Belonogov, Vladimir Andreevich; Pyatkov, Sergey Grigorievich On the regular solvability of some classes of transmission problems in a cylindrical space domain. (English) Zbl 07333482 Sib. Èlektron. Mat. Izv. 18, 176-206 (2021). MSC: 35E05 PDF BibTeX XML Cite \textit{V. A. Belonogov} and \textit{S. G. Pyatkov}, Sib. Èlektron. Mat. Izv. 18, 176--206 (2021; Zbl 07333482) Full Text: DOI
Chernogorova, Tatiana P.; Koleva, Miglena N.; Vulkov, Lubin G. Exponential finite difference scheme for transport equations with discontinuous coefficients in porous media. (English) Zbl 07332892 Appl. Math. Comput. 392, Article ID 125691, 16 p. (2021). MSC: 76S 65M 76T 76M PDF BibTeX XML Cite \textit{T. P. Chernogorova} et al., Appl. Math. Comput. 392, Article ID 125691, 16 p. (2021; Zbl 07332892) Full Text: DOI
Deka, Bhupen; Dutta, Jogen \(L^\infty (L^2)\) and \(L^\infty (H^1)\) norms error estimates in finite element methods for electric interface model. (English) Zbl 07332657 Appl. Anal. 100, No. 6, 1351-1370 (2021). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{B. Deka} and \textit{J. Dutta}, Appl. Anal. 100, No. 6, 1351--1370 (2021; Zbl 07332657) Full Text: DOI
Knees, Dorothee; Zanini, Chiara Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. (English) Zbl 07314552 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 121-149 (2021). MSC: 35R05 49J40 74C05 35Q74 35D40 49J45 PDF BibTeX XML Cite \textit{D. Knees} and \textit{C. Zanini}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 121--149 (2021; Zbl 07314552) Full Text: DOI
Hu, Rentian; Edwards, Thomas K.; Smith, Leslie M.; Stechmann, Samuel N. Initial investigations of precipitating quasi-geostrophic turbulence with phase changes. (English) Zbl 07307667 Res. Math. Sci. 8, No. 1, Paper No. 6, 25 p. (2021). MSC: 65M70 65N35 65L06 35M10 35J60 86A05 86A10 76T10 76F65 86-08 35Q86 PDF BibTeX XML Cite \textit{R. Hu} et al., Res. Math. Sci. 8, No. 1, Paper No. 6, 25 p. (2021; Zbl 07307667) Full Text: DOI
Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G. Venttsel boundary value problems with discontinuous data. (English) Zbl 07293731 SIAM J. Math. Anal. 53, No. 1, 221-252 (2021). Reviewer: Zhipeng Yang (Göttingen) MSC: 35J62 35J25 35R05 35A01 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} et al., SIAM J. Math. Anal. 53, No. 1, 221--252 (2021; Zbl 07293731) Full Text: DOI
Palagachev, Dian K.; Softova, Lubomira G. Generalized Morrey regularity of \(2 b\)-parabolic systems. (English) Zbl 1453.35037 Appl. Math. Lett. 112, Article ID 106838, 6 p. (2021). MSC: 35B65 35K41 35R05 35B45 35D35 PDF BibTeX XML Cite \textit{D. K. Palagachev} and \textit{L. G. Softova}, Appl. Math. Lett. 112, Article ID 106838, 6 p. (2021; Zbl 1453.35037) Full Text: DOI
Huang, Peiqi; Li, Zhilin Partially penalized IFE methods and convergence analysis for elasticity interface problems. (English) Zbl 1446.65170 J. Comput. Appl. Math. 382, Article ID 113059, 23 p. (2021). MSC: 65N30 65N15 65N12 74B10 74A50 74S05 PDF BibTeX XML Cite \textit{P. Huang} and \textit{Z. Li}, J. Comput. Appl. Math. 382, Article ID 113059, 23 p. (2021; Zbl 1446.65170) Full Text: DOI
Pichard, Teddy Existence of steady two-phase flows with discontinuous boiling effects. (English) Zbl 07315511 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 603-610 (2020). MSC: 35Q35 35R05 34A36 PDF BibTeX XML Cite \textit{T. Pichard}, AIMS Ser. Appl. Math. 10, 603--610 (2020; Zbl 07315511)
Bressan, Alberto; Guerra, Graziano; Shen, Wen Conservation laws with regulated fluxes. (English) Zbl 07315477 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 328-335 (2020). MSC: 35L65 35R05 35F21 PDF BibTeX XML Cite \textit{A. Bressan} et al., AIMS Ser. Appl. Math. 10, 328--335 (2020; Zbl 07315477)
Belonogov, V. A.; Pyatkov, S. G. On solvability of conjugation problems with non-ideal contact conditions. (English. Russian original) Zbl 07309104 Russ. Math. 64, No. 7, 13-26 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 7, 18-32 (2020). MSC: 35K51 35R05 PDF BibTeX XML Cite \textit{V. A. Belonogov} and \textit{S. G. Pyatkov}, Russ. Math. 64, No. 7, 13--26 (2020; Zbl 07309104); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 7, 18--32 (2020) Full Text: DOI
Cheng, Hongjun; Yang, Hanchun Riemann problem for the 2D scalar conservation law involving linear fluxes with discontinuous coefficients. (English) Zbl 1454.35248 J. Math. Phys. 61, No. 11, 111504, 20 p. (2020). MSC: 35Q15 35C06 35L67 76L05 35R05 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{H. Yang}, J. Math. Phys. 61, No. 11, 111504, 20 p. (2020; Zbl 1454.35248) Full Text: DOI
Fan, Haitao; Shu, Chi-Wang Existence and computation of solutions of a model of traffic involving hysteresis. (English) Zbl 1454.35235 SIAM J. Appl. Math. 80, No. 6, 2319-2337 (2020). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L65 35L40 35D30 35C07 34C55 90B20 65Z05 65M06 65M12 60K30 76S05 PDF BibTeX XML Cite \textit{H. Fan} and \textit{C.-W. Shu}, SIAM J. Appl. Math. 80, No. 6, 2319--2337 (2020; Zbl 1454.35235) Full Text: DOI
Zanco, Giovanni Spatial dynamics in interacting systems with discontinuous coefficients and their continuum limits. (English) Zbl 1456.60155 Stoch. Dyn. 20, No. 6, Article ID 2040008, 13 p. (2020). MSC: 60H10 35Q84 PDF BibTeX XML Cite \textit{G. Zanco}, Stoch. Dyn. 20, No. 6, Article ID 2040008, 13 p. (2020; Zbl 1456.60155) Full Text: DOI
Gadjiev, T.; Kerimova, M.; Gasanova, G. Solvability of a boundary-value problem for degenerate equations. (English) Zbl 1451.35086 Ukr. Math. J. 72, No. 4, 495-514 (2020) and Ukr. Mat. Zh. 72, No. 4, 435-451 (2020). MSC: 35L20 35L80 35R05 PDF BibTeX XML Cite \textit{T. Gadjiev} et al., Ukr. Math. J. 72, No. 4, 495--514 (2020; Zbl 1451.35086) Full Text: DOI
He, Siriguleng; Li, Hong; Liu, Yang; Fang, Zhichao Time discontinuous space-time finite element method for unsteady differential equation with singular coefficients. (Chinese. English summary) Zbl 07267282 Math. Numer. Sin. 42, No. 1, 101-116 (2020). MSC: 65M60 65N30 PDF BibTeX XML Cite \textit{S. He} et al., Math. Numer. Sin. 42, No. 1, 101--116 (2020; Zbl 07267282)
Moore, Stephen Edward Discontinuous Galerkin isogeometric analysis for elliptic problems with discontinuous diffusion coefficients on surfaces. (English) Zbl 1450.65148 Numer. Algorithms 85, No. 3, 1075-1094 (2020). MSC: 65N30 65N12 74S22 PDF BibTeX XML Cite \textit{S. E. Moore}, Numer. Algorithms 85, No. 3, 1075--1094 (2020; Zbl 1450.65148) Full Text: DOI
Dutta, Jogen; Deka, Bhupen; Kumar, Naresh Finite element methods for the electric interface model: convergence analysis. (English) Zbl 1446.65166 Math. Methods Appl. Sci. 43, No. 7, 4598-4613 (2020). MSC: 65N30 65M06 65N15 78A70 35Q60 92C05 PDF BibTeX XML Cite \textit{J. Dutta} et al., Math. Methods Appl. Sci. 43, No. 7, 4598--4613 (2020; Zbl 1446.65166) Full Text: DOI
Brencher, Lukas; Barth, Andrea Hyperbolic conservation laws with stochastic discontinuous flux functions. (English) Zbl 07239611 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 265-273 (2020). MSC: 65M08 65N08 35L65 35R05 35R60 60H15 68U20 PDF BibTeX XML Cite \textit{L. Brencher} and \textit{A. Barth}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 265--273 (2020; Zbl 07239611) Full Text: DOI
Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G. Elliptic Venttsel problems with \(VMO\) coefficients. (English) Zbl 1446.35241 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 2, 391-399 (2020). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35R05 35B45 35J25 60J60 91G80 35D35 35J62 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} et al., Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 31, No. 2, 391--399 (2020; Zbl 1446.35241) Full Text: DOI
Liu, Yingzhi; He, Yinnian Two-level Schwarz methods for a discontinuous Galerkin approximation of elliptic problems with jump coefficients. (English) Zbl 07219847 J. Sci. Comput. 84, No. 1, Paper No. 14, 33 p. (2020). MSC: 65N55 65N30 65F08 65F10 65F35 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{Y. He}, J. Sci. Comput. 84, No. 1, Paper No. 14, 33 p. (2020; Zbl 07219847) Full Text: DOI
Egan, Raphael; Gibou, Frédéric xGFM: recovering convergence of fluxes in the ghost fluid method. (English) Zbl 1435.76050 J. Comput. Phys. 409, Article ID 109351, 22 p. (2020). MSC: 76M20 35J05 35R12 PDF BibTeX XML Cite \textit{R. Egan} and \textit{F. Gibou}, J. Comput. Phys. 409, Article ID 109351, 22 p. (2020; Zbl 1435.76050) Full Text: DOI
Kühn, Franziska Existence of (Markovian) solutions to martingale problems associated with Lévy-type operators. (English) Zbl 1448.60162 Electron. J. Probab. 25, Paper No. 16, 26 p. (2020). Reviewer: Ze-Chun Hu (Chengdu) MSC: 60J35 60J25 60H10 60J76 45K05 35S05 60G51 PDF BibTeX XML Cite \textit{F. Kühn}, Electron. J. Probab. 25, Paper No. 16, 26 p. (2020; Zbl 1448.60162) Full Text: DOI Euclid
Di Gironimo, Patrizia Existence and uniqueness results in weighted spaces for Dirichlet problem in unbounded domains. (English) Zbl 1440.35078 Ric. Mat. 69, No. 1, 343-355 (2020). MSC: 35J25 35B45 35R05 35A01 35A02 PDF BibTeX XML Cite \textit{P. Di Gironimo}, Ric. Mat. 69, No. 1, 343--355 (2020; Zbl 1440.35078) Full Text: DOI
Yu, Yao; Yuan, Guangwei; Sheng, Zhiqiang; Li, Yonghai The finite volume scheme preserving maximum principle for diffusion equations with discontinuous coefficient. (English) Zbl 1437.65168 Comput. Math. Appl. 79, No. 8, 2168-2188 (2020). MSC: 65N08 35R05 76R50 PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Math. Appl. 79, No. 8, 2168--2188 (2020; Zbl 1437.65168) Full Text: DOI
Giani, Stefano An adaptive composite discontinuous Galerkin method for elliptic problems on complicated domains with discontinuous coefficients. (English) Zbl 1436.65180 Adv. Comput. Math. 46, No. 2, Paper No. 13, 23 p. (2020). MSC: 65N30 65N50 35J15 35R05 PDF BibTeX XML Cite \textit{S. Giani}, Adv. Comput. Math. 46, No. 2, Paper No. 13, 23 p. (2020; Zbl 1436.65180) Full Text: DOI
Giannetti, Flavia; Passarelli Di Napoli, Antonia; Scheven, Christoph On higher differentiability of solutions of parabolic systems with discontinuous coefficients and \((p,q)\)-growth. (English) Zbl 1450.35094 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 419-451 (2020). Reviewer: Elvira Mascolo (Firenze) MSC: 35B65 35K92 35R05 35D30 35B45 35K51 PDF BibTeX XML Cite \textit{F. Giannetti} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 419--451 (2020; Zbl 1450.35094) Full Text: DOI
Alfano, Emilia Anna; Monsurrò, Sara Noncoercive nonlinear Dirichlet problems in unbounded domains. (English) Zbl 1440.35075 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111694, 18 p. (2020). Reviewer: Dagmar Medková (Praha) MSC: 35J25 35A01 PDF BibTeX XML Cite \textit{E. A. Alfano} and \textit{S. Monsurrò}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111694, 18 p. (2020; Zbl 1440.35075) Full Text: DOI
Calvaruso, G.; Metafune, G.; Negro, L.; Spina, C. Optimal kernel estimates for elliptic operators with second order discontinuous coefficients. (English) Zbl 1435.35088 J. Math. Anal. Appl. 485, No. 1, Article ID 123763, 16 p. (2020). MSC: 35B45 35K08 PDF BibTeX XML Cite \textit{G. Calvaruso} et al., J. Math. Anal. Appl. 485, No. 1, Article ID 123763, 16 p. (2020; Zbl 1435.35088) Full Text: DOI
Huang, Chaobao; An, Na; Yu, Xijun A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient. (English) Zbl 1435.65159 Appl. Numer. Math. 151, 367-379 (2020). MSC: 65M60 65M12 65M15 26A33 35R11 35R05 PDF BibTeX XML Cite \textit{C. Huang} et al., Appl. Numer. Math. 151, 367--379 (2020; Zbl 1435.65159) Full Text: DOI
Calvo, Juan G. A new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomains. (English) Zbl 1434.78025 Numer. Algorithms 83, No. 3, 885-899 (2020). MSC: 78M10 35Q60 65F10 65N30 65N55 78A25 35R05 35R60 65F08 65F35 PDF BibTeX XML Cite \textit{J. G. Calvo}, Numer. Algorithms 83, No. 3, 885--899 (2020; Zbl 1434.78025) Full Text: DOI
Kandemir, Mustafa; Mukhtarov, Oktay Sh. Manypoint boundary value problems for elliptic differential-operator equations with interior singularities. (English) Zbl 1431.34037 Mediterr. J. Math. 17, No. 1, Paper No. 35, 21 p. (2020). MSC: 34B24 34L10 34L20 PDF BibTeX XML Cite \textit{M. Kandemir} and \textit{O. Sh. Mukhtarov}, Mediterr. J. Math. 17, No. 1, Paper No. 35, 21 p. (2020; Zbl 1431.34037) Full Text: DOI
Badwaik, Jayesh; Ruf, Adrian M. Convergence rates of monotone schemes for conservation laws with discontinuous flux. (English) Zbl 1440.65107 SIAM J. Numer. Anal. 58, No. 1, 607-629 (2020). MSC: 65M08 65M12 35R05 35L65 35L45 PDF BibTeX XML Cite \textit{J. Badwaik} and \textit{A. M. Ruf}, SIAM J. Numer. Anal. 58, No. 1, 607--629 (2020; Zbl 1440.65107) Full Text: DOI
Bokil, V. A.; Gibson, N. L.; Nguyen, S. L.; Thomann, E. A.; Waymire, E. C. An Euler-Maruyama method for diffusion equations with discontinuous coefficients and a family of interface conditions. (English) Zbl 1443.60059 J. Comput. Appl. Math. 368, Article ID 112545, 18 p. (2020). MSC: 60H10 60J60 65C30 PDF BibTeX XML Cite \textit{V. A. Bokil} et al., J. Comput. Appl. Math. 368, Article ID 112545, 18 p. (2020; Zbl 1443.60059) Full Text: DOI
Abdelwahed, Mohamed; Chorfi, Nejmeddine On the convergence analysis of a time dependent elliptic equation with discontinuous coefficients. (English) Zbl 1435.35146 Adv. Nonlinear Anal. 9, 1145-1160 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J25 35K05 65M70 PDF BibTeX XML Cite \textit{M. Abdelwahed} and \textit{N. Chorfi}, Adv. Nonlinear Anal. 9, 1145--1160 (2020; Zbl 1435.35146) Full Text: DOI
Lejay, Antoine; Lenôtre, Lionel; Pichot, Géraldine An exponential timestepping algorithm for diffusion with discontinuous coefficients. (English) Zbl 1452.65008 J. Comput. Phys. 396, 888-904 (2019). MSC: 65C05 PDF BibTeX XML Cite \textit{A. Lejay} et al., J. Comput. Phys. 396, 888--904 (2019; Zbl 1452.65008) Full Text: DOI
Aleksyuk, Andrey I.; Belikov, Vitaly V. The uniqueness of the exact solution of the Riemann problem for the shallow water equations with discontinuous bottom. (English) Zbl 1452.76028 J. Comput. Phys. 390, 232-248 (2019). MSC: 76B03 35R05 PDF BibTeX XML Cite \textit{A. I. Aleksyuk} and \textit{V. V. Belikov}, J. Comput. Phys. 390, 232--248 (2019; Zbl 1452.76028) Full Text: DOI
Schäfer Aguilar, Paloma; Schmitt, Johann Michael; Ulbrich, Stefan; Moos, Michael On the numerical discretization of optimal control problems for conservation laws. (English) Zbl 1451.49033 Control Cybern. 48, No. 2, 345-375 (2019). MSC: 49M25 49Q22 65Q10 PDF BibTeX XML Cite \textit{P. Schäfer Aguilar} et al., Control Cybern. 48, No. 2, 345--375 (2019; Zbl 1451.49033)
Aryasova, O.; Pilipenko, A. On exponential decay of a distance between solutions of an SDE with non-regular drift. (English) Zbl 1449.60096 Theory Stoch. Process. 24, No. 2, 1-13 (2019). MSC: 60H10 60H40 PDF BibTeX XML Cite \textit{O. Aryasova} and \textit{A. Pilipenko}, Theory Stoch. Process. 24, No. 2, 1--13 (2019; Zbl 1449.60096) Full Text: Link
Guo, Ruchi; Lin, Tao A group of immersed finite-element spaces for elliptic interface problems. (English) Zbl 07208112 IMA J. Numer. Anal. 39, No. 1, 482-511 (2019). MSC: 65 PDF BibTeX XML Cite \textit{R. Guo} and \textit{T. Lin}, IMA J. Numer. Anal. 39, No. 1, 482--511 (2019; Zbl 07208112) Full Text: DOI
Boccardo, Lucio Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift. (English) Zbl 1437.35231 ESAIM, Control Optim. Calc. Var. 25, Paper No. 47, 13 p. (2019). MSC: 35J25 35A01 PDF BibTeX XML Cite \textit{L. Boccardo}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 47, 13 p. (2019; Zbl 1437.35231) Full Text: DOI
Rosini, Massimiliano Systems of conservation laws with discontinuous fluxes and applications to traffic. (English) Zbl 1430.35236 Ann. Univ. Mariae Curie-Skłodowska, Sect. A 73, No. 2, 135-173 (2019). MSC: 35R05 35L65 35L45 90B20 34A34 PDF BibTeX XML Cite \textit{M. Rosini}, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 73, No. 2, 135--173 (2019; Zbl 1430.35236) Full Text: DOI
Seo, Sat Byul A note on numerical approaches for heat-diffusion equation with heterogeneous media and its applications. (English) Zbl 1429.92049 East Asian Math. J. 35, No. 1, 99-108 (2019). MSC: 92C20 35K05 65M06 PDF BibTeX XML Cite \textit{S. B. Seo}, East Asian Math. J. 35, No. 1, 99--108 (2019; Zbl 1429.92049) Full Text: DOI
Disser, K.; Rehberg, J. The 3D transient semiconductor equations with gradient-dependent and interfacial recombination. (English) Zbl 1425.35097 Math. Models Methods Appl. Sci. 29, No. 10, 1819-1851 (2019). MSC: 35K57 35K55 35Q60 78A35 35R05 35K45 PDF BibTeX XML Cite \textit{K. Disser} and \textit{J. Rehberg}, Math. Models Methods Appl. Sci. 29, No. 10, 1819--1851 (2019; Zbl 1425.35097) Full Text: DOI
Guo, Ruchi; Lin, Tao; Zhuang, Qiao Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. (English) Zbl 1427.65361 Int. J. Numer. Anal. Model. 16, No. 4, 575-589 (2019). MSC: 65N30 35R35 65N50 PDF BibTeX XML Cite \textit{R. Guo} et al., Int. J. Numer. Anal. Model. 16, No. 4, 575--589 (2019; Zbl 1427.65361) Full Text: Link
Hofer, Christoph; Langer, Ulrich; Toulopoulos, Ioannis Isogeometric analysis on non-matching segmentation: discontinuous Galerkin techniques and efficient solvers. (English) Zbl 1427.65404 J. Appl. Math. Comput. 61, No. 1-2, 297-336 (2019). MSC: 65N55 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{C. Hofer} et al., J. Appl. Math. Comput. 61, No. 1--2, 297--336 (2019; Zbl 1427.65404) Full Text: DOI
Jahnke, T.; Mikl, M. Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation. (English) Zbl 07130809 IMA J. Numer. Anal. 39, No. 4, 1818-1859 (2019). MSC: 65 PDF BibTeX XML Cite \textit{T. Jahnke} and \textit{M. Mikl}, IMA J. Numer. Anal. 39, No. 4, 1818--1859 (2019; Zbl 07130809) Full Text: DOI
Metafune, G.; Negro, L.; Spina, C. Gradient estimates for elliptic operators with second-order discontinuous coefficients. (English) Zbl 07127831 Mediterr. J. Math. 16, No. 6, Paper No. 138, 22 p. (2019). MSC: 47D07 35B50 35J25 35J70 PDF BibTeX XML Cite \textit{G. Metafune} et al., Mediterr. J. Math. 16, No. 6, Paper No. 138, 22 p. (2019; Zbl 07127831) Full Text: DOI
Ramakrishnan, B.; Sahu, Brundaban; Singh, Anup Kumar On the number of representations of certain quadratic forms in 8 variables. (English) Zbl 07125685 Anni, Samuele (ed.) et al., Automorphic forms and related topics. Building bridges: 3rd EU/US summer school and workshop on automorphic forms and related topics, Sarajevo, Bosnia and Herzegovina, July 11–22, 2016. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3525-7/pbk; 978-1-4704-5317-6/ebook). Contemporary Mathematics 732, 215-224 (2019). Reviewer: Meinhard Peters (Münster) MSC: 11E25 11F11 11F99 11F20 11F30 PDF BibTeX XML Cite \textit{B. Ramakrishnan} et al., Contemp. Math. 732, 215--224 (2019; Zbl 07125685) Full Text: DOI Link
Kawecki, Ellya L. A DGFEM for nondivergence form elliptic equations with cordes coefficients on curved domains. (English) Zbl 1425.65163 Numer. Methods Partial Differ. Equations 35, No. 5, 1717-1744 (2019). MSC: 65N30 65N12 65N15 35J25 35R05 PDF BibTeX XML Cite \textit{E. L. Kawecki}, Numer. Methods Partial Differ. Equations 35, No. 5, 1717--1744 (2019; Zbl 1425.65163) Full Text: DOI
Lejay, Antoine; Lenôtre, Lionel; Pichot, Géraldine Analytic expressions of the solutions of advection-diffusion problems in one dimension with discontinuous coefficients. (English) Zbl 07106896 SIAM J. Appl. Math. 79, No. 5, 1823-1849 (2019). MSC: 65C05 82C31 35R05 PDF BibTeX XML Cite \textit{A. Lejay} et al., SIAM J. Appl. Math. 79, No. 5, 1823--1849 (2019; Zbl 07106896) Full Text: DOI
Pavlenko, Vyacheslav Nikolaevich; Potapov, Dmitriĭ Konstantinovich Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity. (English. Russian original) Zbl 1425.35050 Sb. Math. 210, No. 7, 1043-1066 (2019); translation from Mat. Sb. 210, No. 7, 145-170 (2019). MSC: 35J61 35R05 PDF BibTeX XML Cite \textit{V. N. Pavlenko} and \textit{D. K. Potapov}, Sb. Math. 210, No. 7, 1043--1066 (2019; Zbl 1425.35050); translation from Mat. Sb. 210, No. 7, 145--170 (2019) Full Text: DOI
Kuehn, Christian Book review of: M. R. Jeffrey, Hidden dynamics. The mathematics of switches, decisions and other discontinuous behaviour. (English) Zbl 1425.00041 SIAM Rev. 61, No. 3, 634-636 (2019). MSC: 00A17 37-02 37Axx 93A30 26A27 34A36 35R05 PDF BibTeX XML Cite \textit{C. Kuehn}, SIAM Rev. 61, No. 3, 634--636 (2019; Zbl 1425.00041) Full Text: DOI
Guo, Ruchi; Lin, Tao; Lin, Yanping Approximation capabilities of immersed finite element spaces for elasticity interface problems. (English) Zbl 1418.65174 Numer. Methods Partial Differ. Equations 35, No. 3, 1243-1268 (2019). MSC: 65N30 35Q74 74B10 74A50 PDF BibTeX XML Cite \textit{R. Guo} et al., Numer. Methods Partial Differ. Equations 35, No. 3, 1243--1268 (2019; Zbl 1418.65174) Full Text: DOI arXiv
Flandoli, Franco; Priola, Enrico; Zanco, Giovanni A mean-field model with discontinuous coefficients for neurons with spatial interaction. (English) Zbl 1415.60061 Discrete Contin. Dyn. Syst. 39, No. 6, 3037-3067 (2019). MSC: 60H10 35Q84 92C20 62M45 PDF BibTeX XML Cite \textit{F. Flandoli} et al., Discrete Contin. Dyn. Syst. 39, No. 6, 3037--3067 (2019; Zbl 1415.60061) Full Text: DOI arXiv
Gutiérrez, Susana; de Laire, André The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions. (English) Zbl 1415.35269 Nonlinearity 32, No. 7, 2522-2563 (2019). MSC: 35R05 35Q60 35A01 35C06 35B35 35Q55 35Q56 35A02 53C44 PDF BibTeX XML Cite \textit{S. Gutiérrez} and \textit{A. de Laire}, Nonlinearity 32, No. 7, 2522--2563 (2019; Zbl 1415.35269) Full Text: DOI arXiv
Tan, Qi-Jian A free boundary problem describing S-K-T competition ecological model with cross-diffusion. (English) Zbl 1414.35245 Nonlinear Anal., Real World Appl. 45, 53-82 (2019). MSC: 35Q92 35R11 92D40 35A01 35A02 PDF BibTeX XML Cite \textit{Q.-J. Tan}, Nonlinear Anal., Real World Appl. 45, 53--82 (2019; Zbl 1414.35245) Full Text: DOI
Bressan, Alberto; Guerra, Graziano; Shen, Wen Vanishing viscosity solutions for conservation laws with regulated flux. (English) Zbl 1421.35212 J. Differ. Equations 266, No. 1, 312-351 (2019). Reviewer: Jörg Härterich (Bochum) MSC: 35L65 35R05 35K15 35F21 35B25 PDF BibTeX XML Cite \textit{A. Bressan} et al., J. Differ. Equations 266, No. 1, 312--351 (2019; Zbl 1421.35212) Full Text: DOI arXiv
Ezaova, Alena Georgievna Unique solvability of a Bitsadze-Samarskiy type problem for equations with discontinuous coefficient. (Russian. English summary) Zbl 07260493 Vladikavkaz. Mat. Zh. 20, No. 4, 50-58 (2018). MSC: 35M10 PDF BibTeX XML Cite \textit{A. G. Ezaova}, Vladikavkaz. Mat. Zh. 20, No. 4, 50--58 (2018; Zbl 07260493) Full Text: DOI MNR
Marcinkowski, Leszek; Rahman, Talal Additive Schwarz with vertex based adaptive coarse space for multiscale problems in 3D. (English) Zbl 1450.65173 Bjørstad, Petter E. (ed.) et al., Domain decomposition methods in science and engineering XXIV. Proceedings of the 24th international conference, Svalbard, Norway, February 6–10, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 125, 475-482 (2018). MSC: 65N55 65N30 65N12 65F35 35J15 35R09 35R05 15A18 PDF BibTeX XML Cite \textit{L. Marcinkowski} and \textit{T. Rahman}, Lect. Notes Comput. Sci. Eng. 125, 475--482 (2018; Zbl 1450.65173) Full Text: DOI
De Dios, Blanca Ayuso; Hiptmair, Ralf; Pagliantini, Cecilia Auxiliary space preconditioners for a DG discretization of \(H(\mathbf{curl}; \varOmega)\)-elliptic problem on hexahedral meshes. (English) Zbl 1443.65421 Bjørstad, Petter E. (ed.) et al., Domain decomposition methods in science and engineering XXIV. Proceedings of the 24th international conference, Svalbard, Norway, February 6–10, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 125, 223-231 (2018). MSC: 65N55 65N30 65F35 15A18 76W05 35R05 PDF BibTeX XML Cite \textit{B. A. De Dios} et al., Lect. Notes Comput. Sci. Eng. 125, 223--231 (2018; Zbl 1443.65421) Full Text: DOI
Anikonov, D. S.; Konovalova, D. S. Cauchy problem for a differential equation with piecewise smooth characteristics. (Russian. English summary) Zbl 1438.35455 Sib. Zh. Chist. Prikl. Mat. 18, No. 3, 3-19 (2018). MSC: 35R30 35R05 35A01 35A02 PDF BibTeX XML Cite \textit{D. S. Anikonov} and \textit{D. S. Konovalova}, Sib. Zh. Chist. Prikl. Mat. 18, No. 3, 3--19 (2018; Zbl 1438.35455) Full Text: MNR
Anikonov, D. S.; Konovalova, D. S. Forward and inverse problems with discontinuous coefficient. (Russian. English summary) Zbl 1438.35454 Sib. Zh. Chist. Prikl. Mat. 18, No. 2, 13-29 (2018). MSC: 35R30 35R05 35A01 35A02 PDF BibTeX XML Cite \textit{D. S. Anikonov} and \textit{D. S. Konovalova}, Sib. Zh. Chist. Prikl. Mat. 18, No. 2, 13--29 (2018; Zbl 1438.35454) Full Text: MNR
Singh, Suruchi; Ito, Kazufumi; Singh, Swarn; Li, Zhilin A fourth order compact scheme for transport equation with discontinuous coefficients. (English) Zbl 1438.65191 Numer. Math., Theory Methods Appl. 11, No. 4, 782-794 (2018). MSC: 65M06 65M70 65D07 35R05 PDF BibTeX XML Cite \textit{S. Singh} et al., Numer. Math., Theory Methods Appl. 11, No. 4, 782--794 (2018; Zbl 1438.65191) Full Text: DOI
Nishikawa, Hiroaki On hyperbolic method for diffusion with discontinuous coefficients. (English) Zbl 1415.65209 J. Comput. Phys. 367, 102-108 (2018). MSC: 65M08 35R05 35L40 35K05 PDF BibTeX XML Cite \textit{H. Nishikawa}, J. Comput. Phys. 367, 102--108 (2018; Zbl 1415.65209) Full Text: DOI
Singh, Suruchi; Singh, Swarn; Li, Zhilin A high order compact scheme for a thermal wave model of bio-heat transfer with an interface. (English) Zbl 1424.80002 Numer. Math., Theory Methods Appl. 11, No. 2, 321-337 (2018). MSC: 80M20 65M06 35Q79 PDF BibTeX XML Cite \textit{S. Singh} et al., Numer. Math., Theory Methods Appl. 11, No. 2, 321--337 (2018; Zbl 1424.80002) Full Text: DOI
Dolean, Victorita; Gander, Martin J.; Veneros, Erwin Asymptotic analysis of optimized Schwarz methods for Maxwell’s equations with discontinuous coefficients. (English) Zbl 1417.65215 ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2457-2477 (2018). MSC: 65N55 65F10 65N12 35Q60 78A25 PDF BibTeX XML Cite \textit{V. Dolean} et al., ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2457--2477 (2018; Zbl 1417.65215) Full Text: DOI
Kozhanov, A. I.; Potapova, S. V. Boundary value problems for odd order forward-backward-type differential equations with two time variables. (English. Russian original) Zbl 1411.35212 Sib. Math. J. 59, No. 5, 870-884 (2018); translation from Sib. Mat. Zh. 59, No. 5, 1098-1115 (2018). MSC: 35M12 35K70 PDF BibTeX XML Cite \textit{A. I. Kozhanov} and \textit{S. V. Potapova}, Sib. Math. J. 59, No. 5, 870--884 (2018; Zbl 1411.35212); translation from Sib. Mat. Zh. 59, No. 5, 1098--1115 (2018) Full Text: DOI
Mastrantonis, Vlasios; Panagiotis, Christoforos Nowhere differentiable functions of analytic type on products of finitely connected planar domains. (English) Zbl 1410.26013 Monatsh. Math. 187, No. 2, 327-341 (2018). Reviewer: Sergei V. Rogosin (Minsk) MSC: 26A27 30H50 42A16 PDF BibTeX XML Cite \textit{V. Mastrantonis} and \textit{C. Panagiotis}, Monatsh. Math. 187, No. 2, 327--341 (2018; Zbl 1410.26013) Full Text: DOI
Levashova, Natalia T.; Nefedov, Nikolay N.; Nikolaeva, Olga A.; Orlov, Andrey O.; Panin, Alexander A. The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms. (English) Zbl 1407.35017 Math. Methods Appl. Sci. 41, No. 18, 9203-9217 (2018). MSC: 35B25 35R05 35K57 35K20 35C20 PDF BibTeX XML Cite \textit{N. T. Levashova} et al., Math. Methods Appl. Sci. 41, No. 18, 9203--9217 (2018; Zbl 1407.35017) Full Text: DOI
Bürger, Raimund; Diehl, Stefan; Martí, María Carmen A conservation law with multiply discontinuous flux modelling a flotation column. (English) Zbl 1405.35111 Netw. Heterog. Media 13, No. 2, 339-371 (2018). MSC: 35L65 35R05 76T10 35Q35 PDF BibTeX XML Cite \textit{R. Bürger} et al., Netw. Heterog. Media 13, No. 2, 339--371 (2018; Zbl 1405.35111) Full Text: DOI
Jeffrey, Mike R. Hidden dynamics. The mathematics of switches, decisions and other discontinuous behaviour. (English) Zbl 1406.37003 Cham: Springer (ISBN 978-3-030-02106-1/hbk; 978-3-030-02107-8/ebook). xviii, 521 p. (2018). MSC: 37-02 37Axx 93A30 26A27 34A36 35R05 PDF BibTeX XML Cite \textit{M. R. Jeffrey}, Hidden dynamics. The mathematics of switches, decisions and other discontinuous behaviour. Cham: Springer (2018; Zbl 1406.37003) Full Text: DOI
Krylov, N. V. Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations. (English) Zbl 1401.35001 Mathematical Surveys and Monographs 233. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4740-3/hbk; 978-1-4704-4853-0/ebook). xiv, 441 p. (2018). Reviewer: Vincenzo Vespri (Firenze) MSC: 35-02 35J60 35K55 35D40 PDF BibTeX XML Cite \textit{N. V. Krylov}, Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1401.35001) Full Text: DOI
Kalchev, Delyan Z.; Manteuffel, Thomas A.; Münzenmaier, Steffen Mixed \((\mathcal{L}\mathcal{L}^*)\) and \(\mathcal{L}\mathcal{L}^*\) least-squares finite element methods with application to linear hyperbolic problems. (English) Zbl 06945786 Numer. Linear Algebra Appl. 25, No. 3, e2150, 24 p. (2018). MSC: 65N30 PDF BibTeX XML Cite \textit{D. Z. Kalchev} et al., Numer. Linear Algebra Appl. 25, No. 3, e2150, 24 p. (2018; Zbl 06945786) Full Text: DOI
Metafune, G.; Negro, L.; Spina, C. Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients. (English) Zbl 06932111 J. Evol. Equ. 18, No. 2, 467-514 (2018). MSC: 47D07 35B50 35J25 35J70 PDF BibTeX XML Cite \textit{G. Metafune} et al., J. Evol. Equ. 18, No. 2, 467--514 (2018; Zbl 06932111) Full Text: DOI
Chen, Xiaohong; Li, Zhilin; Ruiz Álvarez, Juan A direct IIM approach for two-phase Stokes equations with discontinuous viscosity on staggered grids. (English) Zbl 1410.76281 Comput. Fluids 172, 549-563 (2018). MSC: 76M20 65N06 35Q35 35R05 65N22 76D07 PDF BibTeX XML Cite \textit{X. Chen} et al., Comput. Fluids 172, 549--563 (2018; Zbl 1410.76281) Full Text: DOI
Leykekhman, Dmitriy; Vexler, Boris Discrete maximal parabolic regularity for Galerkin finite element methods for nonautonomous parabolic problems. (English) Zbl 1402.65113 SIAM J. Numer. Anal. 56, No. 4, 2178-2202 (2018). Reviewer: Sarah Eberle (Frankfurt am Main) MSC: 65M60 65M15 PDF BibTeX XML Cite \textit{D. Leykekhman} and \textit{B. Vexler}, SIAM J. Numer. Anal. 56, No. 4, 2178--2202 (2018; Zbl 1402.65113) Full Text: DOI
Rundell, William; Zhang, Zhidong Recovering an unknown source in a fractional diffusion problem. (English) Zbl 1392.35333 J. Comput. Phys. 368, 299-314 (2018). MSC: 35R30 35R11 35A02 35R05 65M32 PDF BibTeX XML Cite \textit{W. Rundell} and \textit{Z. Zhang}, J. Comput. Phys. 368, 299--314 (2018; Zbl 1392.35333) Full Text: DOI
Mittal, H. V. R.; Ray, Rajendra K. Solving immersed interface problems using a new interfacial points-based finite difference approach. (English) Zbl 1448.65195 SIAM J. Sci. Comput. 40, No. 3, A1860-A1883 (2018). MSC: 65N06 52B10 68U05 68U07 65D18 65D05 76M20 76D07 35Q35 35R05 PDF BibTeX XML Cite \textit{H. V. R. Mittal} and \textit{R. K. Ray}, SIAM J. Sci. Comput. 40, No. 3, A1860--A1883 (2018; Zbl 1448.65195) Full Text: DOI
Apushkinskaya, D. E.; Uraltseva, N. N. Monotonicity formula for a problem with hysteresis. (English. Russian original) Zbl 1401.35302 Dokl. Math. 97, No. 1, 49-51 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 478, No. 4, 379-381 (2018). Reviewer: Philippe Laurençot (Toulouse) MSC: 35R05 35R35 34C55 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} and \textit{N. N. Uraltseva}, Dokl. Math. 97, No. 1, 49--51 (2018; Zbl 1401.35302); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 478, No. 4, 379--381 (2018) Full Text: DOI
Coco, Armando; Russo, Giovanni Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. (English) Zbl 1422.65306 J. Comput. Phys. 361, 299-330 (2018). MSC: 65N06 35R05 65N55 65N15 PDF BibTeX XML Cite \textit{A. Coco} and \textit{G. Russo}, J. Comput. Phys. 361, 299--330 (2018; Zbl 1422.65306) Full Text: DOI
Chen, Jianfu; Ma, Jin; Yin, Hong Forward-backward SDEs with discontinuous coefficients. (English) Zbl 1391.60134 Stochastic Anal. Appl. 36, No. 2, 274-294 (2018). MSC: 60H10 60H30 35K58 91G30 PDF BibTeX XML Cite \textit{J. Chen} et al., Stochastic Anal. Appl. 36, No. 2, 274--294 (2018; Zbl 1391.60134) Full Text: DOI
Yuan, Guangwei; Yu, Yunlong Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations. (English) Zbl 1384.65078 Numer. Methods Partial Differ. Equations 34, No. 1, 80-96 (2018). Reviewer: K. N. Shukla (Gurgaon) MSC: 65N08 35J25 35R05 35B50 65N50 PDF BibTeX XML Cite \textit{G. Yuan} and \textit{Y. Yu}, Numer. Methods Partial Differ. Equations 34, No. 1, 80--96 (2018; Zbl 1384.65078) Full Text: DOI
Rao, S. Chandra Sekhara; Chawla, Sheetal Numerical solution of singularly perturbed linear parabolic system with discontinuous source term. (English) Zbl 1382.65255 Appl. Numer. Math. 127, 249-265 (2018). MSC: 65M06 35K57 35B25 35R05 65M50 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{S. Chawla}, Appl. Numer. Math. 127, 249--265 (2018; Zbl 1382.65255) Full Text: DOI
Chegini, Nabi; Stevenson, Rob Adaptive piecewise tensor product wavelets scheme for Laplace-interface problems. (English) Zbl 1382.65436 J. Comput. Appl. Math. 336, 72-97 (2018). MSC: 65N55 35J05 35R05 65T60 65N30 65Y20 PDF BibTeX XML Cite \textit{N. Chegini} and \textit{R. Stevenson}, J. Comput. Appl. Math. 336, 72--97 (2018; Zbl 1382.65436) Full Text: DOI
Wang, Chunmei; Wang, Junping A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form. (English) Zbl 1380.65390 Math. Comput. 87, No. 310, 515-545 (2018). MSC: 65N30 35J25 35R05 65N50 65N12 65N15 PDF BibTeX XML Cite \textit{C. Wang} and \textit{J. Wang}, Math. Comput. 87, No. 310, 515--545 (2018; Zbl 1380.65390) Full Text: DOI arXiv
Song, Lunji; Zhao, Shan Symmetric interior penalty Galerkin approaches for two-dimensional parabolic interface problems with low regularity solutions. (English) Zbl 1376.65130 J. Comput. Appl. Math. 330, 356-379 (2018). MSC: 65M60 35K20 35R05 65M12 65M20 65M06 65M15 PDF BibTeX XML Cite \textit{L. Song} and \textit{S. Zhao}, J. Comput. Appl. Math. 330, 356--379 (2018; Zbl 1376.65130) Full Text: DOI
Hofer, Christoph; Langer, Ulrich Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-Iga equations. (English) Zbl 1439.65140 Comput. Methods Appl. Mech. Eng. 316, 2-21 (2017). MSC: 65N22 65D07 65N35 65N55 PDF BibTeX XML Cite \textit{C. Hofer} and \textit{U. Langer}, Comput. Methods Appl. Mech. Eng. 316, 2--21 (2017; Zbl 1439.65140) Full Text: DOI
Wang, Bingjun; Yuan, Mingxia Existence of solution for stochastic differential equations driven by \(G\)-Lévy process with discontinuous coefficients. (English) Zbl 1444.60058 Adv. Difference Equ. 2017, Paper No. 188, 13 p. (2017). MSC: 60H10 60G51 60G65 PDF BibTeX XML Cite \textit{B. Wang} and \textit{M. Yuan}, Adv. Difference Equ. 2017, Paper No. 188, 13 p. (2017; Zbl 1444.60058) Full Text: DOI
Moon, Minam; Jun, Hyung Kyu; Suh, Tay Error estimates on hybridizable discontinuous Galerkin methods for parabolic equations with nonlinear coefficients. (English) Zbl 1404.65129 Adv. Math. Phys. 2017, Article ID 9736818, 11 p. (2017). MSC: 65M15 35K55 PDF BibTeX XML Cite \textit{M. Moon} et al., Adv. Math. Phys. 2017, Article ID 9736818, 11 p. (2017; Zbl 1404.65129) Full Text: DOI
Ayuso de Dios, Blanca; Hiptmair, Ralf; Pagliantini, Cecilia Auxiliary space preconditioners for SIP-DG discretizations of \(\mathrm{H}(\mathbf{curl})\)-elliptic problems with discontinuous coefficients. (English) Zbl 1433.65264 IMA J. Numer. Anal. 37, No. 2, 646-686 (2017). MSC: 65N22 65F08 65N30 PDF BibTeX XML Cite \textit{B. Ayuso de Dios} et al., IMA J. Numer. Anal. 37, No. 2, 646--686 (2017; Zbl 1433.65264) Full Text: DOI
An, Na; Yu, Xijun; Huang, Chaobao Local discontinuous Galerkin methods for parabolic interface problems with homogeneous and non-homogeneous jump conditions. (English) Zbl 1397.65179 Comput. Math. Appl. 74, No. 10, 2572-2598 (2017). MSC: 65M60 65M15 35K20 65M12 65M06 PDF BibTeX XML Cite \textit{N. An} et al., Comput. Math. Appl. 74, No. 10, 2572--2598 (2017; Zbl 1397.65179) Full Text: DOI
Kozhanov, A. I.; Potapova, S. V. Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative. (Russian. English summary) Zbl 1394.35135 Dal’nevost. Mat. Zh. 17, No. 1, 48-58 (2017). MSC: 35G16 35B65 35H10 PDF BibTeX XML Cite \textit{A. I. Kozhanov} and \textit{S. V. Potapova}, Dal'nevost. Mat. Zh. 17, No. 1, 48--58 (2017; Zbl 1394.35135) Full Text: MNR
Balakina, E. Yu. Finding discontinuities in the coefficients of the linear nonstationary transport equations. (English. Russian original) Zbl 06845319 Comput. Math. Math. Phys. 57, No. 10, 1650-1665 (2017); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 10, 1676-1691 (2017). MSC: 35 65 PDF BibTeX XML Cite \textit{E. Yu. Balakina}, Comput. Math. Math. Phys. 57, No. 10, 1650--1665 (2017; Zbl 06845319); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 10, 1676--1691 (2017) Full Text: DOI
Sandilya, Ruchi; Kumar, Sarvesh A discontinuous interpolated finite volume approximation of semilinear elliptic optimal control problems. (English) Zbl 06840737 Numer. Methods Partial Differ. Equations 33, No. 6, 2090-2113 (2017). MSC: 65K10 PDF BibTeX XML Cite \textit{R. Sandilya} and \textit{S. Kumar}, Numer. Methods Partial Differ. Equations 33, No. 6, 2090--2113 (2017; Zbl 06840737) Full Text: DOI
Cao, Waixiang; Shu, Chi-Wang; Zhang, Zhimin Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. (English) Zbl 1382.65274 ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2213-2235 (2017). MSC: 65M12 65M60 35L80 35L20 PDF BibTeX XML Cite \textit{W. Cao} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2213--2235 (2017; Zbl 1382.65274) Full Text: DOI
Xue, Hu; Xie, Feng Singularly perturbed third-order semilinear boundary value problems with discontinuous coefficients. (Chinese. English summary) Zbl 1389.34180 J. East China Norm. Univ., Nat. Sci. Ed. 2017, No. 2, 20-28 (2017). MSC: 34E15 34B15 47N20 34E05 PDF BibTeX XML Cite \textit{H. Xue} and \textit{F. Xie}, J. East China Norm. Univ., Nat. Sci. Ed. 2017, No. 2, 20--28 (2017; Zbl 1389.34180) Full Text: DOI
Yu, Haiyan; Zheng, Shenzhou; Zhang, Zhiyun Partial regularity in Morrey spaces for quasi-linear subelliptic systems. (Chinese. English summary) Zbl 1389.35109 Chin. Ann. Math., Ser. A 38, No. 1, 101-116 (2017). MSC: 35B65 35D30 35H20 35J62 PDF BibTeX XML Cite \textit{H. Yu} et al., Chin. Ann. Math., Ser. A 38, No. 1, 101--116 (2017; Zbl 1389.35109) Full Text: DOI
Adjerid, Slimane; Guo, Ruchi; Lin, Tao High degree immersed finite element spaces by a least squares method. (English) Zbl 1429.65291 Int. J. Numer. Anal. Model. 14, No. 4-5, 604-626 (2017). MSC: 65N50 65N30 35R05 PDF BibTeX XML Cite \textit{S. Adjerid} et al., Int. J. Numer. Anal. Model. 14, No. 4--5, 604--626 (2017; Zbl 1429.65291) Full Text: Link
Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S. A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation. (English) Zbl 1380.65360 J. Comput. Phys. 330, 1069-1092 (2017). MSC: 65N30 35R05 65N38 PDF BibTeX XML Cite \textit{H. Barucq} et al., J. Comput. Phys. 330, 1069--1092 (2017; Zbl 1380.65360) Full Text: DOI