Computing the Kreiss constant of a matrix. (English) Zbl 1464.65044


65F60 Numerical computation of matrix exponential and similar matrix functions
15A16 Matrix exponential and similar functions of matrices
Full Text: DOI arXiv


[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools 11, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719581. · Zbl 0965.65058
[2] P. Benner, V. Mehrmann, and H. Xu, A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78 (1998), pp. 329-358. · Zbl 0889.65036
[3] P. Benner, V. Mehrmann, and H. Xu, A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems, Electron. Trans. Numer. Anal., 8 (1999), pp. 115-126. · Zbl 0936.65045
[4] P. Benner and T. Mitchell, Extended and improved criss-cross algorithms for computing the spectral value set abscissa and radius, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1325-1352, https://doi.org/10.1137/19M1246213. · Zbl 1457.93066
[5] P. Benner and S. W. R. Werner, MORLAB – Model Order Reduction LABoratory (version 5.0), 2019, http://www.mpi-magdeburg.mpg.de/projects/morlab, https://doi.org/10.5281/zenodo.3332716.
[6] P. Benner and S. W. R. Werner, Hankel-norm approximation of large-scale descriptor systems, Adv. Comput. Math., 46 (2020), 40, https://doi.org/10.1007/s10444-020-09750-w. · Zbl 1441.93044
[7] R. B. Burckel, An Introduction to Classical Complex Analysis. Vol. 1, Pure Appl. Math. 64, Birkhäuser, Basel, 1979, https://doi.org/10.1007/978-3-0348-9374-9. · Zbl 0434.30002
[8] J. V. Burke, A. S. Lewis, and M. L. Overton, Robust stability and a criss-cross algorithm for pseudospectra, IMA J. Numer. Anal., 23 (2003), pp. 359-375, https://doi.org/10.1093/imanum/23.3.359. · Zbl 1042.65060
[9] J. V. Burke, A. S. Lewis, and M. L. Overton, Pseudospectral components and the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 350-361, https://doi.org/10.1137/S0895479803433313. · Zbl 1078.93008
[10] E. K.-w. Chu, The solution of the matrix equations \(AXB-CXD=E\) and \((YA-DZ,YC-BZ)=(E,F)\), Linear Algebra Appl., 93 (1987), pp. 93-105, https://doi.org/10.1016/S0024-3795(87)90314-4. · Zbl 0631.15006
[11] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, UK, 2014, http://www.chebfun.org/docs/guide/.
[12] R. Eising, Between controllable and uncontrollable, Systems Control Lett., 4 (1984), pp. 263-264, https://doi.org/10.1016/S0167-6911(84)80035-3. · Zbl 0542.93007
[13] M. Embree and B. Keeler, Pseudospectra of matrix pencils for transient analysis of differential-algebraic equations, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1028-1054, https://doi.org/10.1137/15M1055012. · Zbl 1379.65058
[14] M. Gu, New methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 989-1003, https://doi.org/10.1137/S0895479897328856. · Zbl 0954.65056
[15] M. Gu, E. Mengi, M. L. Overton, J. Xia, and J. Zhu, Fast methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 477-502, https://doi.org/10.1137/05063060X. · Zbl 1115.65069
[16] N. Guglielmi and M. L. Overton, Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192, https://doi.org/10.1137/100817048. · Zbl 1248.65034
[17] B. K\aagström and L. Westin, Generalized Schur methods with condition estimators for solving the generalized Sylvester equation, IEEE Trans. Automat. Control, 34 (1989), pp. 745-751, https://doi.org/10.1109/9.29404. · Zbl 0687.93025
[18] M. Köhler, Approximate Solution of Non-Symmetric Generalized Eigenvalue Problems and Linear Matrix Equations on HPC Platforms, Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, 2021, in preparation.
[19] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT, 2 (1962), pp. 153-181, https://doi.org/10.1007/bf01957330. · Zbl 0109.34702
[20] D. Kressner and B. Vandereycken, Subspace methods for computing the pseudospectral abscissa and the stability radius, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 292-313, https://doi.org/10.1137/120869432. · Zbl 1306.65187
[21] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964), pp. 377-387, https://doi.org/10.1007/BF01386087. · Zbl 0133.26201
[22] R. M. Larsen, PROPACK: Software for Large and Sparse SVD Calculations, http://sun.stanford.edu/ rmunk/PROPACK.
[23] A. J. Laub, Matrix Analysis for Scientists & Engineers, SIAM, Philadelphia, 2005. · Zbl 1077.15001
[24] R. J. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT, 24 (1984), pp. 584-591, https://doi.org/10.1007/BF01934916. · Zbl 0559.15018
[25] E. Mengi, Measures for Robust Stability and Controllability, Ph.D. thesis, New York University, New York, NY 10003, 2006, https://cs.nyu.edu/media/publications/mengi_emre.pdf.
[26] T. Mitchell, ROSTAPACK: RObust STAbility PACKage, http://timmitchell.com/software/ROSTAPACK.
[27] T. Mitchell, Fast Interpolation-Based Globality Certificates for Computing Kreiss Constants and the Distance to Uncontrollability, preprint, https://arxiv.org/abs/1910.01069, 2019.
[28] M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues of symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 697-718, https://doi.org/10.1137/S089547989324598X. · Zbl 0832.65036
[29] M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT, 31 (1991), pp. 551-555, https://doi.org/10.1007/BF01933268. · Zbl 0736.15015
[30] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. · Zbl 1085.15009
[31] T. G. Wright, EigTool, http://www.comlab.ox.ac.uk/pseudospectra/eigtool/, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.