Gosse, Laurent Diffusive limit of a two-dimensional well-balanced scheme for the free Klein-Kramers equation. (English) Zbl 07331795 Multiscale Model. Simul. 19, No. 1, 568-587 (2021). MSC: 35Q84 65M06 76R50 82B40 PDF BibTeX XML Cite \textit{L. Gosse}, Multiscale Model. Simul. 19, No. 1, 568--587 (2021; Zbl 07331795) Full Text: DOI
Cvetković, Nada; Conrad, Tim; Lie, Han Cheng A convergent discretization method for transition path theory for diffusion processes. (English) Zbl 07331782 Multiscale Model. Simul. 19, No. 1, 242-266 (2021). MSC: 34F05 60G99 65C05 65D99 PDF BibTeX XML Cite \textit{N. Cvetković} et al., Multiscale Model. Simul. 19, No. 1, 242--266 (2021; Zbl 07331782) Full Text: DOI
Mandjes, Michel; Storm, Jaap A diffusion-based analysis of a multiclass road traffic network. (English) Zbl 07328608 Stoch. Syst. 11, No. 1, 60-81 (2021). MSC: 90B20 60F17 60K25 PDF BibTeX XML Cite \textit{M. Mandjes} and \textit{J. Storm}, Stoch. Syst. 11, No. 1, 60--81 (2021; Zbl 07328608) Full Text: DOI
Freidlin, M. I.; Wentzell, A. D. Diffusion approximation for noise-induced evolution of first integrals in multifrequency systems. (English) Zbl 07321524 J. Stat. Phys. 182, No. 3, Paper No. 45, 25 p. (2021). MSC: 37J40 60Hxx PDF BibTeX XML Cite \textit{M. I. Freidlin} and \textit{A. D. Wentzell}, J. Stat. Phys. 182, No. 3, Paper No. 45, 25 p. (2021; Zbl 07321524) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M06 65M12 65M15 42C10 41A50 35R11 PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Bhardwaj, Akanksha; Kumar, Alpesh A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. (English) Zbl 07310767 Appl. Numer. Math. 160, 146-165 (2021). MSC: 65M06 65N35 65M12 65D12 35R11 PDF BibTeX XML Cite \textit{A. Bhardwaj} and \textit{A. Kumar}, Appl. Numer. Math. 160, 146--165 (2021; Zbl 07310767) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 1456.65092 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 1456.65092) Full Text: DOI
Tuan, Nguyen Huy; Khoa, Vo Anh; Van, Phan Thi Khanh; Au, Vo Van An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. (English) Zbl 07305070 J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021). MSC: 62L20 62F10 65J05 65J20 35K92 60H35 60H40 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021; Zbl 07305070) Full Text: DOI
Ramirez-Carrasco, C.; Molina-Garay, J. Existence and approximation of traveling wavefronts for the diffusive Mackey-Glass equation. (English) Zbl 07299952 Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 2, 12 p. (2021). MSC: 35K57 34K99 PDF BibTeX XML Cite \textit{C. Ramirez-Carrasco} and \textit{J. Molina-Garay}, Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 2, 12 p. (2021; Zbl 07299952) Full Text: Link
Barkhagen, M.; Chau, N. H.; Moulines, É.; Rásonyi, M.; Sabanis, S.; Zhang, Y. On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case. (English) Zbl 07282840 Bernoulli 27, No. 1, 1-33 (2021). MSC: 60 62 PDF BibTeX XML Cite \textit{M. Barkhagen} et al., Bernoulli 27, No. 1, 1--33 (2021; Zbl 07282840) Full Text: DOI Euclid
Kowall, Chris; Marciniak-Czochra, Anna; Mikelić, Andro Long-time shadow limit for a reaction-diffusion-ODE system. (English) Zbl 1453.35030 Appl. Math. Lett. 112, Article ID 106790, 8 p. (2021). MSC: 35B40 35K57 35K51 PDF BibTeX XML Cite \textit{C. Kowall} et al., Appl. Math. Lett. 112, Article ID 106790, 8 p. (2021; Zbl 1453.35030) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. (English) Zbl 1446.65116 J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021). MSC: 65M60 65N30 65M06 65M12 65M15 35R11 26A33 35B45 74H10 PDF BibTeX XML Cite \textit{J. Manimaran} et al., J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021; Zbl 1446.65116) Full Text: DOI
Debussche, Arnaud; Vovelle, Julien Diffusion-approximation in stochastically forced kinetic equations. (English) Zbl 1442.35286 Tunis. J. Math. 3, No. 1, 1-53 (2021). MSC: 35Q20 35Q84 35Q83 35R60 60H15 35B40 PDF BibTeX XML Cite \textit{A. Debussche} and \textit{J. Vovelle}, Tunis. J. Math. 3, No. 1, 1--53 (2021; Zbl 1442.35286) Full Text: DOI
Taleb, Lynda; Selvaduray, Steave; Yashima, Hisao Fujita (Approximation par une moyenne locale de la solution de l’équation de transport-diffusion.) (French. English summary) Zbl 07333358 Afr. Math. Ann. (AFMA) 8, 71-90 (2020). MSC: 35K58 35K15 PDF BibTeX XML Cite \textit{L. Taleb} et al., Afr. Math. Ann. (AFMA) 8, 71--90 (2020; Zbl 07333358)
Li, Cong; Lessard, Sabin Randomized matrix games in a finite population: effect of stochastic fluctuations in the payoffs on the evolution of cooperation. (English) Zbl 07331100 Theor. Popul. Biol. 134, 77-91 (2020). MSC: 92D25 60J70 PDF BibTeX XML Cite \textit{C. Li} and \textit{S. Lessard}, Theor. Popul. Biol. 134, 77--91 (2020; Zbl 07331100) Full Text: DOI
Barrett, John W.; Garcke, Harald; Nürnberg, Robert Numerical approximation of curve evolutions in Riemannian manifolds. (English) Zbl 07330038 IMA J. Numer. Anal. 40, No. 3, 1601-1651 (2020). MSC: 65 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., IMA J. Numer. Anal. 40, No. 3, 1601--1651 (2020; Zbl 07330038) Full Text: DOI
Wu, Longyuan; Zhai, Shuying A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. (English) Zbl 07328859 Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020). MSC: 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Wu} and \textit{S. Zhai}, Appl. Math. Comput. 387, Article ID 124564, 10 p. (2020; Zbl 07328859) Full Text: DOI
Hutzenthaler, Martin; Pieper, Daniel Propagation of chaos and the many-demes limit for weakly interacting diffusions in the sparse regime. (English) Zbl 07325642 Ann. Appl. Probab. 30, No. 5, 2311-2354 (2020). MSC: 60K35 60J70 PDF BibTeX XML Cite \textit{M. Hutzenthaler} and \textit{D. Pieper}, Ann. Appl. Probab. 30, No. 5, 2311--2354 (2020; Zbl 07325642) Full Text: DOI Euclid
Khalouta, Ali; Kadem, Abdelouahab New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems. (English) Zbl 07325564 Rev. Colomb. Mat. 54, No. 1, 1-11 (2020). MSC: 35R11 26A33 74G10 34K28 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Rev. Colomb. Mat. 54, No. 1, 1--11 (2020; Zbl 07325564) Full Text: DOI
Froyland, Gary; Koltai, Péter; Stahn, Martin Computation and optimal perturbation of finite-time coherent sets for aperiodic flows without trajectory integration. (English) Zbl 07315445 SIAM J. Appl. Dyn. Syst. 19, No. 3, 1659-1700 (2020). MSC: 37M25 47D07 49R05 PDF BibTeX XML Cite \textit{G. Froyland} et al., SIAM J. Appl. Dyn. Syst. 19, No. 3, 1659--1700 (2020; Zbl 07315445) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. (English) Zbl 07307915 Interfaces Free Bound. 22, No. 4, 443-464 (2020). MSC: 35A35 35R01 65M60 65M15 65M12 53E10 35Q92 PDF BibTeX XML Cite \textit{B. Kovács} et al., Interfaces Free Bound. 22, No. 4, 443--464 (2020; Zbl 07307915) Full Text: DOI
Zheng, Cheng-De; Xiao, Yan Quartic Padé approximation to the exponential function and a class of local analytical difference schemes. (English) Zbl 07305628 Int. J. Comput. Sci. Math. 11, No. 2, 158-167 (2020). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 41A21 65M PDF BibTeX XML Cite \textit{C.-D. Zheng} and \textit{Y. Xiao}, Int. J. Comput. Sci. Math. 11, No. 2, 158--167 (2020; Zbl 07305628) Full Text: DOI
Zhao, Wenqiang; Zhang, Yijin; Chen, Shangjie Higher-order Wong-Zakai approximations of stochastic reaction-diffusion equations on \(\mathbb{R}^N\). (English) Zbl 1453.35008 Physica D 401, Article ID 132147, 15 p. (2020). MSC: 35A35 35R60 35K57 37H10 60H15 PDF BibTeX XML Cite \textit{W. Zhao} et al., Physica D 401, Article ID 132147, 15 p. (2020; Zbl 1453.35008) Full Text: DOI
Giannakis, Dimitrios; Das, Suddhasattwa Extraction and prediction of coherent patterns in incompressible flows through space-time koopman analysis. (English) Zbl 1453.76179 Physica D 402, Article ID 132211, 38 p. (2020). MSC: 76M35 37A50 37N10 37L65 47A75 PDF BibTeX XML Cite \textit{D. Giannakis} and \textit{S. Das}, Physica D 402, Article ID 132211, 38 p. (2020; Zbl 1453.76179) Full Text: DOI
Wang, Lu; Kulkarni, Vidyadhar Fluid and diffusion models for a system of taxis and customers with delayed matching. (English) Zbl 1452.90143 Queueing Syst. 96, No. 1-2, 101-131 (2020). MSC: 90B22 PDF BibTeX XML Cite \textit{L. Wang} and \textit{V. Kulkarni}, Queueing Syst. 96, No. 1--2, 101--131 (2020; Zbl 1452.90143) Full Text: DOI
Shangerganesh, L.; Manimaran, J. Mathematical and numerical analysis of an acid-mediated cancer invasion model with nonlinear diffusion. (English) Zbl 07297616 ETNA, Electron. Trans. Numer. Anal. 52, 576-598 (2020). MSC: 35Q92 92C37 92C17 35D30 35B45 35B65 35A01 35K57 35K55 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{J. Manimaran}, ETNA, Electron. Trans. Numer. Anal. 52, 576--598 (2020; Zbl 07297616) Full Text: DOI Link
Limnios, Nikolaos; Yarovaya, Elena Diffusion approximation of branching processes in semi-Markov environment. (English) Zbl 07297572 Methodol. Comput. Appl. Probab. 22, No. 4, 1583-1590 (2020). MSC: 60J80 60K15 60K37 60J60 PDF BibTeX XML Cite \textit{N. Limnios} and \textit{E. Yarovaya}, Methodol. Comput. Appl. Probab. 22, No. 4, 1583--1590 (2020; Zbl 07297572) Full Text: DOI
Borisov, A. V. Robust filtering algorithm for Markov jump processes with high-frequency counting observations. (English. Russian original) Zbl 1455.93194 Autom. Remote Control 81, No. 4, 575-588 (2020); translation from Avtom. Telemekh. 2020, No. 4, 3-20 (2020). MSC: 93E11 60G55 PDF BibTeX XML Cite \textit{A. V. Borisov}, Autom. Remote Control 81, No. 4, 575--588 (2020; Zbl 1455.93194); translation from Avtom. Telemekh. 2020, No. 4, 3--20 (2020) Full Text: DOI
Sun, Ting; Wang, Jilu; Zheng, Chunxiong Fast evaluation of artificial boundary conditions for advection diffusion equations. (English) Zbl 1455.65141 SIAM J. Numer. Anal. 58, No. 6, 3530-3557 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65N15 65D30 65Y20 44A10 PDF BibTeX XML Cite \textit{T. Sun} et al., SIAM J. Numer. Anal. 58, No. 6, 3530--3557 (2020; Zbl 1455.65141) Full Text: DOI
Tschumperlé, David; Porquet, Christine; Mahboubi, Amal Reconstruction of smooth 3D color functions from keypoints: application to lossy compression and exemplar-based generation of color LUTs. (English) Zbl 07292233 SIAM J. Imaging Sci. 13, No. 3, 1511-1535 (2020). MSC: 68U10 94A08 68P30 68W25 65D18 60J60 35Q68 PDF BibTeX XML Cite \textit{D. Tschumperlé} et al., SIAM J. Imaging Sci. 13, No. 3, 1511--1535 (2020; Zbl 07292233) Full Text: DOI
Pender, Jamol; Rand, Richard; Wesson, Elizabeth A stochastic analysis of queues with customer choice and delayed information. (English) Zbl 07291308 Math. Oper. Res. 45, No. 3, 1104-1126 (2020). Reviewer: Vyacheslav Abramov (Melbourne) MSC: 60K25 90B22 62L20 PDF BibTeX XML Cite \textit{J. Pender} et al., Math. Oper. Res. 45, No. 3, 1104--1126 (2020; Zbl 07291308) Full Text: DOI
Aghajani, Reza; Ramanan, Kavita The limit of stationary distributions of many-server queues in the Halfin-Whitt regime. (English) Zbl 1451.90043 Math. Oper. Res. 45, No. 3, 1016-1055 (2020). MSC: 90B22 60K25 60J70 90B15 68M20 PDF BibTeX XML Cite \textit{R. Aghajani} and \textit{K. Ramanan}, Math. Oper. Res. 45, No. 3, 1016--1055 (2020; Zbl 1451.90043) Full Text: DOI
Lebedev, E. O.; Livinska, G. V. On the asymptotic merging of the set of nodes in stochastic networks. (English. Ukrainian original) Zbl 1455.60123 Theory Probab. Math. Stat. 101, 167-177 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 147-156 (2019). MSC: 60K25 90B15 PDF BibTeX XML Cite \textit{E. O. Lebedev} and \textit{G. V. Livinska}, Theory Probab. Math. Stat. 101, 167--177 (2020; Zbl 1455.60123); translation from Teor. Jmovirn. Mat. Stat. 101, 147--156 (2019) Full Text: DOI
Degond, Pierre; Merino-Aceituno, Sara Nematic alignment of self-propelled particles: from particle to macroscopic dynamics. (English) Zbl 1451.35218 Math. Models Methods Appl. Sci. 30, No. 10, 1935-1986 (2020). MSC: 35Q82 35L60 35K99 82C22 82C31 82C44 82C70 92D50 PDF BibTeX XML Cite \textit{P. Degond} and \textit{S. Merino-Aceituno}, Math. Models Methods Appl. Sci. 30, No. 10, 1935--1986 (2020; Zbl 1451.35218) Full Text: DOI
D’Elia, M.; Phipps, E.; Rushdi, A.; Ebeida, M. S. Surrogate-based ensemble grouping strategies for embedded sampling-based uncertainty quantification. (English) Zbl 1455.62158 D’Elia, Marta (ed.) et al., Quantification of uncertainty: improving efficiency and technology. QUIET. Selected contributions based on the presentations at the international workshop, Trieste, Italy, July 18–21, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 137, 41-66 (2020). MSC: 62L20 62-08 65M70 60H15 35R60 PDF BibTeX XML Cite \textit{M. D'Elia} et al., Lect. Notes Comput. Sci. Eng. 137, 41--66 (2020; Zbl 1455.62158) Full Text: DOI
Brugiapaglia, Simone A compressive spectral collocation method for the diffusion equation under the restricted isometry property. (English) Zbl 1455.62186 D’Elia, Marta (ed.) et al., Quantification of uncertainty: improving efficiency and technology. QUIET. Selected contributions based on the presentations at the international workshop, Trieste, Italy, July 18–21, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 137, 15-40 (2020). MSC: 62M15 60J60 35K57 65M70 PDF BibTeX XML Cite \textit{S. Brugiapaglia}, Lect. Notes Comput. Sci. Eng. 137, 15--40 (2020; Zbl 1455.62186) Full Text: DOI
Jasnovidov, Grigori Approximation of ruin probability and ruin time in discrete Brownian risk models. (English) Zbl 1454.91193 Scand. Actuar. J. 2020, No. 8, 718-735 (2020). MSC: 91G05 60J70 PDF BibTeX XML Cite \textit{G. Jasnovidov}, Scand. Actuar. J. 2020, No. 8, 718--735 (2020; Zbl 1454.91193) Full Text: DOI
Koroliuk, V. S.; Koroliouk, D.; Dovgyi, S. O. Diffusion process with evolution and its parameter estimation. (English. Russian original) Zbl 1454.62248 Cybern. Syst. Anal. 56, No. 5, 732-738 (2020); translation from Kibern. Sist. Anal. 2020, No. 5, 55-62 (2020). MSC: 62M05 60J60 62F10 PDF BibTeX XML Cite \textit{V. S. Koroliuk} et al., Cybern. Syst. Anal. 56, No. 5, 732--738 (2020; Zbl 1454.62248); translation from Kibern. Sist. Anal. 2020, No. 5, 55--62 (2020) Full Text: DOI
Bulavatsky, V. M.; Bohaienko, V. O. Some boundary-value problems of fractional-differential mobile-immobile migration dynamics in a profile filtration flow. (English. Russian original) Zbl 1456.76126 Cybern. Syst. Anal. 56, No. 3, 410-425 (2020); translation from Kibern. Sist. Anal. 2020, No. 3, 80-96 (2020). MSC: 76S05 76R50 26A33 86A05 PDF BibTeX XML Cite \textit{V. M. Bulavatsky} and \textit{V. O. Bohaienko}, Cybern. Syst. Anal. 56, No. 3, 410--425 (2020; Zbl 1456.76126); translation from Kibern. Sist. Anal. 2020, No. 3, 80--96 (2020) Full Text: DOI
Zheng, Xiangcheng; Ervin, Vincent J.; Wang, Hong Numerical approximations for the variable coefficient fractional diffusion equations with non-smooth data. (English) Zbl 1451.65209 Comput. Methods Appl. Math. 20, No. 3, 573-589 (2020). MSC: 65N30 35B65 41A10 33C45 PDF BibTeX XML Cite \textit{X. Zheng} et al., Comput. Methods Appl. Math. 20, No. 3, 573--589 (2020; Zbl 1451.65209) Full Text: DOI
Crimmins, Harry; Froyland, Gary Fourier approximation of the statistical properties of Anosov maps on tori. (English) Zbl 07278309 Nonlinearity 33, No. 11, 6244-6296 (2020). Reviewer: Mohammad Sajid (Buraidah) MSC: 37M25 37C30 37D20 PDF BibTeX XML Cite \textit{H. Crimmins} and \textit{G. Froyland}, Nonlinearity 33, No. 11, 6244--6296 (2020; Zbl 07278309) Full Text: DOI
Palmer, Ryan; Utley, Martin On the modelling and performance measurement of service networks with heterogeneous customers. (English) Zbl 1452.90082 Ann. Oper. Res. 293, No. 1, 237-268 (2020). MSC: 90B10 90B22 60K25 PDF BibTeX XML Cite \textit{R. Palmer} and \textit{M. Utley}, Ann. Oper. Res. 293, No. 1, 237--268 (2020; Zbl 1452.90082) Full Text: DOI
Kiziridis, Diogenis A.; Fowler, Mike S.; Yuan, Chenggui Modelling fungal competition for space: towards prediction of community dynamics. (English) Zbl 1453.92352 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411-4426 (2020). MSC: 92D40 34A34 35Q92 PDF BibTeX XML Cite \textit{D. A. Kiziridis} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411--4426 (2020; Zbl 1453.92352) Full Text: DOI
Jorgensen, Palle E. T.; Tian, James F. Superposition, reduction of multivariable problems, and approximation. (English) Zbl 07272156 Anal. Appl., Singap. 18, No. 5, 771-801 (2020). MSC: 47L60 46N30 46N50 42C15 65R10 31C20 62D05 94A20 39A12 46N20 22E70 31A15 58J65 PDF BibTeX XML Cite \textit{P. E. T. Jorgensen} and \textit{J. F. Tian}, Anal. Appl., Singap. 18, No. 5, 771--801 (2020; Zbl 07272156) Full Text: DOI
Shankar, Varun; Wright, Grady B.; Narayan, Akil A robust hyperviscosity formulation for stable RBF-FD discretizations of advection-diffusion-reaction equations on manifolds. (English) Zbl 07271915 SIAM J. Sci. Comput. 42, No. 4, A2371-A2401 (2020). MSC: 65M70 65M06 65D12 65M12 65L20 PDF BibTeX XML Cite \textit{V. Shankar} et al., SIAM J. Sci. Comput. 42, No. 4, A2371--A2401 (2020; Zbl 07271915) Full Text: DOI
Arumugam, Gurusamy; Tyagi, Jagmohan Nonnegative solutions to reaction-diffusion system with cross-diffusion and nonstandard growth conditions. (English) Zbl 1452.35074 Math. Methods Appl. Sci. 43, No. 10, 6576-6597 (2020). MSC: 35K51 35K57 35D30 PDF BibTeX XML Cite \textit{G. Arumugam} and \textit{J. Tyagi}, Math. Methods Appl. Sci. 43, No. 10, 6576--6597 (2020; Zbl 1452.35074) Full Text: DOI
Besançon, Eustache; Decreusefond, Laurent; Moyal, Pascal Stein’s method for diffusive limits of queueing processes. (English) Zbl 07271270 Queueing Syst. 95, No. 3-4, 173-201 (2020). MSC: 60K25 60F17 60H07 PDF BibTeX XML Cite \textit{E. Besançon} et al., Queueing Syst. 95, No. 3--4, 173--201 (2020; Zbl 07271270) Full Text: DOI
Wei, Yabing; Zhao, Yanmin; Wang, Fenling; Tang, Yifa; Yang, Jiye Superconvergence analysis of anisotropic FEMs for time fractional variable coefficient diffusion equations. (English) Zbl 1451.65154 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411-4429 (2020). MSC: 65M60 65N30 65M06 65M12 65D05 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411--4429 (2020; Zbl 1451.65154) Full Text: DOI
Fellner, Klemens; Kniely, Michael Uniform convergence to equilibrium for a family of drift-diffusion models with trap-assisted recombination and the limiting Shockley-Read-Hall model. (English) Zbl 07270560 J. Elliptic Parabol. Equ. 6, No. 2, 529-598 (2020). MSC: 35Q81 35K57 35B40 35B45 82D37 PDF BibTeX XML Cite \textit{K. Fellner} and \textit{M. Kniely}, J. Elliptic Parabol. Equ. 6, No. 2, 529--598 (2020; Zbl 07270560) Full Text: DOI
Prohaska, Roland; Sert, Cagri Markov random walks on homogeneous spaces and Diophantine approximation on fractals. (English) Zbl 07269834 Trans. Am. Math. Soc. 373, No. 11, 8163-8196 (2020). MSC: 37A50 60G50 60K50 28A80 PDF BibTeX XML Cite \textit{R. Prohaska} and \textit{C. Sert}, Trans. Am. Math. Soc. 373, No. 11, 8163--8196 (2020; Zbl 07269834) Full Text: DOI
Chebotarev, A. Yu.; Mesenev, P. R. An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity. (Russian. English summary) Zbl 1454.35149 Dal’nevost. Mat. Zh. 20, No. 1, 114-122 (2020). MSC: 35J61 35Q79 PDF BibTeX XML Cite \textit{A. Yu. Chebotarev} and \textit{P. R. Mesenev}, Dal'nevost. Mat. Zh. 20, No. 1, 114--122 (2020; Zbl 1454.35149) Full Text: MNR
Lyu, Junlong; Wang, Zhongjian; Xin, Jack; Zhang, Zhiwen Convergence analysis of stochastic structure-preserving schemes for computing effective diffusivity in random flows. (English) Zbl 07267945 SIAM J. Numer. Anal. 58, No. 5, 3040-3067 (2020). MSC: 37M25 60J60 60H35 65P10 65M75 76M50 PDF BibTeX XML Cite \textit{J. Lyu} et al., SIAM J. Numer. Anal. 58, No. 5, 3040--3067 (2020; Zbl 07267945) Full Text: DOI
Li, Xuhao; Wong, Patricia J. Y. A gWSGL numerical scheme for generalized fractional sub-diffusion problems. (English) Zbl 1451.65127 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104991, 15 p. (2020). MSC: 65M12 65M15 34A08 35R11 26A33 PDF BibTeX XML Cite \textit{X. Li} and \textit{P. J. Y. Wong}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104991, 15 p. (2020; Zbl 1451.65127) Full Text: DOI
Babaei, A.; Moghaddam, B. P.; Banihashemi, S.; Machado, J. A. T. Numerical solution of variable-order fractional integro-partial differential equations via sinc collocation method based on single and double exponential transformations. (English) Zbl 1452.65268 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020). MSC: 65M70 65D07 65M12 65M15 65M06 35R11 35R09 35G31 41A15 PDF BibTeX XML Cite \textit{A. Babaei} et al., Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020; Zbl 1452.65268) Full Text: DOI
Marin, D.; Guilherme, L. M. S.; Lenzi, M. K.; da Silva, L. R.; Lenzi, E. K.; Sandev, T. Diffusion-reaction processes on a backbone structure. (English) Zbl 1454.35405 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020). MSC: 35Q99 35K57 44A10 42A10 42A38 33E12 65R10 65M80 35R11 PDF BibTeX XML Cite \textit{D. Marin} et al., Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105218, 8 p. (2020; Zbl 1454.35405) Full Text: DOI
Reutskiy, Sergiy; Lin, Ji A RBF-based technique for 3D convection-diffusion-reaction problems in an anisotropic inhomogeneous medium. (English) Zbl 1443.65392 Comput. Math. Appl. 79, No. 6, 1875-1888 (2020). MSC: 65N35 65D12 35C10 35J25 PDF BibTeX XML Cite \textit{S. Reutskiy} and \textit{J. Lin}, Comput. Math. Appl. 79, No. 6, 1875--1888 (2020; Zbl 1443.65392) Full Text: DOI
Cui, Jianbo; Hong, Jialin Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion. (English) Zbl 1447.60096 J. Differ. Equations 269, No. 11, 10143-10180 (2020). MSC: 60H15 60H07 60H35 35R60 65K10 PDF BibTeX XML Cite \textit{J. Cui} and \textit{J. Hong}, J. Differ. Equations 269, No. 11, 10143--10180 (2020; Zbl 1447.60096) Full Text: DOI
Cheng, Ting; Hu, Junjun; Jiang, Daijun Simultaneous identification of convection velocity and source strength in a convection-diffusion equation. (English) Zbl 1452.65206 Appl. Anal. 99, No. 12, 2170-2189 (2020). MSC: 65M32 65M30 65M60 65M06 65M12 65K10 65J20 35B45 41A25 PDF BibTeX XML Cite \textit{T. Cheng} et al., Appl. Anal. 99, No. 12, 2170--2189 (2020; Zbl 1452.65206) Full Text: DOI
Fang, Zhi-Wei; Sun, Hai-Wei; Wang, Hong A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. (English) Zbl 1447.65022 Comput. Math. Appl. 80, No. 5, 1443-1458 (2020). MSC: 65M06 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{Z.-W. Fang} et al., Comput. Math. Appl. 80, No. 5, 1443--1458 (2020; Zbl 1447.65022) Full Text: DOI
Rosa, Wojciech Stochastic approximation procedure in semi-Markov environment applied to alcohol consumption model. (English) Zbl 1450.60019 Appl. Math. 47, No. 1, 45-57 (2020). MSC: 60F05 60J70 92C50 PDF BibTeX XML Cite \textit{W. Rosa}, Appl. Math. 47, No. 1, 45--57 (2020; Zbl 1450.60019) Full Text: DOI
Cheng, Zailei; Seol, Youngsoo Diffusion approximation of a risk model with non-stationary Hawkes arrivals of claims. (English) Zbl 1447.91038 Methodol. Comput. Appl. Probab. 22, No. 2, 555-571 (2020). MSC: 91B05 60F17 60G55 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{Y. Seol}, Methodol. Comput. Appl. Probab. 22, No. 2, 555--571 (2020; Zbl 1447.91038) Full Text: DOI
Ottobre, Michela; Pillai, Natesh S.; Spiliopoulos, Konstantinos Optimal scaling of the MALA algorithm with irreversible proposals for Gaussian targets. (English) Zbl 1447.62094 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 2, 311-361 (2020). MSC: 62L20 60J60 60G15 PDF BibTeX XML Cite \textit{M. Ottobre} et al., Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 2, 311--361 (2020; Zbl 1447.62094) Full Text: DOI
Pozharskiy, Dmitry; Wichrowski, Noah J.; Duncan, Andrew B.; Pavliotis, Grigorios A.; Kevrekidis, Ioannis G. Manifold learning for accelerating coarse-grained optimization. (English) Zbl 1450.37082 J. Comput. Dyn. 7, No. 2, 511-536 (2020). MSC: 37M99 37N40 68U01 68T05 90C56 PDF BibTeX XML Cite \textit{D. Pozharskiy} et al., J. Comput. Dyn. 7, No. 2, 511--536 (2020; Zbl 1450.37082) Full Text: DOI
Al Ghafli, Ahmed A.; Al Salman, Hassan J. An optimal error bound for a finite element approximation of spatially extended predator-prey interaction model. (English) Zbl 1453.65307 Numer. Algorithms 85, No. 1, 209-229 (2020). Reviewer: Dana Černá (Liberec) MSC: 65M60 65M06 65M15 35K57 35K55 92D25 35Q92 PDF BibTeX XML Cite \textit{A. A. Al Ghafli} and \textit{H. J. Al Salman}, Numer. Algorithms 85, No. 1, 209--229 (2020; Zbl 1453.65307) Full Text: DOI
Georgieva, Irina; Harizanov, Stanislav; Hofreither, Clemens Iterative low-rank approximation solvers for the extension method for fractional diffusion. (English) Zbl 1446.65152 Comput. Math. Appl. 80, No. 2, 351-366 (2020). MSC: 65N22 65N30 65N12 35R11 26A33 65F10 65F55 15A69 PDF BibTeX XML Cite \textit{I. Georgieva} et al., Comput. Math. Appl. 80, No. 2, 351--366 (2020; Zbl 1446.65152) Full Text: DOI
Hofreither, Clemens A unified view of some numerical methods for fractional diffusion. (English) Zbl 1446.65153 Comput. Math. Appl. 80, No. 2, 332-350 (2020). MSC: 65N22 44A10 15A69 35R11 26A33 41A20 35P99 PDF BibTeX XML Cite \textit{C. Hofreither}, Comput. Math. Appl. 80, No. 2, 332--350 (2020; Zbl 1446.65153) Full Text: DOI
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar; Marinov, Pencho Numerical solution of fractional diffusion-reaction problems based on BURA. (English) Zbl 1452.65060 Comput. Math. Appl. 80, No. 2, 316-331 (2020). MSC: 65F10 65F15 65D32 35R11 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Comput. Math. Appl. 80, No. 2, 316--331 (2020; Zbl 1452.65060) Full Text: DOI
Palii, Olena; Schlottbom, Matthias On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer. (English) Zbl 1446.65177 Comput. Math. Appl. 79, No. 12, 3366-3377 (2020). MSC: 65N30 65N12 65N15 65F10 65F08 78A40 78A45 78M10 82D75 PDF BibTeX XML Cite \textit{O. Palii} and \textit{M. Schlottbom}, Comput. Math. Appl. 79, No. 12, 3366--3377 (2020; Zbl 1446.65177) Full Text: DOI
Auletta, Vincenzo; Ferraioli, Diodato; Greco, Gianluigi On the complexity of reasoning about opinion diffusion under majority dynamics. (English) Zbl 1454.91154 Artif. Intell. 284, Article ID 103288, 30 p. (2020). Reviewer: Yilun Shang (Newcastle) MSC: 91D30 68Q17 PDF BibTeX XML Cite \textit{V. Auletta} et al., Artif. Intell. 284, Article ID 103288, 30 p. (2020; Zbl 1454.91154) Full Text: DOI
Samadyar, Nasrin; Ordokhani, Yadollah; Mirzaee, Farshid The couple of Hermite-based approach and Crank-Nicolson scheme to approximate the solution of two dimensional stochastic diffusion-wave equation of fractional order. (English) Zbl 07228825 Eng. Anal. Bound. Elem. 118, 285-294 (2020). MSC: 35R11 60H15 65M06 41A15 PDF BibTeX XML Cite \textit{N. Samadyar} et al., Eng. Anal. Bound. Elem. 118, 285--294 (2020; Zbl 07228825) Full Text: DOI
Cohen, Asaf; Young, Virginia R. Rate of convergence of the probability of ruin in the Cramér-Lundberg model to its diffusion approximation. (English) Zbl 1447.91130 Insur. Math. Econ. 93, 333-340 (2020). MSC: 91G05 45J05 60J60 PDF BibTeX XML Cite \textit{A. Cohen} and \textit{V. R. Young}, Insur. Math. Econ. 93, 333--340 (2020; Zbl 1447.91130) Full Text: DOI
Liang, Xiaoqing; Liang, Zhibin; Young, Virginia R. Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin. (English) Zbl 1445.91054 Insur. Math. Econ. 92, 128-146 (2020). MSC: 91G05 93E20 PDF BibTeX XML Cite \textit{X. Liang} et al., Insur. Math. Econ. 92, 128--146 (2020; Zbl 1445.91054) Full Text: DOI
Kruse, Thomas; Urusov, Mikhail Approximating exit times of continuous Markov processes. (English) Zbl 07226745 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3631-3650 (2020). MSC: 60J22 60J25 60J60 60H35 60F17 PDF BibTeX XML Cite \textit{T. Kruse} and \textit{M. Urusov}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3631--3650 (2020; Zbl 07226745) Full Text: DOI
Zhao, Zhong; Chen, Ying; Li, Qiuying; Wu, Xianbin Mathematical model for diffusion of the rhizosphere microbial degradation with impulsive feedback control. (English) Zbl 1444.92138 J. Biol. Dyn. 14, No. 1, 566-577 (2020). MSC: 92D40 92D25 34C25 34D20 93C27 93B52 PDF BibTeX XML Cite \textit{Z. Zhao} et al., J. Biol. Dyn. 14, No. 1, 566--577 (2020; Zbl 1444.92138) Full Text: DOI
Jiang, Wei; Zhao, Quan; Bao, Weizhu Sharp-interface model for simulating solid-state dewetting in three dimensions. (English) Zbl 1440.74153 SIAM J. Appl. Math. 80, No. 4, 1654-1677 (2020). MSC: 74G65 74G15 74H15 49Q10 74P10 74S99 PDF BibTeX XML Cite \textit{W. Jiang} et al., SIAM J. Appl. Math. 80, No. 4, 1654--1677 (2020; Zbl 1440.74153) Full Text: DOI
Leonenko, N. N.; Papić, I.; Sikorskii, A.; Šuvak, N. Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology. (English) Zbl 1451.60037 J. Math. Anal. Appl. 486, No. 2, Article ID 123934, 21 p. (2020). MSC: 60F17 60J60 60K50 PDF BibTeX XML Cite \textit{N. N. Leonenko} et al., J. Math. Anal. Appl. 486, No. 2, Article ID 123934, 21 p. (2020; Zbl 1451.60037) Full Text: DOI
Vabishchevich, P. N. Approximation of a fractional power of an elliptic operator. (English) Zbl 07217193 Numer. Linear Algebra Appl. 27, No. 3, e2287, 14 p. (2020). Reviewer: Florin Catrina (New York) MSC: 26A33 35R11 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Numer. Linear Algebra Appl. 27, No. 3, e2287, 14 p. (2020; Zbl 07217193) Full Text: DOI
Huang, Jiapeng; Jin, Chunhua Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. (English) Zbl 1445.35286 Discrete Contin. Dyn. Syst. 40, No. 9, 5415-5439 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35B10 92C17 76D07 PDF BibTeX XML Cite \textit{J. Huang} and \textit{C. Jin}, Discrete Contin. Dyn. Syst. 40, No. 9, 5415--5439 (2020; Zbl 1445.35286) Full Text: DOI
Bohaienko, V. O. Parallel finite-difference algorithms for three-dimensional space-fractional diffusion equation with \(\psi\)-Caputo derivatives. (English) Zbl 1449.35430 Comput. Appl. Math. 39, No. 3, Paper No. 163, 20 p. (2020). MSC: 35R11 65M06 65Y05 PDF BibTeX XML Cite \textit{V. O. Bohaienko}, Comput. Appl. Math. 39, No. 3, Paper No. 163, 20 p. (2020; Zbl 1449.35430) Full Text: DOI
Altıntan, Derya; Koeppl, Heinz Hybrid master equation for jump-diffusion approximation of biomolecular reaction networks. (English) Zbl 1443.60073 BIT 60, No. 2, 261-294 (2020). MSC: 60J60 92C45 65C20 PDF BibTeX XML Cite \textit{D. Altıntan} and \textit{H. Koeppl}, BIT 60, No. 2, 261--294 (2020; Zbl 1443.60073) Full Text: DOI
Levashova, N. T.; Nefedov, N. N.; Nikolaeva, O. A. Asymptotically stable stationary solutions of the reaction-diffusion-advection equation with discontinuous reaction and advection terms. (English. Russian original) Zbl 1456.35014 Differ. Equ. 56, No. 5, 605-620 (2020); translation from Differ. Uravn. 56, No. 5, 615-631 (2020). Reviewer: Denise Huet (Nancy) MSC: 35B25 35K57 35K58 35K20 PDF BibTeX XML Cite \textit{N. T. Levashova} et al., Differ. Equ. 56, No. 5, 605--620 (2020; Zbl 1456.35014); translation from Differ. Uravn. 56, No. 5, 615--631 (2020) Full Text: DOI
Soori, Z.; Aminataei, A. Numerical solution of space fractional diffusion equation by spline method combined with Richardson extrapolation. (English) Zbl 07208214 Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020). MSC: 65L06 41A15 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020; Zbl 07208214) Full Text: DOI
Cáceres, Manuel O. Finite-velocity diffusion in random media. (English) Zbl 1434.82075 J. Stat. Phys. 179, No. 3, 729-747 (2020); correction ibid. 181, No. 3, 1087 (2020). MSC: 82C44 82D30 60G60 60H25 58J65 PDF BibTeX XML Cite \textit{M. O. Cáceres}, J. Stat. Phys. 179, No. 3, 729--747 (2020; Zbl 1434.82075) Full Text: DOI
Goldberg, Maxim J.; Kim, Seonja Equivalence of \(L_p\) diffusion approximation and a function’s diffusion smoothness. (English) Zbl 07203153 Semigroup Forum 100, No. 3, 837-849 (2020). MSC: 47 PDF BibTeX XML Cite \textit{M. J. Goldberg} and \textit{S. Kim}, Semigroup Forum 100, No. 3, 837--849 (2020; Zbl 07203153) Full Text: DOI
Popovic, Lea; Peuckert, Liam Diffusion dynamics on the coexistence subspace in a stochastic evolutionary game. (English) Zbl 1434.60203 J. Math. Biol. 80, No. 6, 1655-1682 (2020). MSC: 60J28 60J60 91A15 91A22 92D15 92D25 PDF BibTeX XML Cite \textit{L. Popovic} and \textit{L. Peuckert}, J. Math. Biol. 80, No. 6, 1655--1682 (2020; Zbl 1434.60203) Full Text: DOI
Burkovska, Olena; Gunzburger, Max Affine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models. (English) Zbl 1434.65224 SIAM J. Numer. Anal. 58, No. 3, 1469-1494 (2020). MSC: 65N15 35R11 49K40 65N12 PDF BibTeX XML Cite \textit{O. Burkovska} and \textit{M. Gunzburger}, SIAM J. Numer. Anal. 58, No. 3, 1469--1494 (2020; Zbl 1434.65224) Full Text: DOI
Hafiene, Yosra; Fadili, Jalal M.; Chesneau, Christophe; Elmoataz, Abderrahim Continuum limit of the nonlocal \(p\)-Laplacian evolution problem on random inhomogeneous graphs. (English) Zbl 1442.65212 ESAIM, Math. Model. Numer. Anal. 54, No. 2, 565-589 (2020). MSC: 65M12 35K92 05C80 35A35 35K20 35R02 35R09 65M15 PDF BibTeX XML Cite \textit{Y. Hafiene} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 2, 565--589 (2020; Zbl 1442.65212) Full Text: DOI
Bonetti, Elena; Colli, Pierluigi; Scarpa, Luca; Tomassetti, Giuseppe Bounded solutions and their asymptotics for a doubly nonlinear Cahn-Hilliard system. (English) Zbl 1445.35053 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 88, 25 p. (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35B40 35K52 35B25 35D35 35G31 74N20 74N25 PDF BibTeX XML Cite \textit{E. Bonetti} et al., Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 88, 25 p. (2020; Zbl 1445.35053) Full Text: DOI
Cabrales, Roberto Carlos; Gutiérrez-Santacreu, Juan Vicente; Rodríguez-Galván, José Rafael Numerical solution for an aggregation equation with degenerate diffusion. (English) Zbl 07197696 Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020). MSC: 65M60 35K55 45K05 35K20 PDF BibTeX XML Cite \textit{R. C. Cabrales} et al., Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020; Zbl 07197696) Full Text: DOI
Safdari, H.; Mesgarani, H.; Javidi, M.; Aghdam, Y. Esmaeelzade Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. (English) Zbl 07195796 Comput. Appl. Math. 39, No. 2, Paper No. 62, 15 p. (2020). MSC: 65M 34K37 91G80 97N50 PDF BibTeX XML Cite \textit{H. Safdari} et al., Comput. Appl. Math. 39, No. 2, Paper No. 62, 15 p. (2020; Zbl 07195796) Full Text: DOI
Bardina, Xavier; Ferrante, Marco; Rovira, Carles Strong approximations of Brownian sheet by uniform transport processes. (English) Zbl 1446.60028 Collect. Math. 71, No. 2, 319-329 (2020). Reviewer: Mátyás Barczy (Debrecen) MSC: 60F15 60G15 60J60 PDF BibTeX XML Cite \textit{X. Bardina} et al., Collect. Math. 71, No. 2, 319--329 (2020; Zbl 1446.60028) Full Text: DOI
Jannelli, Alessandra; Ruggieri, Marianna; Speciale, Maria Paola Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term. (English) Zbl 1436.35022 Appl. Numer. Math. 155, 93-102 (2020). MSC: 35B06 35R11 35K10 35A35 PDF BibTeX XML Cite \textit{A. Jannelli} et al., Appl. Numer. Math. 155, 93--102 (2020; Zbl 1436.35022) Full Text: DOI
Kieu, Trung-Thuy; Luong, Duc-Trong; Ngo, Hoang-Long; Nguyen, Thu-Thuy Convergence, non-negativity and stability of a new tamed Euler-Maruyama scheme for stochastic differential equations with Hölder continuous diffusion coefficient. (English) Zbl 07190897 Vietnam J. Math. 48, No. 1, 107-124 (2020). MSC: 65C30 65L20 60H10 PDF BibTeX XML Cite \textit{T.-T. Kieu} et al., Vietnam J. Math. 48, No. 1, 107--124 (2020; Zbl 07190897) Full Text: DOI
Feng, Yuanyuan; Gao, Tingran; Li, Lei; Liu, Jian-Guo; Lu, Yulong Uniform-in-time weak error analysis for stochastic gradient descent algorithms via diffusion approximation. (English) Zbl 1440.60073 Commun. Math. Sci. 18, No. 1, 163-188 (2020). MSC: 60J20 90C15 PDF BibTeX XML Cite \textit{Y. Feng} et al., Commun. Math. Sci. 18, No. 1, 163--188 (2020; Zbl 1440.60073) Full Text: DOI
Wang, Andi Q.; Roberts, Gareth O.; Steinsaltz, David An approximation scheme for quasi-stationary distributions of killed diffusions. (English) Zbl 1434.60014 Stochastic Processes Appl. 130, No. 5, 3193-3219 (2020). MSC: 60B12 60J60 37C50 65C05 PDF BibTeX XML Cite \textit{A. Q. Wang} et al., Stochastic Processes Appl. 130, No. 5, 3193--3219 (2020; Zbl 1434.60014) Full Text: DOI
Waniek, Marcin; Elbassioni, Khaled; Pinheiro, Flávio L.; Hidalgo, César A.; Alshamsi, Aamena Computational aspects of optimal strategic network diffusion. (English) Zbl 1435.68245 Theor. Comput. Sci. 814, 153-168 (2020). MSC: 68R10 05C82 68Q17 68Q27 68W25 90C35 91D30 PDF BibTeX XML Cite \textit{M. Waniek} et al., Theor. Comput. Sci. 814, 153--168 (2020; Zbl 1435.68245) Full Text: DOI
Barbeiro, Sílvia; Lobo, Diogo Learning stable nonlinear cross-diffusion models for image restoration. (English) Zbl 1439.65025 J. Math. Imaging Vis. 62, No. 2, 223-237 (2020). Reviewer: Martin D. Buhmann (Gießen) MSC: 65D12 65K05 65M06 65M12 68T07 94-10 PDF BibTeX XML Cite \textit{S. Barbeiro} and \textit{D. Lobo}, J. Math. Imaging Vis. 62, No. 2, 223--237 (2020; Zbl 1439.65025) Full Text: DOI
Choi, Y. S.; Connors, J. M. A steepest descent algorithm for the computation of traveling dissipative solitons. (English) Zbl 1431.65239 Japan J. Ind. Appl. Math. 37, No. 1, 131-163 (2020). MSC: 65P30 37L65 35K57 PDF BibTeX XML Cite \textit{Y. S. Choi} and \textit{J. M. Connors}, Japan J. Ind. Appl. Math. 37, No. 1, 131--163 (2020; Zbl 1431.65239) Full Text: DOI
Bu, Weiping; Ji, Lun; Tang, Yifa; Zhou, Jie Space-time finite element method for the distributed-order time fractional reaction diffusion equations. (English) Zbl 1434.65177 Appl. Numer. Math. 152, 446-465 (2020). Reviewer: Hu Chen (Beijing) MSC: 65M60 65M12 35R11 65D32 PDF BibTeX XML Cite \textit{W. Bu} et al., Appl. Numer. Math. 152, 446--465 (2020; Zbl 1434.65177) Full Text: DOI
Cordasco, Gennaro; Gargano, Luisa; Peters, Joseph G.; Rescigno, Adele A.; Vaccaro, Ugo Fast and frugal targeting with incentives. (English) Zbl 1445.91041 Theor. Comput. Sci. 812, 62-79 (2020). Reviewer: Pablo Suárez-Serrato (Ciudad de México) MSC: 91D30 68W25 05C90 PDF BibTeX XML Cite \textit{G. Cordasco} et al., Theor. Comput. Sci. 812, 62--79 (2020; Zbl 1445.91041) Full Text: DOI