Baccouch, Mahboub Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. (English) Zbl 07331344 Numer. Algorithms 86, No. 4, 1615-1650 (2021). MSC: 65L10 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 86, No. 4, 1615--1650 (2021; Zbl 07331344) Full Text: DOI
Yang, Jiming; Zhou, Jing A two-grid method for discontinuous Galerkin approximations to nonlinear Sobolev equations. (English) Zbl 07331340 Numer. Algorithms 86, No. 4, 1523-1541 (2021). MSC: 65M12 65M60 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Zhou}, Numer. Algorithms 86, No. 4, 1523--1541 (2021; Zbl 07331340) Full Text: DOI
Wu, Kailiang; Xing, Yulong Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: positivity and well-balancedness. (English) Zbl 07330824 SIAM J. Sci. Comput. 43, No. 1, A472-A510 (2021). MSC: 65M60 65M12 35L60 35L65 PDF BibTeX XML Cite \textit{K. Wu} and \textit{Y. Xing}, SIAM J. Sci. Comput. 43, No. 1, A472--A510 (2021; Zbl 07330824) Full Text: DOI
Zhao, Jingjun; Zhao, Wenjiao; Xu, Yang Lagrange nodal discontinuous Galerkin method for fractional Navier-Stokes equations. (English) Zbl 07330463 Appl. Math. Comput. 391, Article ID 125697, 19 p. (2021). MSC: 65M12 PDF BibTeX XML Cite \textit{J. Zhao} et al., Appl. Math. Comput. 391, Article ID 125697, 19 p. (2021; Zbl 07330463) Full Text: DOI
Izadi, Mohammad; Afshar, Mehdi Solving the Basset equation via Chebyshev collocation and LDG methods. (English) Zbl 07326408 J. Math. Model. 9, No. 1, 61-79 (2021). MSC: 34A08 26A33 41A10 65M70 65L60 65L07 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{M. Afshar}, J. Math. Model. 9, No. 1, 61--79 (2021; Zbl 07326408) Full Text: DOI
Hu, Jingwei; Qi, Kunlun; Yang, Tong A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. (English) Zbl 07326330 SIAM J. Numer. Anal. 59, No. 2, 613-633 (2021). MSC: 35Q20 65M12 65M70 45G10 PDF BibTeX XML Cite \textit{J. Hu} et al., SIAM J. Numer. Anal. 59, No. 2, 613--633 (2021; Zbl 07326330) Full Text: DOI
Li, Huanrong; Song, Zhengyuan; Hu, Junzhao Numerical analysis of a second-order IPDGFE method for the Allen-Cahn equation and the curvature-driven geometric flow. (English) Zbl 07325124 Comput. Math. Appl. 86, 49-62 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{H. Li} et al., Comput. Math. Appl. 86, 49--62 (2021; Zbl 07325124) Full Text: DOI
Li, Changpin; Wang, Zhen Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution. (English) Zbl 07318285 Math. Comput. Simul. 182, 838-857 (2021). MSC: 35Q 65M 35R PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Wang}, Math. Comput. Simul. 182, 838--857 (2021; Zbl 07318285) Full Text: DOI
Bragin, M. D.; Kriksin, Y. A.; Tishkin, V. F. Entropy stable discontinuous Galerkin method for two-dimensional Euler equations. (Russian) Zbl 07312375 Mat. Model. 33, No. 2, 125-140 (2021). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 76M10 76N15 65M60 PDF BibTeX XML Cite \textit{M. D. Bragin} et al., Mat. Model. 33, No. 2, 125--140 (2021; Zbl 07312375) Full Text: DOI MNR
Baccouch, Mahboub The discontinuous Galerkin method for general nonlinear third-order ordinary differential equations. (English) Zbl 07311195 Appl. Numer. Math. 162, 331-350 (2021). MSC: 65L60 65L20 PDF BibTeX XML Cite \textit{M. Baccouch}, Appl. Numer. Math. 162, 331--350 (2021; Zbl 07311195) Full Text: DOI
Baccouch, Mahboub Optimal superconvergence and asymptotically exact a posteriori error estimator for the local discontinuous Galerkin method for linear elliptic problems on Cartesian grids. (English) Zbl 07311187 Appl. Numer. Math. 162, 201-224 (2021). MSC: 65N30 65N12 65N15 65N50 35J25 PDF BibTeX XML Cite \textit{M. Baccouch}, Appl. Numer. Math. 162, 201--224 (2021; Zbl 07311187) Full Text: DOI
Wang, Lina; Tian, Hongjiong; Yi, Lijun An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels. (English) Zbl 07310815 Appl. Numer. Math. 161, 218-232 (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{L. Wang} et al., Appl. Numer. Math. 161, 218--232 (2021; Zbl 07310815) Full Text: DOI
Baccouch, Mahboub; Temimi, Helmi A high-order space-time ultra-weak discontinuous Galerkin method for the second-order wave equation in one space dimension. (English) Zbl 07309600 J. Comput. Appl. Math. 389, Article ID 113331, 21 p. (2021). MSC: 65M60 65N30 65M22 65M15 65M50 65N50 35L10 PDF BibTeX XML Cite \textit{M. Baccouch} and \textit{H. Temimi}, J. Comput. Appl. Math. 389, Article ID 113331, 21 p. (2021; Zbl 07309600) Full Text: DOI
He, Limin; Wang, Fei; Wen, Jing A mixed discontinuous Galerkin method for the wave equation. (English) Zbl 07308003 Comput. Math. Appl. 82, 60-73 (2021). MSC: 74 65 PDF BibTeX XML Cite \textit{L. He} et al., Comput. Math. Appl. 82, 60--73 (2021; Zbl 07308003) Full Text: DOI
Baccouch, Mahboub; Temimi, Helmi; Ben-Romdhane, Mohamed A discontinuous Galerkin method for systems of stochastic differential equations with applications to population biology, finance, and physics. (English) Zbl 07305222 J. Comput. Appl. Math. 388, Article ID 113297, 25 p. (2021). MSC: 65C20 65C30 65L20 65L60 60H10 PDF BibTeX XML Cite \textit{M. Baccouch} et al., J. Comput. Appl. Math. 388, Article ID 113297, 25 p. (2021; Zbl 07305222) Full Text: DOI
Tao, Qi; Xu, Yan; Shu, Chi-Wang A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. (English) Zbl 07305147 J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021). MSC: 65M60 65M06 65N30 65M15 74K10 74K20 74H45 35Q74 PDF BibTeX XML Cite \textit{Q. Tao} et al., J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021; Zbl 07305147) Full Text: DOI
Chauchat, Nicolas; Becker, Roland; Schall, Eric Performance of DG methods based on different variables for low Mach number flows. (English) Zbl 07298996 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021). MSC: 35Q31 76N06 65M60 65M06 65N30 65M08 PDF BibTeX XML Cite \textit{N. Chauchat} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021; Zbl 07298996) Full Text: DOI
Yan, Zhen-Guo; Pan, Yu; Castiglioni, Giacomo; Hillewaert, Koen; Peiró, Joaquim; Moxey, David; Sherwin, Spencer J. Nektar++: design and implementation of an implicit, spectral/\(hp\) element, compressible flow solver using a Jacobian-free Newton Krylov approach. (English) Zbl 07288718 Comput. Math. Appl. 81, 351-372 (2021). MSC: 76M22 76M10 76M20 76N15 PDF BibTeX XML Cite \textit{Z.-G. Yan} et al., Comput. Math. Appl. 81, 351--372 (2021; Zbl 07288718) Full Text: DOI
Huang, Chaobao; An, Na; Yu, Xijun; Zhang, Huili A direct discontinuous Galerkin method for time-fractional diffusion equation with discontinuous diffusive coefficient. (English) Zbl 07324441 Complex Var. Elliptic Equ. 65, No. 9, 1445-1461 (2020). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{C. Huang} et al., Complex Var. Elliptic Equ. 65, No. 9, 1445--1461 (2020; Zbl 07324441) Full Text: DOI
Kozpınar, Sinem; Uzunca, Murat; Karasözen, Bülent Pricing European and American options under Heston model using discontinuous Galerkin finite elements. (English) Zbl 07318117 Math. Comput. Simul. 177, 568-587 (2020). MSC: 65M60 91B25 91G80 PDF BibTeX XML Cite \textit{S. Kozpınar} et al., Math. Comput. Simul. 177, 568--587 (2020; Zbl 07318117) Full Text: DOI
Li, Changpin; Wang, Zhen The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. (English) Zbl 07317965 Math. Comput. Simul. 169, 51-73 (2020). MSC: 65 74S 65N PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Wang}, Math. Comput. Simul. 169, 51--73 (2020; Zbl 07317965) Full Text: DOI
Hajihassanpour, M.; Hejranfar, K. An implicit dual-time stepping high-order nodal discontinuous Galerkin method for solving incompressible flows on triangle elements. (English) Zbl 07317958 Math. Comput. Simul. 168, 173-214 (2020). MSC: 76D 65L PDF BibTeX XML Cite \textit{M. Hajihassanpour} and \textit{K. Hejranfar}, Math. Comput. Simul. 168, 173--214 (2020; Zbl 07317958) Full Text: DOI
Giesselmann, Jan; Zacharenakis, Dimitrios A posteriori analysis for the Navier-Stokes-Korteweg model. (English) Zbl 07315520 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 682-690 (2020). MSC: 76M99 76T10 76N06 PDF BibTeX XML Cite \textit{J. Giesselmann} and \textit{D. Zacharenakis}, AIMS Ser. Appl. Math. 10, 682--690 (2020; Zbl 07315520)
Giesselmann, Jan; Meyer, Fabian; Rohde, Christian An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws. (English) Zbl 07315492 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 449-456 (2020). MSC: 35L65 35R60 65M15 65M60 65M70 PDF BibTeX XML Cite \textit{J. Giesselmann} et al., AIMS Ser. Appl. Math. 10, 449--456 (2020; Zbl 07315492)
Stognii, P. V.; Petrov, I. B.; Beklemysheva, K. A.; Miryaha, V. A. Computer exploration of the ice samples strength using different numerical methods. (English) Zbl 1454.86001 Lobachevskii J. Math. 41, No. 12, 2714-2721 (2020). MSC: 86-08 86A40 76M10 PDF BibTeX XML Cite \textit{P. V. Stognii} et al., Lobachevskii J. Math. 41, No. 12, 2714--2721 (2020; Zbl 1454.86001) Full Text: DOI
Kwong, In; Jo, Gwanghyun A consistent discontinuous bubble scheme for elliptic problems with interface jumps. (English) Zbl 1454.65168 J. Korean Soc. Ind. Appl. Math. 24, No. 2, 143-159 (2020). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{I. Kwong} and \textit{G. Jo}, J. Korean Soc. Ind. Appl. Math. 24, No. 2, 143--159 (2020; Zbl 1454.65168) Full Text: DOI
Engwer, Christian; May, Sandra; Nüßing, Andreas; Streitbürger, Florian A stabilized DG cut cell method for discretizing the linear transport equation. (English) Zbl 07303419 SIAM J. Sci. Comput. 42, No. 6, A3677-A3703 (2020). MSC: 65M60 65M12 65M20 35L02 35L65 PDF BibTeX XML Cite \textit{C. Engwer} et al., SIAM J. Sci. Comput. 42, No. 6, A3677--A3703 (2020; Zbl 07303419) Full Text: DOI
Cagas, Petr; Hakim, Ammar; Srinivasan, Bhuvana Plasma-material boundary conditions for discontinuous Galerkin continuum-kinetic simulations, with a focus on secondary electron emission. (English) Zbl 1453.82101 J. Comput. Phys. 406, Article ID 109215, 19 p. (2020). MSC: 82M10 82D10 PDF BibTeX XML Cite \textit{P. Cagas} et al., J. Comput. Phys. 406, Article ID 109215, 19 p. (2020; Zbl 1453.82101) Full Text: DOI
Buli, Joshua; Xing, Yulong A discontinuous Galerkin method for the Aw-Rascle traffic flow model on networks. (English) Zbl 1453.65310 J. Comput. Phys. 406, Article ID 109183, 26 p. (2020). MSC: 65M60 76A30 76M10 35R02 35L65 PDF BibTeX XML Cite \textit{J. Buli} and \textit{Y. Xing}, J. Comput. Phys. 406, Article ID 109183, 26 p. (2020; Zbl 1453.65310) Full Text: DOI
Zhao, Zhuang; Chen, Yibing; Qiu, Jianxian A hybrid Hermite WENO scheme for hyperbolic conservation laws. (English) Zbl 1453.65264 J. Comput. Phys. 405, Article ID 109175, 22 p. (2020). MSC: 65M08 65M60 76M12 76M10 35L65 PDF BibTeX XML Cite \textit{Z. Zhao} et al., J. Comput. Phys. 405, Article ID 109175, 22 p. (2020; Zbl 1453.65264) Full Text: DOI
Zou, Shijun; Yu, Xijun; Dai, Zihuan A positivity-preserving Lagrangian discontinuous Galerkin method for ideal magnetohydrodynamics equations in one-dimension. (English) Zbl 1453.76087 J. Comput. Phys. 405, Article ID 109144, 22 p. (2020). MSC: 76M10 76W05 65M60 PDF BibTeX XML Cite \textit{S. Zou} et al., J. Comput. Phys. 405, Article ID 109144, 22 p. (2020; Zbl 1453.76087) Full Text: DOI
Ye, Ruichao; Kumar, Kundan; de Hoop, Maarten V.; Campillo, Michel A multi-rate iterative coupling scheme for simulating dynamic ruptures and seismic waves generation in the prestressed earth. (English) Zbl 1453.86030 J. Comput. Phys. 405, Article ID 109098, 39 p. (2020). MSC: 86A15 65M60 65Z05 65M12 86-08 PDF BibTeX XML Cite \textit{R. Ye} et al., J. Comput. Phys. 405, Article ID 109098, 39 p. (2020; Zbl 1453.86030) Full Text: DOI
Ching, Eric J.; Brill, Steven R.; Barnhardt, Michael; Ihme, Matthias A two-way coupled Euler-Lagrange method for simulating multiphase flows with discontinuous Galerkin schemes on arbitrary curved elements. (English) Zbl 1453.76067 J. Comput. Phys. 405, Article ID 109096, 26 p. (2020). MSC: 76M10 76M28 76T15 76K05 65M60 65M75 PDF BibTeX XML Cite \textit{E. J. Ching} et al., J. Comput. Phys. 405, Article ID 109096, 26 p. (2020; Zbl 1453.76067) Full Text: DOI
Giuliani, Andrew; Krivodonova, Lilia A moment limiter for the discontinuous Galerkin method on unstructured tetrahedral meshes. (English) Zbl 1453.65318 J. Comput. Phys. 404, Article ID 109106, 20 p. (2020). MSC: 65M60 65M50 76M10 35L65 76L05 PDF BibTeX XML Cite \textit{A. Giuliani} and \textit{L. Krivodonova}, J. Comput. Phys. 404, Article ID 109106, 20 p. (2020; Zbl 1453.65318) Full Text: DOI
Zhu, Jun; Qiu, Jianxian; Shu, Chi-Wang High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. (English) Zbl 1453.65351 J. Comput. Phys. 404, Article ID 109105, 18 p. (2020). MSC: 65M60 35L65 76M10 76L05 PDF BibTeX XML Cite \textit{J. Zhu} et al., J. Comput. Phys. 404, Article ID 109105, 18 p. (2020; Zbl 1453.65351) Full Text: DOI
Chalmers, N.; Krivodonova, L. A robust CFL condition for the discontinuous Galerkin method on triangular meshes. (English) Zbl 1453.65267 J. Comput. Phys. 403, Article ID 109095, 14 p. (2020). MSC: 65M12 65M60 35L65 PDF BibTeX XML Cite \textit{N. Chalmers} and \textit{L. Krivodonova}, J. Comput. Phys. 403, Article ID 109095, 14 p. (2020; Zbl 1453.65267) Full Text: DOI
Manzanero, Juan; Rubio, Gonzalo; Kopriva, David A.; Ferrer, Esteban; Valero, Eusebio A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation. (English) Zbl 1453.65338 J. Comput. Phys. 403, Article ID 109072, 25 p. (2020). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{J. Manzanero} et al., J. Comput. Phys. 403, Article ID 109072, 25 p. (2020; Zbl 1453.65338) Full Text: DOI
Shukla, Khemraj; Chan, Jesse; de Hoop, Maarten V.; Jaiswal, Priyank A weight-adjusted discontinuous Galerkin method for the poroelastic wave equation: penalty fluxes and micro-heterogeneities. (English) Zbl 1453.74079 J. Comput. Phys. 403, Article ID 109061, 34 p. (2020). MSC: 74S05 74J10 76M10 76S05 74F10 PDF BibTeX XML Cite \textit{K. Shukla} et al., J. Comput. Phys. 403, Article ID 109061, 34 p. (2020; Zbl 1453.74079) Full Text: DOI
Cheng, Jian; Zhang, Fan; Liu, Tiegang A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. (English) Zbl 1453.76063 J. Comput. Phys. 403, Article ID 109059, 29 p. (2020). MSC: 76M10 65M60 76T17 76T10 76L05 PDF BibTeX XML Cite \textit{J. Cheng} et al., J. Comput. Phys. 403, Article ID 109059, 29 p. (2020; Zbl 1453.76063) Full Text: DOI
Zhan, Qiwei; Zhuang, Mingwei; Mao, Yiqian; Liu, Qing Huo Unified Riemann solution for multi-physics coupling: anisotropic poroelastic/elastic/fluid interfaces. (English) Zbl 1453.76086 J. Comput. Phys. 402, Article ID 108961, 25 p. (2020). MSC: 76M10 76S05 74F10 74J10 PDF BibTeX XML Cite \textit{Q. Zhan} et al., J. Comput. Phys. 402, Article ID 108961, 25 p. (2020; Zbl 1453.76086) Full Text: DOI
Higdon, Robert L. Discontinuous Galerkin methods for multi-layer ocean modeling: viscosity and thin layers. (English) Zbl 1453.65323 J. Comput. Phys. 401, Article ID 109018, 23 p. (2020). MSC: 65M60 65Z05 86A05 37N10 PDF BibTeX XML Cite \textit{R. L. Higdon}, J. Comput. Phys. 401, Article ID 109018, 23 p. (2020; Zbl 1453.65323) Full Text: DOI
Kang, Shinhoo; Giraldo, Francis X.; Bui-Thanh, Tan IMEX HDG-DG: a coupled implicit hybridized discontinuous Galerkin and explicit discontinuous Galerkin approach for shallow water systems. (English) Zbl 1453.65328 J. Comput. Phys. 401, Article ID 109010, 21 p. (2020). MSC: 65M60 76M10 86A10 PDF BibTeX XML Cite \textit{S. Kang} et al., J. Comput. Phys. 401, Article ID 109010, 21 p. (2020; Zbl 1453.65328) Full Text: DOI
Böhmer, Niclas; Torrilhon, Manuel Entropic quadrature for moment approximations of the Boltzmann-BGK equation. (English) Zbl 1453.76061 J. Comput. Phys. 401, Article ID 108992, 25 p. (2020). MSC: 76M10 76M12 76P05 PDF BibTeX XML Cite \textit{N. Böhmer} and \textit{M. Torrilhon}, J. Comput. Phys. 401, Article ID 108992, 25 p. (2020; Zbl 1453.76061) Full Text: DOI
Guo, Kaihang; Chan, Jesse Bernstein-Bézier weight-adjusted discontinuous Galerkin methods for wave propagation in heterogeneous media. (English) Zbl 1453.74077 J. Comput. Phys. 400, Article ID 108971, 20 p. (2020). MSC: 74S05 74J05 74E05 PDF BibTeX XML Cite \textit{K. Guo} and \textit{J. Chan}, J. Comput. Phys. 400, Article ID 108971, 20 p. (2020; Zbl 1453.74077) Full Text: DOI
Liu, Zexuan; Sun, Zhiyuan; Yang, Jerry Zhijian A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. (English) Zbl 07300753 Electron Res. Arch. 28, No. 4, 1487-1501 (2020). MSC: 65N12 65N30 PDF BibTeX XML Cite \textit{Z. Liu} et al., Electron Res. Arch. 28, No. 4, 1487--1501 (2020; Zbl 07300753) Full Text: DOI
Li, Changpin; Li, Zhiqiang; Wang, Zhen Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. (English) Zbl 07299266 J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020). MSC: 65M60 26A33 35B65 65M12 PDF BibTeX XML Cite \textit{C. Li} et al., J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020; Zbl 07299266) Full Text: DOI
Sosa Jones, Giselle; Lee, Jeonghun J.; Rhebergen, Sander A space-time hybridizable discontinuous Galerkin method for linear free-surface waves. (English) Zbl 07299090 J. Sci. Comput. 85, No. 3, Paper No. 61, 38 p. (2020). MSC: 65M60 65M15 35R35 PDF BibTeX XML Cite \textit{G. Sosa Jones} et al., J. Sci. Comput. 85, No. 3, Paper No. 61, 38 p. (2020; Zbl 07299090) Full Text: DOI
Tu, Xuemin; Wang, Bin; Zhang, Jinjin Analysis of BDDC algorithms for Stokes problems with hybridizable discontinuous Galerkin discretizations. (English) Zbl 07297614 ETNA, Electron. Trans. Numer. Anal. 52, 553-570 (2020). MSC: 65F10 65N30 65N55 PDF BibTeX XML Cite \textit{X. Tu} et al., ETNA, Electron. Trans. Numer. Anal. 52, 553--570 (2020; Zbl 07297614) Full Text: DOI Link
Bi, Hui; Xu, Ya’nan Stability analysis of second-order explicit TVD Runge-Kutta discontinuous Galerkin method for linear hyperbolic conservation laws. (English) Zbl 07295541 J. Nat. Sci. Heilongjiang Univ. 37, No. 3, 308-313 (2020). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{H. Bi} and \textit{Y. Xu}, J. Nat. Sci. Heilongjiang Univ. 37, No. 3, 308--313 (2020; Zbl 07295541) Full Text: DOI
Zou, Leqiang; Liu, Lijie; Wei, Leilei A discontinuous Galerkin finite element method for the fourth-order Cahn-Hilliard equation. (Chinese. English summary) Zbl 07295046 Chin. J. Eng. Math. 37, No. 4, 478-486 (2020). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{L. Zou} et al., Chin. J. Eng. Math. 37, No. 4, 478--486 (2020; Zbl 07295046) Full Text: DOI
Zhalnin, Ruslan Viktorovich; Masyagin, Viktor Fedorovich; Peskova, Elizaveta Evgen’evna; Tishkin, Vladimir Fedorovich A priori error estimates of the local discontinuous Galerkin method on staggered grids for solving a parabolic equation for the homogeneous Dirichlet problem. (Russian. English summary) Zbl 07294530 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 116-136 (2020). MSC: 65N30 PDF BibTeX XML Cite \textit{R. V. Zhalnin} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 116--136 (2020; Zbl 07294530) Full Text: DOI MNR
Duru, Kenneth; Rannabauer, Leonhard; Gabriel, Alice-Agnes; Kreiss, Gunilla; Bader, Michael A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form. (English) Zbl 1455.65166 Numer. Math. 146, No. 4, 729-782 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M08 65M12 65M15 35F55 35F46 35Q74 74B10 44A10 PDF BibTeX XML Cite \textit{K. Duru} et al., Numer. Math. 146, No. 4, 729--782 (2020; Zbl 1455.65166) Full Text: DOI
Nadir-Alexandre, Messai; Sébastien, Pernet hp non-conforming a priori error analysis of an interior penalty discontinuous Galerkin BEM for the Helmholtz equation. (English) Zbl 07283128 Comput. Math. Appl. 80, No. 12, 2644-2675 (2020). MSC: 65 74 PDF BibTeX XML Cite \textit{M. Nadir-Alexandre} and \textit{P. Sébastien}, Comput. Math. Appl. 80, No. 12, 2644--2675 (2020; Zbl 07283128) Full Text: DOI
Trofimova, Svetlana Alekseevna; Itkina, Natalia Borisovna; Shurina, Ella Petrovna Hierarchical basis in \(H^{\operatorname{div}}\) space for a mixed finite element formulation of the Darcy problem. (Russian. English summary) Zbl 1448.65248 Sib. Èlektron. Mat. Izv. 17, 1741-1765 (2020). MSC: 65N30 76M10 65F10 65N55 35J25 PDF BibTeX XML Cite \textit{S. A. Trofimova} et al., Sib. Èlektron. Mat. Izv. 17, 1741--1765 (2020; Zbl 1448.65248) Full Text: DOI
Castillo, Paul.; Gómez, Sergio Alejandro On the convergence of the local discontinuous Galerkin method applied to a stationary one dimensional fractional diffusion problem. (English) Zbl 1452.65325 J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020). MSC: 65N30 65M60 65N12 65N15 35R11 26A33 PDF BibTeX XML Cite \textit{Paul. Castillo} and \textit{S. A. Gómez}, J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020; Zbl 1452.65325) Full Text: DOI
Barucq, Hélène; Duruflé, Marc; N’diaye, Mamadou High-order locally a-stable implicit schemes for linear ODEs. (English) Zbl 1452.76146 J. Sci. Comput. 85, No. 2, Paper No. 31, 32 p. (2020). MSC: 76M20 76Q05 65L05 65M60 PDF BibTeX XML Cite \textit{H. Barucq} et al., J. Sci. Comput. 85, No. 2, Paper No. 31, 32 p. (2020; Zbl 1452.76146) Full Text: DOI
Kim, Dohyun; Zhao, Lina; Park, Eun-Jae Staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes. (English) Zbl 1452.65344 SIAM J. Sci. Comput. 42, No. 4, A2537-A2560 (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N50 65N12 PDF BibTeX XML Cite \textit{D. Kim} et al., SIAM J. Sci. Comput. 42, No. 4, A2537--A2560 (2020; Zbl 1452.65344) Full Text: DOI
Peng, Zhichao; Tang, Qi; Tang, Xian-Zhu An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation. (English) Zbl 1451.65202 SIAM J. Sci. Comput. 42, No. 5, B1227-B1249 (2020). MSC: 65N30 65N50 65N55 65F10 35Q35 PDF BibTeX XML Cite \textit{Z. Peng} et al., SIAM J. Sci. Comput. 42, No. 5, B1227--B1249 (2020; Zbl 1451.65202) Full Text: DOI
Gürkan, Ceren; Sticko, Simon; Massing, André Stabilized cut discontinuous Galerkin methods for advection-reaction problems. (English) Zbl 1451.65191 SIAM J. Sci. Comput. 42, No. 5, A2620-A2654 (2020). MSC: 65N30 65N12 65N15 65N85 PDF BibTeX XML Cite \textit{C. Gürkan} et al., SIAM J. Sci. Comput. 42, No. 5, A2620--A2654 (2020; Zbl 1451.65191) Full Text: DOI
Zhang, Jiansong; Han, Huiran A new discontinuous Galerkin mixed finite element method for compressible miscible displacement problem. (English) Zbl 1452.65262 Comput. Math. Appl. 80, No. 6, 1714-1725 (2020). MSC: 65M60 65N30 76S05 76N99 65M12 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{H. Han}, Comput. Math. Appl. 80, No. 6, 1714--1725 (2020; Zbl 1452.65262) Full Text: DOI
Shao, Wenting; Sheng, Qiwei; Wang, Cheng A cascadic multigrid asymptotic-preserving discrete ordinate discontinuous streamline diffusion method for radiative transfer equations with diffusive scalings. (English) Zbl 1451.65224 Comput. Math. Appl. 80, No. 6, 1650-1667 (2020). MSC: 65N55 65N30 80A21 85A25 PDF BibTeX XML Cite \textit{W. Shao} et al., Comput. Math. Appl. 80, No. 6, 1650--1667 (2020; Zbl 1451.65224) Full Text: DOI
Xu, Yuan; Shu, Chi-Wang; Zhang, Qiang Error estimate of the fourth-order Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. (English) Zbl 1452.65256 SIAM J. Numer. Anal. 58, No. 5, 2885-2914 (2020). MSC: 65M60 65M15 65L06 PDF BibTeX XML Cite \textit{Y. Xu} et al., SIAM J. Numer. Anal. 58, No. 5, 2885--2914 (2020; Zbl 1452.65256) Full Text: DOI
Yuan, An’an; Zhu, Hongqiang; Liu, Rui A \(p\)-adaptive RKDG algorithm based on the troubled-cell indicators. (Chinese. English summary) Zbl 07267388 Math. Pract. Theory 50, No. 5, 165-172 (2020). MSC: 65M60 PDF BibTeX XML Cite \textit{A. Yuan} et al., Math. Pract. Theory 50, No. 5, 165--172 (2020; Zbl 07267388)
He, Siriguleng; Li, Hong; Liu, Yang; Fang, Zhichao Time discontinuous space-time finite element method for unsteady differential equation with singular coefficients. (Chinese. English summary) Zbl 07267282 Math. Numer. Sin. 42, No. 1, 101-116 (2020). MSC: 65M60 65N30 PDF BibTeX XML Cite \textit{S. He} et al., Math. Numer. Sin. 42, No. 1, 101--116 (2020; Zbl 07267282)
Wang, Hailu; Wu, Hua Local discontinuous Galerkin spectral element method for nonlinear reaction-diffusion equations. (Chinese. English summary) Zbl 07267249 J. Numer. Methods Comput. Appl. 41, No. 1, 1-18 (2020). MSC: 65M70 65M12 PDF BibTeX XML Cite \textit{H. Wang} and \textit{H. Wu}, J. Numer. Methods Comput. Appl. 41, No. 1, 1--18 (2020; Zbl 07267249)
Castillo, Paul; Gómez, Sergio Interpolatory super-convergent discontinuous Galerkin methods for nonlinear reaction diffusion equations on three dimensional domains. (English) Zbl 1452.65153 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105388, 16 p. (2020). MSC: 65M06 65M22 65N30 65D05 65M12 65M15 PDF BibTeX XML Cite \textit{P. Castillo} and \textit{S. Gómez}, Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105388, 16 p. (2020; Zbl 1452.65153) Full Text: DOI
Nastasi, Giovanni; Romano, Vittorio A full coupled drift-diffusion-Poisson simulation of a GFET. (English) Zbl 1452.82036 Commun. Nonlinear Sci. Numer. Simul. 87, Article ID 105300, 15 p. (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 82M10 65M60 65M06 82C70 82D80 35P25 35Q20 35Q81 PDF BibTeX XML Cite \textit{G. Nastasi} and \textit{V. Romano}, Commun. Nonlinear Sci. Numer. Simul. 87, Article ID 105300, 15 p. (2020; Zbl 1452.82036) Full Text: DOI
Wang, Fei; Qi, Haoran A discontinuous Galerkin method for an elliptic hemivariational inequality for semipermeable media. (English) Zbl 1452.65361 Appl. Math. Lett. 109, Article ID 106572, 7 p. (2020). MSC: 65N30 65N12 65N15 35J15 35J86 PDF BibTeX XML Cite \textit{F. Wang} and \textit{H. Qi}, Appl. Math. Lett. 109, Article ID 106572, 7 p. (2020; Zbl 1452.65361) Full Text: DOI
Fang, Zhiwei; Li, Jichun; Wang, Xiang Optimal control for electromagnetic cloaking metamaterial parameters design. (English) Zbl 1448.49049 Comput. Math. Appl. 79, No. 4, 1165-1176 (2020). MSC: 49S05 49K20 49N45 65N30 78A25 PDF BibTeX XML Cite \textit{Z. Fang} et al., Comput. Math. Appl. 79, No. 4, 1165--1176 (2020; Zbl 1448.49049) Full Text: DOI
Karasözen, Bülent; Uzunca, Murat; Küçükseyhan, Tuğba Reduced order optimal control of the convective FitzHugh-Nagumo equations. (English) Zbl 1448.49038 Comput. Math. Appl. 79, No. 4, 982-995 (2020). MSC: 49M41 49J20 49M05 49M25 65K10 65M60 PDF BibTeX XML Cite \textit{B. Karasözen} et al., Comput. Math. Appl. 79, No. 4, 982--995 (2020; Zbl 1448.49038) Full Text: DOI
Bassi, C.; Busto, S.; Dumbser, M. High order ADER-DG schemes for the simulation of linear seismic waves induced by nonlinear dispersive free-surface water waves. (English) Zbl 1447.74042 Appl. Numer. Math. 158, 236-263 (2020). MSC: 74S05 74S20 74L05 74J05 74F10 76B15 86A15 PDF BibTeX XML Cite \textit{C. Bassi} et al., Appl. Numer. Math. 158, 236--263 (2020; Zbl 1447.74042) Full Text: DOI
Ortleb, Sigrun A comparative Fourier analysis of discontinuous Galerkin schemes for advection-diffusion with respect to BR1, BR2, and local discontinuous Galerkin diffusion discretization. (English) Zbl 1448.65171 Math. Methods Appl. Sci. 43, No. 13, 7841-7863 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M70 65M20 PDF BibTeX XML Cite \textit{S. Ortleb}, Math. Methods Appl. Sci. 43, No. 13, 7841--7863 (2020; Zbl 1448.65171) Full Text: DOI
Hozman, Jiří; Tichý, Tomáš The discontinuous Galerkin method for discretely observed Asian options. (English) Zbl 1448.91324 Math. Methods Appl. Sci. 43, No. 13, 7726-7746 (2020). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 91G60 65M60 91G20 35Q91 91G80 PDF BibTeX XML Cite \textit{J. Hozman} and \textit{T. Tichý}, Math. Methods Appl. Sci. 43, No. 13, 7726--7746 (2020; Zbl 1448.91324) Full Text: DOI
Ravindran, S. S. Analysis of a second-order decoupled time-stepping scheme for transient viscoelastic flow. (English) Zbl 07244678 Int. J. Numer. Anal. Model. 17, No. 1, 87-109 (2020). MSC: 65 PDF BibTeX XML Cite \textit{S. S. Ravindran}, Int. J. Numer. Anal. Model. 17, No. 1, 87--109 (2020; Zbl 07244678) Full Text: Link
Wen, Jing; He, Yinnian A strongly conservative finite element method for the coupled Stokes-Biot model. (English) Zbl 1447.65094 Comput. Math. Appl. 80, No. 5, 1421-1442 (2020). MSC: 65M60 65M06 65M12 65M15 76D07 76S05 PDF BibTeX XML Cite \textit{J. Wen} and \textit{Y. He}, Comput. Math. Appl. 80, No. 5, 1421--1442 (2020; Zbl 1447.65094) Full Text: DOI
Izadi, Mohammad; Negar, Mohammad Reza Local discontinuous Galerkin approximations to fractional Bagley-Torvik equation. (English) Zbl 1451.65100 Math. Methods Appl. Sci. 43, No. 7, 4798-4813 (2020). MSC: 65L60 34A08 65L20 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{M. R. Negar}, Math. Methods Appl. Sci. 43, No. 7, 4798--4813 (2020; Zbl 1451.65100) Full Text: DOI
Dutta, Jogen; Deka, Bhupen; Kumar, Naresh Finite element methods for the electric interface model: convergence analysis. (English) Zbl 1446.65166 Math. Methods Appl. Sci. 43, No. 7, 4598-4613 (2020). MSC: 65N30 65M06 65N15 78A70 35Q60 92C05 PDF BibTeX XML Cite \textit{J. Dutta} et al., Math. Methods Appl. Sci. 43, No. 7, 4598--4613 (2020; Zbl 1446.65166) Full Text: DOI
Singh, Gautam; Natesan, Srinivasan A uniformly convergent numerical scheme for a coupled system of singularly perturbed reaction-diffusion equations. (English) Zbl 1451.65096 Numer. Funct. Anal. Optim. 41, No. 10, 1172-1189 (2020). MSC: 65L10 65L11 65L60 65L20 PDF BibTeX XML Cite \textit{G. Singh} and \textit{S. Natesan}, Numer. Funct. Anal. Optim. 41, No. 10, 1172--1189 (2020; Zbl 1451.65096) Full Text: DOI
Tao, Qi; Xu, Yan; Shu, Chi-Wang An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. (English) Zbl 1446.65118 Math. Comput. 89, No. 326, 2753-2783 (2020). MSC: 65M60 65M15 65M12 35G25 PDF BibTeX XML Cite \textit{Q. Tao} et al., Math. Comput. 89, No. 326, 2753--2783 (2020; Zbl 1446.65118) Full Text: DOI
Fehn, Niklas; Munch, Peter; Wall, Wolfgang A.; Kronbichler, Martin Hybrid multigrid methods for high-order discontinuous Galerkin discretizations. (English) Zbl 1440.65135 J. Comput. Phys. 415, Article ID 109538, 29 p. (2020). MSC: 65M60 65M55 35J05 PDF BibTeX XML Cite \textit{N. Fehn} et al., J. Comput. Phys. 415, Article ID 109538, 29 p. (2020; Zbl 1440.65135) Full Text: DOI
Dedner, Andreas; Klöfkorn, Robert A Python framework for solving advection-diffusion problems. (English) Zbl 1454.65084 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 695-703 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65N30 65M20 65L06 76N30 35Q31 PDF BibTeX XML Cite \textit{A. Dedner} and \textit{R. Klöfkorn}, Springer Proc. Math. Stat. 323, 695--703 (2020; Zbl 1454.65084) Full Text: DOI
May, Sandra Time-dependent conservation laws on cut cell meshes and the small cell problem. (English) Zbl 1454.65094 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 39-53 (2020). MSC: 65M08 65M60 65M12 65M20 35L02 35L65 PDF BibTeX XML Cite \textit{S. May}, Springer Proc. Math. Stat. 323, 39--53 (2020; Zbl 1454.65094) Full Text: DOI
Anh, Cung The; Nguyet, Tran Minh Discontinuous Galerkin approximations for an optimal control problem of three-dimensional Navier-Stokes-Voigt equations. (English) Zbl 1446.49003 Numer. Math. 145, No. 4, 727-769 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 49J20 49K20 35Q35 65N30 65K10 PDF BibTeX XML Cite \textit{C. T. Anh} and \textit{T. M. Nguyet}, Numer. Math. 145, No. 4, 727--769 (2020; Zbl 1446.49003) Full Text: DOI
Ahmadinia, M.; Safari, Z.; Abbasi, M. Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion. (English) Zbl 1446.65105 Appl. Numer. Math. 157, 602-618 (2020). MSC: 65M60 65M06 65N30 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{M. Ahmadinia} et al., Appl. Numer. Math. 157, 602--618 (2020; Zbl 1446.65105) Full Text: DOI
Winters, Andrew R.; Czernik, Christof; Schily, Moritz B.; Gassner, Gregor J. Entropy stable numerical approximations for the isothermal and polytropic Euler equations. (English) Zbl 1446.65134 BIT 60, No. 3, 791-824 (2020). MSC: 65M70 65M12 35L35 35L60 35Q31 PDF BibTeX XML Cite \textit{A. R. Winters} et al., BIT 60, No. 3, 791--824 (2020; Zbl 1446.65134) Full Text: DOI
Giesselmann, Jan; Meyer, Fabian; Rohde, Christian A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. (English) Zbl 1446.65111 BIT 60, No. 3, 619-649 (2020). MSC: 65M60 65L06 65N30 65M70 65M50 65M15 35L65 35R60 62F15 PDF BibTeX XML Cite \textit{J. Giesselmann} et al., BIT 60, No. 3, 619--649 (2020; Zbl 1446.65111) Full Text: DOI
Palii, Olena; Schlottbom, Matthias On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer. (English) Zbl 1446.65177 Comput. Math. Appl. 79, No. 12, 3366-3377 (2020). MSC: 65N30 65N12 65N15 65F10 65F08 78A40 78A45 78M10 82D75 PDF BibTeX XML Cite \textit{O. Palii} and \textit{M. Schlottbom}, Comput. Math. Appl. 79, No. 12, 3366--3377 (2020; Zbl 1446.65177) Full Text: DOI
Du, Yu; Wang, Jiangxing Convergence analysis of an energy based discontinuous Galerkin method for the wave equation in second-order form: \( h p\) version. (English) Zbl 1446.65109 Comput. Math. Appl. 79, No. 11, 3223-3240 (2020). MSC: 65M60 65N30 65M06 65M12 65M15 35L05 PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Wang}, Comput. Math. Appl. 79, No. 11, 3223--3240 (2020; Zbl 1446.65109) Full Text: DOI
Perugia, Ilaria; Schöberl, Joachim; Stocker, Paul; Wintersteiger, Christoph Tent pitching and Trefftz-DG method for the acoustic wave equation. (English) Zbl 1447.65087 Comput. Math. Appl. 79, No. 10, 2987-3000 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M12 65M15 65N50 65Y05 41A25 35L05 PDF BibTeX XML Cite \textit{I. Perugia} et al., Comput. Math. Appl. 79, No. 10, 2987--3000 (2020; Zbl 1447.65087) Full Text: DOI
Xu, Yuan; Meng, Xiong; Shu, Chi-Wang; Zhang, Qiang Superconvergence analysis of the Runge-Kutta discontinuous Galerkin methods for a linear hyperbolic equation. (English) Zbl 07229476 J. Sci. Comput. 84, No. 1, Paper No. 23, 40 p. (2020). MSC: 65 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Sci. Comput. 84, No. 1, Paper No. 23, 40 p. (2020; Zbl 07229476) Full Text: DOI
Zhao, Lina; Park, Eun-Jae A staggered cell-centered DG method for linear elasticity on polygonal meshes. (English) Zbl 1447.65169 SIAM J. Sci. Comput. 42, No. 4, A2158-A2181 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 65N08 65N50 65N12 65N15 74B10 35Q74 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{E.-J. Park}, SIAM J. Sci. Comput. 42, No. 4, A2158--A2181 (2020; Zbl 1447.65169) Full Text: DOI
Le Roux, Daniel Y.; Eldred, Christopher; Taylor, Mark A. Fourier analyses of high-order continuous and discontinuous Galerkin methods. (English) Zbl 1448.65166 SIAM J. Numer. Anal. 58, No. 3, 1845-1866 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 74S05 65M12 74J15 35L50 35Q74 65D05 65T50 42A38 PDF BibTeX XML Cite \textit{D. Y. Le Roux} et al., SIAM J. Numer. Anal. 58, No. 3, 1845--1866 (2020; Zbl 1448.65166) Full Text: DOI
Du, Qiang; Feng, Xiaobing The phase field method for geometric moving interfaces and their numerical approximations. (English) Zbl 1455.35276 Bonito, Andrea (ed.) et al., Geometric partial differential equations. Part I. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 21, 425-508 (2020). MSC: 35Qxx 65M06 65M60 65M70 65M20 65M12 65M15 65Z05 35B25 35K20 35K35 74A50 74N20 76T30 80A22 82C26 92C17 92C37 92C55 PDF BibTeX XML Cite \textit{Q. Du} and \textit{X. Feng}, Handb. Numer. Anal. 21, 425--508 (2020; Zbl 1455.35276) Full Text: DOI
Zhao, Zhuang; Qiu, Jianxian A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. (English) Zbl 1437.76033 J. Comput. Phys. 417, Article ID 109583, 22 p. (2020). MSC: 76M12 65M08 35L65 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{J. Qiu}, J. Comput. Phys. 417, Article ID 109583, 22 p. (2020; Zbl 1437.76033) Full Text: DOI
Liu, Yingzhi; He, Yinnian Two-level Schwarz methods for a discontinuous Galerkin approximation of elliptic problems with jump coefficients. (English) Zbl 07219847 J. Sci. Comput. 84, No. 1, Paper No. 14, 33 p. (2020). MSC: 65N55 65N30 65F08 65F10 65F35 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Y. He}, J. Sci. Comput. 84, No. 1, Paper No. 14, 33 p. (2020; Zbl 07219847) Full Text: DOI
Rupp, Andreas; Lee, Sanghyun Continuous Galerkin and enriched Galerkin methods with arbitrary order discontinuous trial functions for the elliptic and parabolic problems with jump conditions. (English) Zbl 1447.65090 J. Sci. Comput. 84, No. 1, Paper No. 9, 25 p. (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 65M60 65N30 PDF BibTeX XML Cite \textit{A. Rupp} and \textit{S. Lee}, J. Sci. Comput. 84, No. 1, Paper No. 9, 25 p. (2020; Zbl 1447.65090) Full Text: DOI
Baldauf, Michael Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and the ellipsoid. (English) Zbl 1436.65136 J. Comput. Phys. 410, Article ID 109384, 25 p. (2020). MSC: 65M60 35R01 86A05 PDF BibTeX XML Cite \textit{M. Baldauf}, J. Comput. Phys. 410, Article ID 109384, 25 p. (2020; Zbl 1436.65136) Full Text: DOI
Papoutsakis, Andreas; Koukouvinis, Phoevos; Gavaises, Manolis Solution of cavitating compressible flows using discontinuous Galerkin discretisation. (English) Zbl 1436.76032 J. Comput. Phys. 410, Article ID 109377, 15 p. (2020). MSC: 76M10 76N15 PDF BibTeX XML Cite \textit{A. Papoutsakis} et al., J. Comput. Phys. 410, Article ID 109377, 15 p. (2020; Zbl 1436.76032) Full Text: DOI
Lyu, Maohui; Chew, Weng Cho; Jiang, Lijun; Li, Maojun; Xu, Liwei Numerical simulation of a coupled system of Maxwell equations and a gas dynamic model. (English) Zbl 1435.76039 J. Comput. Phys. 409, Article ID 109354, 15 p. (2020). MSC: 76M10 78M10 82D80 78A15 76W05 PDF BibTeX XML Cite \textit{M. Lyu} et al., J. Comput. Phys. 409, Article ID 109354, 15 p. (2020; Zbl 1435.76039) Full Text: DOI
Huang, Hongying; Li, Jin; Yan, Jue High order symmetric direct discontinuous Galerkin method for elliptic interface problems with fitted mesh. (English) Zbl 1435.65204 J. Comput. Phys. 409, Article ID 109301, 23 p. (2020). MSC: 65N30 65N15 65N12 PDF BibTeX XML Cite \textit{H. Huang} et al., J. Comput. Phys. 409, Article ID 109301, 23 p. (2020; Zbl 1435.65204) Full Text: DOI