×

Markov-modulated jump-diffusion models for the short rate: pricing of zero coupon bonds and convexity adjustment. (English) Zbl 1508.91582

Summary: In this article, we consider a Markov-modulated model with jumps for the short rate. Using the main properties of a telegraphic process with jumps we compute the expected short rate. We obtain closed formulas for the zero coupon bond price assuming the Unbiased Expectation Hypothesis for the forward rates. Next, we obtain the coupled system of partial differential equations for the bond price using only no-arbitrage arguments. Numerical solutions are provided for some selected examples. The results obtained from both methods are compared and allow to estimate the magnitude of the convexity-adjustment.

MSC:

91G30 Interest rates, asset pricing, etc. (stochastic models)
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: a fresh approach to numerical computing, SIAM Rev., 59, 1, 65-98 (2017) · Zbl 1356.68030
[2] Björk, T., Arbitrage Theory in Continuous Time (2009), Oxford University Press
[3] Björk, T.; Kabanov, Y.; Runggaldier, W., Bond market structure in the presence of marked point processes, Math. Finance, 7, 2, 211-239 (1997) · Zbl 0884.90014
[4] Brémaud, P., Point Processes and Queues: Martingale Dynamics (1981), Springer-Verlag · Zbl 0478.60004
[5] Cohen, S. N.; Elliott, R. J., Stochastic Calculus and Applications (2015), Springer · Zbl 1338.60001
[6] Das, S. R., The surprise element: jumps in interest rates, J. Econ., 106, 1, 27-65 (2002) · Zbl 1051.62106
[7] Dothan, L. U., On the term structure of interest rates, J. Financ. Econ., 6, 1, 59-69 (1978)
[8] Gaspar, R. M.; Murgoci, A., Convexity adjustments, Encyclop. Quant. Finance (2008)
[9] Jakubowski, J.; Niewęgłowski, M., Feynman-kac theorem in random environments and partial integro-differential equations, J. Math. Anal. Appl., 450, 2, 1363-1387 (2017) · Zbl 1383.60099
[10] Jeanblanc, M.; Yor, M.; Chesney, M., Mathematical Methods for Financial Markets (2009), Springer Science & Business Media · Zbl 1205.91003
[11] Johannes, M., The statistical and economic role of jumps in continuous-time interest rate models, J. Finance, 59, 1, 227-260 (2004)
[12] Kolesnik, A. D.; Ratanov, N., Telegraph Processes and Option Pricing (2013), Springer · Zbl 1285.60001
[13] López, O.; Ratanov, N., Kac’s rescaling for jump-telegraph processes, Stat. Probab. Lett., 82, 10, 1768-1776 (2012) · Zbl 1266.60135
[14] López, O.; Ratanov, N., Option pricing driven by a telegraph process with random jumps, J. Appl. Probab., 49, 3, 838-849 (2012) · Zbl 1260.91230
[15] López, O.; Ratanov, N., On the asymmetric telegraph processes, J. Appl. Probab., 51, 2, 569-589 (2014) · Zbl 1304.60079
[16] López, O.; Serrano, R., Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models, Stochast. Models, 31, 2, 261-291 (2015) · Zbl 1315.91058
[17] Merton, R. C., Theory of rational option pricing, Bell J. Econ. Manag. Sci., 141-183 (1973) · Zbl 1257.91043
[18] Orsingher, E., On the vector process obtained by iterated integration of the telegraph signal, Georg. Math. J., 6, 2, 169-178 (1999) · Zbl 0931.60091
[19] Pelsser, A., Mathematical foundation of convexity correction, Quant. Finance, 3, 1, 59-65 (2003) · Zbl 1405.91646
[20] Piazzesi, M., Bond yields and the federal reserve, J. Polit. Econ., 113, 2, 311-344 (2005)
[21] Pintoux, C.; Privault, N., The dothan pricing model revisited, Math. Finance Int. J. Math. Stat. Financ. Econ., 21, 2, 355-363 (2011) · Zbl 1214.91122
[22] Rackauckas, C.; Nie, Q., DifferentialEquations.jl, a performant and feature-rich ecosystem for solving differential equations in Julia, J. Open. Res. Softw., 5, 1 (2017)
[23] Ratanov, N., A jump telegraph model for option pricing, Quant. Finance, 7, 5, 575-583 (2007) · Zbl 1151.91535
[24] Ratanov, N., Option pricing model based on a Markov-modulated diffusion with jumps, Brazil. J. Probab. Stat., 24, 2, 413-431 (2010) · Zbl 1193.91158
[25] Ratanov, N., Option pricing under jump-diffusion processes with regime switching, Methodol. Comput. Appl. Probab., 18, 3, 829-845 (2016) · Zbl 1350.91017
[26] Ratanov, N., Kac-lévy processes, J. Theor. Probab., 33, 1, 239-267 (2020) · Zbl 1431.60107
[27] Siu, T. K., Bond pricing under a Markovian regime-switching jump-augmented vasicek model via stochastic flows, Appl. Math. Comput., 216, 11, 3184-3190 (2010) · Zbl 1194.91088
[28] Siu, T. K., A markov regime-switching marked point process for short-rate analysis with credit risk, Int. J. Stochast. Anal., 2010 (2010), . Published online · Zbl 1203.91304
[29] Wu, S.; Zeng, Y., The term structure of interest rates under regime shifts and jumps, Econ. Lett., 93, 2, 215-221 (2006) · Zbl 1254.91738
[30] Xi, F.; Yin, G., Jump-diffusions with state-dependent switching: existence and uniqueness, feller property, linearization, and uniform ergodicity, Sci. China Math., 54, 12, 2651-2667 (2011) · Zbl 1274.60253
[31] Zhu, C.; Yin, G.; Baran, N. A., Feynman-kac formulas for regime-switching jump diffusions and their applications, Stochastics Int. J. Probab. Stoch. Processes, 87, 6, 1000-1032 (2015) · Zbl 1337.60200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.