35B40 35K57 35K08 26A33 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 257--275 (2021; Zbl 07314164) Full Text: DOI
Lucero Lorca, José Pablo; Kanschat, Guido Multilevel Schwarz preconditioners for singularly perturbed symmetric reaction-diffusion systems. (English) Zbl 07311975 ETNA, Electron. Trans. Numer. Anal. 54, 89-107 (2021). MSC: 65N55 65N30 65J10 65F08 PDF BibTeX XML Cite \textit{J. P. Lucero Lorca} and \textit{G. Kanschat}, ETNA, Electron. Trans. Numer. Anal. 54, 89--107 (2021; Zbl 07311975) Full Text: DOI Link
Ishii, Yuta Concentration phenomena on \(Y\)-shaped metric graph for the Gierer-Meinhardt model with heterogeneity. (English) Zbl 07310972 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021). MSC: 35B25 35R02 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Ishii}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021; Zbl 07310972) Full Text: DOI
Lee, Jihoon; Nguyen, Ngocthach Gromov-Hausdorff stability of inertial manifolds under perturbations of the domain and equation. (English) Zbl 07310656 J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021). MSC: 37 35 PDF BibTeX XML Cite \textit{J. Lee} and \textit{N. Nguyen}, J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021; Zbl 07310656) Full Text: DOI
Ei, Shin-Ichiro; Ishii, Hiroshi; Kondo, Shigeru; Miura, Takashi; Tanaka, Yoshitaro Effective nonlocal kernels on reaction-diffusion networks. (English) Zbl 07309203 J. Theor. Biol. 509, Article ID 110496, 18 p. (2021). MSC: 92C42 92C40 35Q92 PDF BibTeX XML Cite \textit{S.-I. Ei} et al., J. Theor. Biol. 509, Article ID 110496, 18 p. (2021; Zbl 07309203) Full Text: DOI
Guo, Hongjun; Monobe, Harunori \(V\)-shaped fronts around an obstacle. (English) Zbl 07307522 Math. Ann. 379, No. 1-2, 661-689 (2021). MSC: 35A18 35B08 35B30 35C07 35K57 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H. Monobe}, Math. Ann. 379, No. 1--2, 661--689 (2021; Zbl 07307522) Full Text: DOI
Wang, Jinliang; Wang, Jing Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. (English) Zbl 07307373 J. Dyn. Differ. Equations 33, No. 1, 549-575 (2021). MSC: 35Q92 92C60 PDF BibTeX XML Cite \textit{J. Wang} and \textit{J. Wang}, J. Dyn. Differ. Equations 33, No. 1, 549--575 (2021; Zbl 07307373) Full Text: DOI
Yan, Xiang-Ping; Zhang, Cun-Hua Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. (English) Zbl 07307174 Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021). MSC: 35Q92 92 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021; Zbl 07307174) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 07305945 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 07305945) Full Text: DOI
Dębiec, Tomasz; Perthame, Benoît; Schmidtchen, Markus; Vauchelet, Nicolas Incompressible limit for a two-species model with coupling through Brinkman’s law in any dimension. (English. French summary) Zbl 07305904 J. Math. Pures Appl. (9) 145, 204-239 (2021). MSC: 35Q92 92C37 35B45 35K57 35K55 35K65 76A10 76N10 76S05 35R35 PDF BibTeX XML Cite \textit{T. Dębiec} et al., J. Math. Pures Appl. (9) 145, 204--239 (2021; Zbl 07305904) Full Text: DOI
Klinge, Marcel; Hernández-Abreu, D.; Weiner, R. A comparison of one-step and two-step W-methods and peer methods with approximate matrix factorization. (English) Zbl 07305189 J. Comput. Appl. Math. 387, Article ID 112519, 17 p. (2021). MSC: 65L05 65L06 65L07 65M20 PDF BibTeX XML Cite \textit{M. Klinge} et al., J. Comput. Appl. Math. 387, Article ID 112519, 17 p. (2021; Zbl 07305189) Full Text: DOI
Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Celiński, Rafał; Hilhorst, Danielle; Karch, Grzegorz; Mimura, Masayasu; Roux, Pierre Mathematical treatment of PDE model of chemotactic E. coli colonies. (English) Zbl 07303704 J. Differ. Equations 278, 73-99 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K57 35B36 35B40 PDF BibTeX XML Cite \textit{R. Celiński} et al., J. Differ. Equations 278, 73--99 (2021; Zbl 07303704) Full Text: DOI
Engwer, Christian; Wenske, Michael Estimating the extent of glioblastoma invasion. Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion. (English) Zbl 07303135 J. Math. Biol. 82, No. 1-2, Paper No. 10, 25 p. (2021). MSC: 35Q92 35K57 92B05 92C05 92C50 92C55 PDF BibTeX XML Cite \textit{C. Engwer} and \textit{M. Wenske}, J. Math. Biol. 82, No. 1--2, Paper No. 10, 25 p. (2021; Zbl 07303135) Full Text: DOI
Wang, Zhi-An; Xu, Jiao On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. (English) Zbl 07303132 J. Math. Biol. 82, No. 1-2, Paper No. 7, 37 p. (2021). MSC: 35K51 35B40 35B44 35K57 92D25 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Xu}, J. Math. Biol. 82, No. 1--2, Paper No. 7, 37 p. (2021; Zbl 07303132) Full Text: DOI
Cupps, Brian P.; Morgan, Jeff; Tang, Bao Quoc Uniform boundedness for reaction-diffusion systems with mass dissipation. (English) Zbl 07302456 SIAM J. Math. Anal. 53, No. 1, 323-350 (2021). MSC: 35K51 35A01 35A09 35K57 35K58 35Q92 PDF BibTeX XML Cite \textit{B. P. Cupps} et al., SIAM J. Math. Anal. 53, No. 1, 323--350 (2021; Zbl 07302456) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Miura, Tatsuya; Okabe, Shinya On the isoperimetric inequality and surface diffusion flow for multiply winding curves. (English) Zbl 07300730 Arch. Ration. Mech. Anal. 239, No. 2, 1111-1129 (2021). MSC: 53A04 35K57 76R50 PDF BibTeX XML Cite \textit{T. Miura} and \textit{S. Okabe}, Arch. Ration. Mech. Anal. 239, No. 2, 1111--1129 (2021; Zbl 07300730) Full Text: DOI
Xu, Zhaoquan Global stability of travelling waves for a class of monostable epidemic models. (English) Zbl 07299008 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021). MSC: 35Q92 92D30 35B35 35C07 PDF BibTeX XML Cite \textit{Z. Xu}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021; Zbl 07299008) Full Text: DOI
Bernardin, C.; Gonçalves, P.; Jiménez-Oviedo, B. A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. (English) Zbl 07298819 Arch. Ration. Mech. Anal. 239, No. 1, 1-48 (2021); correction ibid. 239, No. 1, 49-50 (2021). MSC: 35R11 35K57 35K20 35B40 82C22 35Q79 35D30 60K35 PDF BibTeX XML Cite \textit{C. Bernardin} et al., Arch. Ration. Mech. Anal. 239, No. 1, 1--48 (2021; Zbl 07298819) Full Text: DOI
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 07298618 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 07298618) Full Text: DOI
Wang, Jianping Global existence and boundedness of a forager-exploiter system with nonlinear diffusions. (English) Zbl 07297757 J. Differ. Equations 276, 460-492 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K57 92C17 35B40 PDF BibTeX XML Cite \textit{J. Wang}, J. Differ. Equations 276, 460--492 (2021; Zbl 07297757) Full Text: DOI
Mantoulidis, Christos Allen-Cahn min-max on surfaces. (English) Zbl 07297240 J. Differ. Geom. 117, No. 1, 93-135 (2021). MSC: 35J61 35K57 58J65 49J35 PDF BibTeX XML Cite \textit{C. Mantoulidis}, J. Differ. Geom. 117, No. 1, 93--135 (2021; Zbl 07297240) Full Text: DOI Euclid
Kojima, Takuya; Oshita, Yoshihito Linear stability of radially symmetric equilibrium solutions to the singular limit problem of three-component activator-inhibitor model. (English) Zbl 07287143 Math. J. Okayama Univ. 63, 201-217 (2021). MSC: 35B35 35B25 35K57 35K40 35K58 92B25 PDF BibTeX XML Cite \textit{T. Kojima} and \textit{Y. Oshita}, Math. J. Okayama Univ. 63, 201--217 (2021; Zbl 07287143) Full Text: Link
Batista, Marcos R.; Da Mota, Jesus C. Monotone iterative method of upper and lower solutions applied to a multilayer combustion model in porous media. (English) Zbl 07284915 Nonlinear Anal., Real World Appl. 58, Article ID 103223, 19 p. (2021). MSC: 80A25 80A19 76S05 35A01 35A02 PDF BibTeX XML Cite \textit{M. R. Batista} and \textit{J. C. Da Mota}, Nonlinear Anal., Real World Appl. 58, Article ID 103223, 19 p. (2021; Zbl 07284915) Full Text: DOI
Wu, Chufen; Yang, Yong; Wu, Zehao Existence and uniqueness of forced waves in a delayed reaction-diffusion equation in a shifting environment. (English) Zbl 07284895 Nonlinear Anal., Real World Appl. 57, Article ID 103198, 12 p. (2021). MSC: 35K57 35K58 35K15 35B50 86A10 PDF BibTeX XML Cite \textit{C. Wu} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103198, 12 p. (2021; Zbl 07284895) Full Text: DOI
Huang, Chuangxia; Tan, Yanxiang Global behavior of a reaction-diffusion model with time delay and Dirichlet condition. (English) Zbl 07283580 J. Differ. Equations 271, 186-215 (2021). MSC: 35K57 35K51 35B40 47D06 35Q92 PDF BibTeX XML Cite \textit{C. Huang} and \textit{Y. Tan}, J. Differ. Equations 271, 186--215 (2021; Zbl 07283580) Full Text: DOI
Liu, Hanze; Bai, Cheng-Lin; Xin, Xiangpeng Painlevé test, complete symmetry classifications and exact solutions to R-D types of equations. (English) Zbl 07280092 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021). MSC: 37L20 37K35 37K10 35K57 PDF BibTeX XML Cite \textit{H. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021; Zbl 07280092) Full Text: DOI
Tumbarell Aranda, Orestes; Penna, André L. A.; Oliveira, Fernando A. Nonlinear self-organized population dynamics induced by external selective nonlocal processes. (English) Zbl 1452.35226 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105512, 24 p. (2021). MSC: 35Q92 92D25 35B36 92C15 PDF BibTeX XML Cite \textit{O. Tumbarell Aranda} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105512, 24 p. (2021; Zbl 1452.35226) Full Text: DOI
Erhardt, André H.; Solem, Susanne On complex dynamics in a Purkinje and a ventricular cardiac cell model. (English) Zbl 07274914 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105511, 21 p. (2021). MSC: 37N25 37G15 35Q92 65P30 92B05 PDF BibTeX XML Cite \textit{A. H. Erhardt} and \textit{S. Solem}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105511, 21 p. (2021; Zbl 07274914) Full Text: DOI
Cherniha, Roman; Serov, Mykola; Prystavka, Yulia A complete Lie symmetry classification of a class of (1+2)-dimensional reaction-diffusion-convection equations. (English) Zbl 1452.35211 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105466, 20 p. (2021). MSC: 35Q79 35K57 35K59 35K05 35A30 35R03 PDF BibTeX XML Cite \textit{R. Cherniha} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105466, 20 p. (2021; Zbl 1452.35211) Full Text: DOI
Li, Jing; Wang, Yifu Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy. (English) Zbl 1452.35077 J. Differ. Equations 270, 94-113 (2021). Reviewer: Sofiane El-Hadi Miri (Tlemcen) MSC: 35K57 35B45 35Q92 92C17 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Wang}, J. Differ. Equations 270, 94--113 (2021; Zbl 1452.35077) Full Text: DOI
Liu, Yujie; Wang, Junping An extended \(P_1\)-nonconforming finite element method on general polytopal partitions. (English) Zbl 1446.65175 J. Comput. Appl. Math. 381, Article ID 113021, 19 p. (2021). MSC: 65N30 65N15 65N12 35J50 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Wang}, J. Comput. Appl. Math. 381, Article ID 113021, 19 p. (2021; Zbl 1446.65175) Full Text: DOI
Boglaev, Igor A parameter robust numerical method for a nonlinear system of singularly perturbed elliptic equations. (English) Zbl 1446.65141 J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021). MSC: 65N06 65N12 65N15 65N50 35J60 35A01 35A02 PDF BibTeX XML Cite \textit{I. Boglaev}, J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021; Zbl 1446.65141) Full Text: DOI
Díaz, Jesús Ildefonso; Gómez-Castro, David; Shaposhnikova, Tatiana A. Nonlinear reaction-diffusion processes for nanocomposites. Anomalous improved homogenization (to appear). (English) Zbl 07122460 De Gruyter Series in Nonlinear Analysis and Applications. Berlin: De Gruyter (ISBN 978-3-11-064727-3/hbk). xii, 180 p. (2021). MSC: 35K57 82D80 35B27 PDF BibTeX XML Cite \textit{J. I. Díaz} et al., Nonlinear reaction-diffusion processes for nanocomposites. Anomalous improved homogenization (to appear). Berlin: De Gruyter (2021; Zbl 07122460)
Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei Existence and uniqueness of monotone wavefronts in a nonlocal resource-limited model. (English) Zbl 07316342 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2462-2483 (2020). MSC: 34K60 35K57 92D25 PDF BibTeX XML Cite \textit{E. Trofimchuk} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2462--2483 (2020; Zbl 07316342) Full Text: DOI
Qin, W. D.; Ma, Qiang; Man, Z. Y.; Ding, X. H. A boundedness and monotonicity preserving method for a generalized population model. (English) Zbl 07314955 J. Difference Equ. Appl. 26, No. 9-10, 1347-1368 (2020). MSC: 65Q10 65M06 65Q30 35K55 PDF BibTeX XML Cite \textit{W. D. Qin} et al., J. Difference Equ. Appl. 26, No. 9--10, 1347--1368 (2020; Zbl 07314955) Full Text: DOI
Gaponov, S. A. Effect of heat supply to a narrow band of the boundary layer on its stability. (English. Russian original) Zbl 07314857 J. Appl. Mech. Tech. Phys. 61, No. 5, 685-692 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 5, 5-13 (2020). MSC: 76E05 76N20 76V05 80A25 80A19 PDF BibTeX XML Cite \textit{S. A. Gaponov}, J. Appl. Mech. Tech. Phys. 61, No. 5, 685--692 (2020; Zbl 07314857); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 5, 5--13 (2020) Full Text: DOI
Kolinichenko, Aleksandr Pavlovich; Ryashko, Lev Borisovich Analysis of stochastic sensitivity of Turing patterns in distributed reaction-diffusion systems. (English) Zbl 07312118 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 155-163 (2020). MSC: 70K50 65C30 60H30 PDF BibTeX XML Cite \textit{A. P. Kolinichenko} and \textit{L. B. Ryashko}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 155--163 (2020; Zbl 07312118) Full Text: DOI MNR
Okamoto, Mamoru; Gotoda, Takeshi; Nagayama, Masaharu Existence and non-existence of asymmetrically rotating solutions to a mathematical model of self-propelled motion. (English) Zbl 07309995 Japan J. Ind. Appl. Math. 37, No. 3, 883-912 (2020). MSC: 35K57 35Q70 PDF BibTeX XML Cite \textit{M. Okamoto} et al., Japan J. Ind. Appl. Math. 37, No. 3, 883--912 (2020; Zbl 07309995) Full Text: DOI
Pourhadi, Ehsan; Khrennikov, Andrei Yu.; Saadati, Reza On the \(p\)-adic analog of Richards’ equation with the finite difference method. (English) Zbl 07308697 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 4, Article ID 2050025, 23 p. (2020). MSC: 35K55 11S80 43A30 43A70 PDF BibTeX XML Cite \textit{E. Pourhadi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 4, Article ID 2050025, 23 p. (2020; Zbl 07308697) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. (English) Zbl 07307915 Interfaces Free Bound. 22, No. 4, 443-464 (2020). MSC: 35R01 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{B. Kovács} et al., Interfaces Free Bound. 22, No. 4, 443--464 (2020; Zbl 07307915) Full Text: DOI
Berti, Diego; Corli, Andrea; Malaguti, Luisa Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations. (English) Zbl 07307879 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 66, 34 p. (2020). MSC: 35K65 35C07 34B40 35K57 PDF BibTeX XML Cite \textit{D. Berti} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 66, 34 p. (2020; Zbl 07307879) Full Text: DOI
Wang, Zhenkun; Wang, Hao Persistence and propagation of a PDE and discrete-time map hybrid animal movement model with habitat shift driven by climate change. (English) Zbl 07307304 SIAM J. Appl. Math. 80, No. 6, 2608-2630 (2020). MSC: 92D40 35K57 92D25 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{H. Wang}, SIAM J. Appl. Math. 80, No. 6, 2608--2630 (2020; Zbl 07307304) Full Text: DOI
Price, Brock C.; Xu, Xiangsheng Global existence theorem for a model governing the motion of two cell populations. (English) Zbl 07305672 Kinet. Relat. Models 13, No. 6, 1175-1191 (2020). MSC: 35B45 35K57 35K59 35K65 92C37 76N10 PDF BibTeX XML Cite \textit{B. C. Price} and \textit{X. Xu}, Kinet. Relat. Models 13, No. 6, 1175--1191 (2020; Zbl 07305672) Full Text: DOI
Basha, Pathan Mahabub; Shanthi, Vembu A robust second order numerical method for a weakly coupled system of singularly perturbed reaction-diffusion problem with discontinuous source term. (English) Zbl 1453.65176 Int. J. Comput. Sci. Math. 11, No. 1, 63-80 (2020). MSC: 65L11 65L12 PDF BibTeX XML Cite \textit{P. M. Basha} and \textit{V. Shanthi}, Int. J. Comput. Sci. Math. 11, No. 1, 63--80 (2020; Zbl 1453.65176) Full Text: DOI
Bairwa, R. K.; Kumar, Ajay; Singh, Karan Analytical solutions for time-fractional Cauchy reaction-diffusion equations using iterative Laplace transform method. (English) Zbl 07303932 Jñānābha 50, No. 1, 207-217 (2020). MSC: 35A20 35A22 34A08 33E12 PDF BibTeX XML Cite \textit{R. K. Bairwa} et al., Jñānābha 50, No. 1, 207--217 (2020; Zbl 07303932) Full Text: Link
Ananthaswamy, Vembu; Shirly, P. Felicia Mathematical analysis of a coupled non-linear reaction-diffusion systems. (English) Zbl 07303742 Nonlinear Stud. 27, No. 1, 123-148 (2020). MSC: 35K57 35K51 35K61 PDF BibTeX XML Cite \textit{V. Ananthaswamy} and \textit{P. F. Shirly}, Nonlinear Stud. 27, No. 1, 123--148 (2020; Zbl 07303742) Full Text: Link
Zhang, Hui; Jiang, Xiaoyun; Zeng, Fanhai; Karniadakis, George Em A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. (English) Zbl 1453.65370 J. Comput. Phys. 405, Article ID 109141, 17 p. (2020). MSC: 65M70 65M15 35R11 65M12 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Comput. Phys. 405, Article ID 109141, 17 p. (2020; Zbl 1453.65370) Full Text: DOI
Zhao, Wenqiang; Zhang, Yijin; Chen, Shangjie Higher-order Wong-Zakai approximations of stochastic reaction-diffusion equations on \(\mathbb{R}^N\). (English) Zbl 1453.35008 Physica D 401, Article ID 132147, 15 p. (2020). MSC: 35A35 35R60 35K57 37H10 60H15 PDF BibTeX XML Cite \textit{W. Zhao} et al., Physica D 401, Article ID 132147, 15 p. (2020; Zbl 1453.35008) Full Text: DOI
Huang, Zhe; Ou, Chunhua Speed selection for traveling waves of a reaction-diffusion-advection equation in a cylinder. (English) Zbl 1453.35040 Physica D 402, Article ID 132225, 12 p. (2020). MSC: 35C07 35K57 PDF BibTeX XML Cite \textit{Z. Huang} and \textit{C. Ou}, Physica D 402, Article ID 132225, 12 p. (2020; Zbl 1453.35040) Full Text: DOI
Shangerganesh, L.; Manimaran, J. Mathematical and numerical analysis of an acid-mediated cancer invasion model with nonlinear diffusion. (English) Zbl 07297616 ETNA, Electron. Trans. Numer. Anal. 52, 576-598 (2020). MSC: 35Q92 92C37 92C17 35D30 35B45 35B65 35A01 35K57 35K55 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{J. Manimaran}, ETNA, Electron. Trans. Numer. Anal. 52, 576--598 (2020; Zbl 07297616) Full Text: DOI Link
Wu, Hongyan Traveling wave fronts for reaction diffusion systems of the neutral type. (English) Zbl 07296030 Math. Pract. Theory 50, No. 11, 260-264 (2020). MSC: 35C07 35K57 PDF BibTeX XML Cite \textit{H. Wu}, Math. Pract. Theory 50, No. 11, 260--264 (2020; Zbl 07296030)
She, Lianbing; Zhang, Wenlin; Li, Yangrong Regularity of backward compact pullback attractors for non-autonomous reaction-diffusion equations. (Chinese. English summary) Zbl 07295692 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 492-497 (2020). MSC: 37L30 35B65 35K57 PDF BibTeX XML Cite \textit{L. She} et al., J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 492--497 (2020; Zbl 07295692) Full Text: DOI
Ma, Qianting Image denoising via time-delay regularization coupled nonlinear diffusion equations. (English) Zbl 07295199 J. Comput. Math. 38, No. 3, 417-436 (2020). MSC: 94A08 35K57 35K55 PDF BibTeX XML Cite \textit{Q. Ma}, J. Comput. Math. 38, No. 3, 417--436 (2020; Zbl 07295199) Full Text: DOI
Kazarnikov, Alexey; Haario, Heikki Statistical approach for parameter identification by Turing patterns. (English) Zbl 07294208 J. Theor. Biol. 501, Article ID 110319, 12 p. (2020). MSC: 92C15 62P10 PDF BibTeX XML Cite \textit{A. Kazarnikov} and \textit{H. Haario}, J. Theor. Biol. 501, Article ID 110319, 12 p. (2020; Zbl 07294208) Full Text: DOI
Fonseka, Nalin; Shivaji, Ratnasingham; Goddard, Jerome II; Morris, Quinn A.; Son, Byungjae On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model. (English) Zbl 07292998 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401-3415 (2020). MSC: 35J91 35J66 35A01 35A02 92D25 PDF BibTeX XML Cite \textit{N. Fonseka} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401--3415 (2020; Zbl 07292998) Full Text: DOI
Cao, Zhijie; Zhang, Lijun Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation. (English) Zbl 1451.76099 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2703-2717 (2020). MSC: 76M60 37K06 35K10 PDF BibTeX XML Cite \textit{Z. Cao} and \textit{L. Zhang}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2703--2717 (2020; Zbl 1451.76099) Full Text: DOI
Ahmad, Imtiaz; Siraj-ul-Islam; Mehnaz; Zaman, Sakhi Local meshless differential quadrature collocation method for time-fractional PDEs. (English) Zbl 1451.65166 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641-2654 (2020). MSC: 65M99 35K55 35K57 35R11 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641--2654 (2020; Zbl 1451.65166) Full Text: DOI
Reisch, Cordula; Langemann, Dirk Entropy functionals for finding requirements in hierarchical reaction-diffusion models for inflammations. (English) Zbl 07292723 Math. Methods Appl. Sci. 43, No. 17, 10098-10114 (2020). MSC: 35Q92 92C50 35A01 35A02 PDF BibTeX XML Cite \textit{C. Reisch} and \textit{D. Langemann}, Math. Methods Appl. Sci. 43, No. 17, 10098--10114 (2020; Zbl 07292723) Full Text: DOI
Wu, Kai-Ning; Wang, Yun-Zhu; Wang, Zhen Spatial sampled-data control for stochastic reaction-diffusion systems. (English) Zbl 07289761 J. Franklin Inst. 357, No. 17, 12538-12554 (2020). MSC: 93C57 93E15 93D40 93D23 93C30 93B36 PDF BibTeX XML Cite \textit{K.-N. Wu} et al., J. Franklin Inst. 357, No. 17, 12538--12554 (2020; Zbl 07289761) Full Text: DOI
Ruiz-Herrera, Alfonso Delay reaction-diffusion systems via discrete dynamics. (English) Zbl 07289138 SIAM J. Math. Anal. 52, No. 6, 6297-6312 (2020). MSC: 35B40 35K57 39A12 47D06 92B20 92D25 PDF BibTeX XML Cite \textit{A. Ruiz-Herrera}, SIAM J. Math. Anal. 52, No. 6, 6297--6312 (2020; Zbl 07289138) Full Text: DOI
Fischer, Julian; Laux, Tim; Simon, Theresa M. Convergence rates of the Allen-Cahn equation to mean curvature flow: a short proof based on relative entropies. (English) Zbl 07289134 SIAM J. Math. Anal. 52, No. 6, 6222-6233 (2020). MSC: 53E10 35A15 35K57 53C38 35B25 PDF BibTeX XML Cite \textit{J. Fischer} et al., SIAM J. Math. Anal. 52, No. 6, 6222--6233 (2020; Zbl 07289134) Full Text: DOI
Brugiapaglia, Simone A compressive spectral collocation method for the diffusion equation under the restricted isometry property. (English) Zbl 07287502 D’Elia, Marta (ed.) et al., Quantification of uncertainty: improving efficiency and technology. QUIET. Selected contributions based on the presentations at the international workshop, Trieste, Italy, July 18–21, 2017. Cham: Springer (ISBN 978-3-030-48720-1/hbk; 978-3-030-48721-8/ebook). Lecture Notes in Computational Science and Engineering 137, 15-40 (2020). MSC: 62M15 60J60 35K57 65M70 PDF BibTeX XML Cite \textit{S. Brugiapaglia}, Lect. Notes Comput. Sci. Eng. 137, 15--40 (2020; Zbl 07287502) Full Text: DOI
Kuehn, Christian; Soresina, Cinzia Numerical continuation for a fast-reaction system and its cross-diffusion limit. (English) Zbl 1451.35237 SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 7, 26 p. (2020). MSC: 35Q92 70K70 35K59 65P30 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{C. Soresina}, SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 7, 26 p. (2020; Zbl 1451.35237) Full Text: DOI
Shangerganesh, L.; Sowndarrajan, P. T. An optimal control problem of nonlocal Pyragas feedback controllers for convective FitzHugh-Nagumo equations with time-delay. (English) Zbl 07283568 SIAM J. Control Optim. 58, No. 6, 3613-3631 (2020). MSC: 35K51 35K57 49K20 49J50 92D25 35R09 93B52 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{P. T. Sowndarrajan}, SIAM J. Control Optim. 58, No. 6, 3613--3631 (2020; Zbl 07283568) Full Text: DOI
Martynov, S. I.; Tkach, L. Yu. Mechanism of locomotion of synthetic nanomotors in a viscous fluid. (English. Russian original) Zbl 07283506 Comput. Math. Math. Phys. 60, No. 11, 1913-1922 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1975-1984 (2020). MSC: 76Z10 76W05 76V05 76D07 78A57 PDF BibTeX XML Cite \textit{S. I. Martynov} and \textit{L. Yu. Tkach}, Comput. Math. Math. Phys. 60, No. 11, 1913--1922 (2020; Zbl 07283506); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1975--1984 (2020) Full Text: DOI
Wu, Xin; Yuan, Rong; Tian, Baochuan Traveling wave solutions for a SEIR epidemic model in combination with random dispersal and nonlocal dispersal. (English) Zbl 07282585 J. Integral Equations Appl. 32, No. 2, 213-237 (2020). MSC: 35Q92 35K57 92D30 35C07 PDF BibTeX XML Cite \textit{X. Wu} et al., J. Integral Equations Appl. 32, No. 2, 213--237 (2020; Zbl 07282585) Full Text: DOI Euclid
Aouadi, Moncef Quasi-stability and upper semicontinuity for coupled parabolic equations with memory. (English) Zbl 07279119 Stud. Appl. Math. 145, No. 3, 586-621 (2020). MSC: 37L15 37L30 35K57 35K61 35K55 PDF BibTeX XML Cite \textit{M. Aouadi}, Stud. Appl. Math. 145, No. 3, 586--621 (2020; Zbl 07279119) Full Text: DOI
Umavathi, Jawali C.; Ali, Hafiz Muhammad; Patil, Sapnali Limbaraj Triple diffusive mixed convection flow in a duct using convective boundary conditions. (English) Zbl 07279046 Math. Methods Appl. Sci. 43, No. 15, 9223-9244 (2020). MSC: 35Q35 76V05 76R50 35B20 65L10 65L06 65M22 PDF BibTeX XML Cite \textit{J. C. Umavathi} et al., Math. Methods Appl. Sci. 43, No. 15, 9223--9244 (2020; Zbl 07279046) Full Text: DOI
Pereira, Marcone; Oliva, Sergio; Sartori, Larissa Time-scale analysis nonlocal diffusion systems, applied to disease models. (English) Zbl 07279008 Math. Methods Appl. Sci. 43, No. 15, 8632-8643 (2020). MSC: 35Q92 92C50 92D30 35B25 35K57 PDF BibTeX XML Cite \textit{M. Pereira} et al., Math. Methods Appl. Sci. 43, No. 15, 8632--8643 (2020; Zbl 07279008) Full Text: DOI
Kumar, Sachin; Aguilar, José Francisco Gómez; Pandey, Prashant Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative. (English) Zbl 07279006 Math. Methods Appl. Sci. 43, No. 15, 8595-8607 (2020). MSC: 65M70 35K57 35R11 26A33 35Q79 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 8595--8607 (2020; Zbl 07279006) Full Text: DOI
Jerez, Silvia; Verdugo, Jonathan Asymptotic behavior of reaction-advection-diffusion population models with Allee effect. (English) Zbl 1452.35037 Math. Methods Appl. Sci. 43, No. 14, 8253-8272 (2020). MSC: 35B40 35K57 92D25 35K51 PDF BibTeX XML Cite \textit{S. Jerez} and \textit{J. Verdugo}, Math. Methods Appl. Sci. 43, No. 14, 8253--8272 (2020; Zbl 1452.35037) Full Text: DOI
Kim, Hyundong; Yun, Ana; Yoon, Sungha; Lee, Chaeyoung; Park, Jintae; Kim, Junseok Pattern formation in reaction-diffusion systems on evolving surfaces. (English) Zbl 1453.65223 Comput. Math. Appl. 80, No. 9, 2019-2028 (2020). MSC: 65M06 65N06 65M12 35B36 35K57 92C15 PDF BibTeX XML Cite \textit{H. Kim} et al., Comput. Math. Appl. 80, No. 9, 2019--2028 (2020; Zbl 1453.65223) Full Text: DOI
D’Autilia, Maria Chiara; Sgura, Ivonne; Simoncini, Valeria Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications. (English) Zbl 07276308 Comput. Math. Appl. 79, No. 7, 2067-2085 (2020). MSC: 65L04 65M08 PDF BibTeX XML Cite \textit{M. C. D'Autilia} et al., Comput. Math. Appl. 79, No. 7, 2067--2085 (2020; Zbl 07276308) Full Text: DOI
Lutscher, Frithjof; Fink, Justus; Zhu, Yingjie Pushing the boundaries: models for the spatial spread of ecosystem engineers. (English) Zbl 1452.35222 Bull. Math. Biol. 82, No. 10, Paper No. 138, 23 p. (2020). MSC: 35Q92 35K57 35R35 92D40 PDF BibTeX XML Cite \textit{F. Lutscher} et al., Bull. Math. Biol. 82, No. 10, Paper No. 138, 23 p. (2020; Zbl 1452.35222) Full Text: DOI
Chung, Soon-Yeong; Choi, Min-Jun; Hwang, Jaeho On the critical set for discrete Laplacian parabolic equations with polynomial-type reactions. (English) Zbl 07273558 J. Difference Equ. Appl. 26, No. 6, 779-801 (2020). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 39A12 39A14 35B44 35R02 35K57 PDF BibTeX XML Cite \textit{S.-Y. Chung} et al., J. Difference Equ. Appl. 26, No. 6, 779--801 (2020; Zbl 07273558) Full Text: DOI
Kiziridis, Diogenis A.; Fowler, Mike S.; Yuan, Chenggui Modelling fungal competition for space: towards prediction of community dynamics. (English) Zbl 1453.92352 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411-4426 (2020). MSC: 92D40 34A34 35Q92 PDF BibTeX XML Cite \textit{D. A. Kiziridis} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411--4426 (2020; Zbl 1453.92352) Full Text: DOI
Gerlach, Raphael; Ziessler, Adrian The approximation of invariant sets in infinite dimensional dynamical systems. (English) Zbl 07271593 Junge, Oliver (ed.) et al., Advances in dynamics, optimization and computation. A volume dedicated to Michael Dellnitz on the occasion of his 60th birthday. Cham: Springer (ISBN 978-3-030-51263-7/hbk; 978-3-030-51264-4/ebook). Studies in Systems, Decision and Control 304, 66-85 (2020). Reviewer: Mohammad Sajid (Buraidah) MSC: 37M21 37M22 37L10 37C79 35K57 PDF BibTeX XML Cite \textit{R. Gerlach} and \textit{A. Ziessler}, Stud. Syst. Decis. Control 304, 66--85 (2020; Zbl 07271593) Full Text: DOI
Colturato, Michele Sliding mode control for a diffuse interface tumor growth model coupling a Cahn-Hilliard equation with a reaction-diffusion equation. (English) Zbl 07271531 Math. Methods Appl. Sci. 43, No. 10, 6598-6626 (2020). MSC: 35Q92 92C37 92C50 35K61 35K25 35D35 93B52 35A01 35A02 PDF BibTeX XML Cite \textit{M. Colturato}, Math. Methods Appl. Sci. 43, No. 10, 6598--6626 (2020; Zbl 07271531) Full Text: DOI
Yao, Meiping; Qiao, Pengzhi; Wang, Yang Some qualitative properties of traveling wave fronts of nonlocal diffusive competition-cooperation systems of three species with delays. (English) Zbl 1451.92270 Complexity 2020, Article ID 6909567, 19 p. (2020). MSC: 92D25 35C07 35K57 35Q92 PDF BibTeX XML Cite \textit{M. Yao} et al., Complexity 2020, Article ID 6909567, 19 p. (2020; Zbl 1451.92270) Full Text: DOI
Fitzgibbon, W. E.; Morgan, J. J.; Webb, G. F.; Wu, Y. Analysis of a reaction-diffusion epidemic model with asymptomatic transmission. (English) Zbl 1451.92287 J. Biol. Syst. 28, No. 3, 561-587 (2020). MSC: 92D30 35K57 35Q92 PDF BibTeX XML Cite \textit{W. E. Fitzgibbon} et al., J. Biol. Syst. 28, No. 3, 561--587 (2020; Zbl 1451.92287) Full Text: DOI
Ebrahimijahan, Ali; Dehghan, Mehdi; Abbaszadeh, Mostafa Compact local integrated radial basis functions (integrated RBF) method for solving system of non-linear advection-diffusion-reaction equations to prevent the groundwater contamination. (English) Zbl 07268631 Eng. Anal. Bound. Elem. 121, 50-64 (2020). MSC: 65L60 34B15 PDF BibTeX XML Cite \textit{A. Ebrahimijahan} et al., Eng. Anal. Bound. Elem. 121, 50--64 (2020; Zbl 07268631) Full Text: DOI
Chang, Chueh-Hsin; Chen, Chiun-Chuan; Hung, Li-Chang; Mimura, Masayasu; Ogawa, Toshiyuki Existence and stability of non-monotone travelling wave solutions for the diffusive Lotka-Volterra system of three competing species. (English) Zbl 1451.35044 Nonlinearity 33, No. 10, 5080-5110 (2020). MSC: 35C07 35B35 35K57 35K51 PDF BibTeX XML Cite \textit{C.-H. Chang} et al., Nonlinearity 33, No. 10, 5080--5110 (2020; Zbl 1451.35044) Full Text: DOI
Lin, Jiabin; Li, Hong; Dong, Ziming; Zhao, Zhihui Error estimations of SUPG stabilized space-time finite element approximations for convection-diffusion-reaction equations. (English) Zbl 07267256 Math. Appl. 33, No. 2, 275-294 (2020). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{J. Lin} et al., Math. Appl. 33, No. 2, 275--294 (2020; Zbl 07267256)
Wang, Hailu; Wu, Hua Local discontinuous Galerkin spectral element method for nonlinear reaction-diffusion equations. (Chinese. English summary) Zbl 07267249 J. Numer. Methods Comput. Appl. 41, No. 1, 1-18 (2020). MSC: 65M70 65M12 PDF BibTeX XML Cite \textit{H. Wang} and \textit{H. Wu}, J. Numer. Methods Comput. Appl. 41, No. 1, 1--18 (2020; Zbl 07267249)
Zhuang, Bo; Cui, Baotong; Chen, Juan Boundary control for a class of coupled fractional reaction-diffusion systems. (Chinese. English summary) Zbl 07266525 Control Theory Appl. 37, No. 3, 592-602 (2020). MSC: 93C20 35K57 26A33 PDF BibTeX XML Cite \textit{B. Zhuang} et al., Control Theory Appl. 37, No. 3, 592--602 (2020; Zbl 07266525) Full Text: DOI
Crevat, Joachim Asymptotic limit of a spatially-extended mean-field FitzHugh-Nagumo model. (English) Zbl 1444.35139 Math. Models Methods Appl. Sci. 30, No. 5, 957-990 (2020). MSC: 35Q92 35K57 82C22 92B20 PDF BibTeX XML Cite \textit{J. Crevat}, Math. Models Methods Appl. Sci. 30, No. 5, 957--990 (2020; Zbl 1444.35139) Full Text: DOI
Huang, Yanli; Lin, Shanrong; Yang, Erfu Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies. (English) Zbl 1451.93237 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105292, 27 p. (2020). MSC: 93C65 93D05 93C20 93C43 PDF BibTeX XML Cite \textit{Y. Huang} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105292, 27 p. (2020; Zbl 1451.93237) Full Text: DOI
Kageyama, Maya; Yagi, Atsushi Mechanisms of climate homeostasis in Daisyworld and spatial segregation patterns. (English) Zbl 1444.92134 Commun. Nonlinear Sci. Numer. Simul. 81, Article ID 104990, 12 p. (2020). MSC: 92D40 86A08 35K57 PDF BibTeX XML Cite \textit{M. Kageyama} and \textit{A. Yagi}, Commun. Nonlinear Sci. Numer. Simul. 81, Article ID 104990, 12 p. (2020; Zbl 1444.92134) Full Text: DOI
Coudière, Yves; Davidović, Anđela; Poignard, Clair Modified bidomain model with passive periodic heterogeneities. (English) Zbl 1450.35037 Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2231-2258 (2020). MSC: 35B27 35Q92 35K51 35K57 35K65 47D06 47H20 PDF BibTeX XML Cite \textit{Y. Coudière} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2231--2258 (2020; Zbl 1450.35037) Full Text: DOI
Banerjee, Malay; Mukherjee, Nayana; Volpert, Vitaly Prey-predator model with nonlocal and global consumption in the prey dynamics. (English) Zbl 1450.35103 Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2109-2120 (2020). MSC: 35C07 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{M. Banerjee} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2109--2120 (2020; Zbl 1450.35103) Full Text: DOI
Wang, Jianping; Wang, Mingxin Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources. (English) Zbl 1453.35171 Math. Models Methods Appl. Sci. 30, No. 7, 1297-1323 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K51 35K57 35B40 92C17 35A01 PDF BibTeX XML Cite \textit{J. Wang} and \textit{M. Wang}, Math. Models Methods Appl. Sci. 30, No. 7, 1297--1323 (2020; Zbl 1453.35171) Full Text: DOI