Kapanadze, David; Pesetskaya, Ekaterina Half-plane diffraction problems on a triangular lattice. (English) Zbl 07642127 J. Eng. Math. 138, Paper No. 5, 15 p. (2023). MSC: 76-XX 78-XX PDF BibTeX XML Cite \textit{D. Kapanadze} and \textit{E. Pesetskaya}, J. Eng. Math. 138, Paper No. 5, 15 p. (2023; Zbl 07642127) Full Text: DOI arXiv OpenURL
Jiang, Yi; Liu, Jun Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems. (English) Zbl 07630337 Appl. Numer. Math. 184, 325-339 (2023). MSC: 65M32 65M32 65M06 65N06 65T50 65F50 65F05 60H50 35K05 35Q79 35R30 35R25 35R60 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{J. Liu}, Appl. Numer. Math. 184, 325--339 (2023; Zbl 07630337) Full Text: DOI arXiv OpenURL
Yi, Huaming; Chen, Yanping; Wang, Yang; Huang, Yunqing Optimal convergence analysis of a linearized second-order BDF-PPIFE method for semi-linear parabolic interface problems. (English) Zbl 07617970 Appl. Math. Comput. 438, Article ID 127581, 20 p. (2023). MSC: 65N15 35R05 65N30 PDF BibTeX XML Cite \textit{H. Yi} et al., Appl. Math. Comput. 438, Article ID 127581, 20 p. (2023; Zbl 07617970) Full Text: DOI OpenURL
Wang, Xiuli; Meng, Xianglong; Zhang, Shangyou; Zhou, Huifang A modified weak Galerkin finite element method for the linear elasticity problem in mixed form. (English) Zbl 1497.65239 J. Comput. Appl. Math. 420, Article ID 114743, 19 p. (2023). MSC: 65N30 65N15 65N12 35J50 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Comput. Appl. Math. 420, Article ID 114743, 19 p. (2023; Zbl 1497.65239) Full Text: DOI OpenURL
Zhao, Zhongliu; Zhang, Wensheng Stability of a coefficient inverse problem for the discrete Schrödinger equation and a convergence result. (English) Zbl 1500.65050 J. Math. Anal. Appl. 518, No. 1, Article ID 126665, 25 p. (2023). MSC: 65M06 35Q55 35Q41 35B35 65M12 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{W. Zhang}, J. Math. Anal. Appl. 518, No. 1, Article ID 126665, 25 p. (2023; Zbl 1500.65050) Full Text: DOI OpenURL
Rogava, Jemal; Tsiklauri, Mikheil; Vashakidze, Zurab On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation. (English) Zbl 1500.35212 J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023). MSC: 35L90 35R09 65M12 74K10 PDF BibTeX XML Cite \textit{J. Rogava} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023; Zbl 1500.35212) Full Text: DOI arXiv OpenURL
Tao, Zhen-Zhen; Sun, Bing Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. (English) Zbl 1498.49049 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 359-384 (2023). MSC: 49M25 49M41 65M60 65N35 PDF BibTeX XML Cite \textit{Z.-Z. Tao} and \textit{B. Sun}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 359--384 (2023; Zbl 1498.49049) Full Text: DOI OpenURL
Jabour, Abdelaziz; Bouidi, Abderrahim Local existence and uniqueness of strong solutions to the density-dependent incompressible Navier-Stokes-Korteweg system. (English) Zbl 1500.76009 J. Math. Anal. Appl. 517, No. 1, Article ID 126611, 15 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 76D03 76D05 76D45 35Q30 35Q53 PDF BibTeX XML Cite \textit{A. Jabour} and \textit{A. Bouidi}, J. Math. Anal. Appl. 517, No. 1, Article ID 126611, 15 p. (2023; Zbl 1500.76009) Full Text: DOI OpenURL
Atıcı, F. M.; Jonnalagadda, J. M. An eigenvalue problem in fractional \(h\)-discrete calculus. (English) Zbl 07636544 Fract. Calc. Appl. Anal. 25, No. 2, 630-647 (2022). MSC: 26A33 39A12 39A13 39A70 PDF BibTeX XML Cite \textit{F. M. Atıcı} and \textit{J. M. Jonnalagadda}, Fract. Calc. Appl. Anal. 25, No. 2, 630--647 (2022; Zbl 07636544) Full Text: DOI OpenURL
Khuddush, Mahammad; Prasad, K. Rajendra Iterative system of nabla fractional difference equations with two-point boundary conditions. (English) Zbl 1498.34034 Math. Appl., Brno 11, No. 1, 57-74 (2022). MSC: 34A08 39A12 34B15 PDF BibTeX XML Cite \textit{M. Khuddush} and \textit{K. R. Prasad}, Math. Appl., Brno 11, No. 1, 57--74 (2022; Zbl 1498.34034) Full Text: DOI OpenURL
Vasilyev, A. V.; Vasilyev, V. B.; Tarasova, O. A. Discrete boundary value problems as approximate constructions. (English) Zbl 07616991 Lobachevskii J. Math. 43, No. 6, 1446-1457 (2022). Reviewer: Rodica Luca (Iaşi) MSC: 39A27 39A12 39A70 PDF BibTeX XML Cite \textit{A. V. Vasilyev} et al., Lobachevskii J. Math. 43, No. 6, 1446--1457 (2022; Zbl 07616991) Full Text: DOI OpenURL
Kim, Ji Hyun Discrete compactness property for general quadrilateral meshes. (English) Zbl 07614172 J. Appl. Math. Inform. 40, No. 5-6, 949-958 (2022). MSC: 65N30 65N25 PDF BibTeX XML Cite \textit{J. H. Kim}, J. Appl. Math. Inform. 40, No. 5--6, 949--958 (2022; Zbl 07614172) Full Text: DOI OpenURL
Zhang, Hongwu; Lv, Yong Iteration regularization method for a sideways problem of time-fractional diffusion equation. (English) Zbl 07602907 Numer. Algorithms 91, No. 3, 1145-1163 (2022). Reviewer: Murli Gupta (Washington, D.C.) MSC: 65N20 65N21 65T50 65N12 65N15 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Y. Lv}, Numer. Algorithms 91, No. 3, 1145--1163 (2022; Zbl 07602907) Full Text: DOI OpenURL
Vianny, D. Abraham; Dhineshbabu, R.; Selvam, A. George Maria Lyapunov type inequalities and their applications on an eigenvalue problem for discrete fractional order equation with a class of boundary conditions. (English) Zbl 07602841 Adv. Differ. Equ. Control Process. 28, 55-71 (2022). MSC: 26A33 34A08 34B05 34B15 34D08 PDF BibTeX XML Cite \textit{D. A. Vianny} et al., Adv. Differ. Equ. Control Process. 28, 55--71 (2022; Zbl 07602841) Full Text: DOI OpenURL
Guo, Xiaoqin; Peterson, Jonathon; Tran, Hung V. Quantitative homogenization in a balanced random environment. (English) Zbl 1500.35117 Electron. J. Probab. 27, Paper No. 132, 31 p. (2022). MSC: 35J15 35J25 35K10 35K20 60G50 60K37 PDF BibTeX XML Cite \textit{X. Guo} et al., Electron. J. Probab. 27, Paper No. 132, 31 p. (2022; Zbl 1500.35117) Full Text: DOI arXiv OpenURL
Chen, Yanshan; Zhou, Zhan Existence of infinitely many solutions of nonlinear fourth-order discrete boundary value problems. (English) Zbl 1498.39017 Bound. Value Probl. 2022, Paper No. 58, 13 p. (2022). MSC: 39A27 39A22 39A12 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Zhou}, Bound. Value Probl. 2022, Paper No. 58, 13 p. (2022; Zbl 1498.39017) Full Text: DOI OpenURL
Cui, Jianbo; Dieci, Luca; Zhou, Haomin A continuation multiple shooting method for Wasserstein geodesic equation. (English) Zbl 1498.49087 SIAM J. Sci. Comput. 44, No. 5, A2918-A2943 (2022). MSC: 49Q22 49M25 65L09 34A55 PDF BibTeX XML Cite \textit{J. Cui} et al., SIAM J. Sci. Comput. 44, No. 5, A2918--A2943 (2022; Zbl 1498.49087) Full Text: DOI arXiv OpenURL
Shavlakadze, Nugzar Discrete interaction of an elastic wedge-shaped plate with an elastic stringer. (English) Zbl 1497.74053 Trans. A. Razmadze Math. Inst. 176, No. 2, 301-307 (2022). MSC: 74K20 74S70 PDF BibTeX XML Cite \textit{N. Shavlakadze}, Trans. A. Razmadze Math. Inst. 176, No. 2, 301--307 (2022; Zbl 1497.74053) Full Text: Link OpenURL
Adalar, İbrahim Determination of a differential pencil frominterior spectral data on a union of two closed intervals. (English) Zbl 07582695 Turk. J. Math. 46, No. 2, SI-1, 377-386 (2022). MSC: 31B20 39A12 34N05 PDF BibTeX XML Cite \textit{İ. Adalar}, Turk. J. Math. 46, No. 2, 377--386 (2022; Zbl 07582695) Full Text: DOI OpenURL
Duan, Lei; Chen, Tianlan Existence of convex solutions for a discrete mixed boundary value problem with the mean curvature operator. (English) Zbl 07572895 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 379-386 (2022). MSC: 34B15 34K10 PDF BibTeX XML Cite \textit{L. Duan} and \textit{T. Chen}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 379--386 (2022; Zbl 07572895) Full Text: Link OpenURL
Ourraoui, Anass; Ayoujil, Abdesslem On a class of non-local discrete boundary value problems. (On a class of non-local discrete boundary value problepm.) (English) Zbl 1497.39001 Arab J. Math. Sci. 28, No. 2, 130-141 (2022). MSC: 39A12 39A14 39B52 PDF BibTeX XML Cite \textit{A. Ourraoui} and \textit{A. Ayoujil}, Arab J. Math. Sci. 28, No. 2, 130--141 (2022; Zbl 1497.39001) Full Text: DOI OpenURL
Vashakidze, Zurab On the convergence of a three-layer semi-discrete scheme for the nonlinear dynamic Kirchhoff string equation. (English) Zbl 1492.65069 Georgian Math. J. 29, No. 4, 615-627 (2022). MSC: 65F05 65F50 65L20 65L60 65M06 65M22 65M70 74H15 74K05 74S20 74S25 PDF BibTeX XML Cite \textit{Z. Vashakidze}, Georgian Math. J. 29, No. 4, 615--627 (2022; Zbl 1492.65069) Full Text: DOI OpenURL
Bodaghi, S.; Zakeri, A.; Amiraslani, A.; Shayegan, A. H. Salehi Discrete mollification in Bernstein basis and space marching scheme for numerical solution of an inverse two-phase one-dimensional Stefan problem. (English) Zbl 07565426 Numer. Algorithms 90, No. 4, 1569-1592 (2022). MSC: 65M32 65M30 65M12 35K05 80A22 80A23 35R25 35Q79 PDF BibTeX XML Cite \textit{S. Bodaghi} et al., Numer. Algorithms 90, No. 4, 1569--1592 (2022; Zbl 07565426) Full Text: DOI OpenURL
Hinz, Michael; Schwarz, Michael A note on Neumann problems on graphs. (English) Zbl 1494.05064 Positivity 26, No. 4, Paper No. 68, 23 p. (2022). MSC: 05C50 05C81 35J20 35J25 47A07 47B25 60J28 60J35 PDF BibTeX XML Cite \textit{M. Hinz} and \textit{M. Schwarz}, Positivity 26, No. 4, Paper No. 68, 23 p. (2022; Zbl 1494.05064) Full Text: DOI arXiv OpenURL
Bondarenko, Natalia P.; Yurko, Vjacheslav A. A new approach to the inverse discrete transmission eigenvalue problem. (English) Zbl 1495.35207 Inverse Probl. Imaging 16, No. 4, 739-751 (2022). MSC: 35R30 15A29 34A55 35J57 39A12 PDF BibTeX XML Cite \textit{N. P. Bondarenko} and \textit{V. A. Yurko}, Inverse Probl. Imaging 16, No. 4, 739--751 (2022; Zbl 1495.35207) Full Text: DOI arXiv OpenURL
Henderson, Johnny Nontrivial solutions for a nonlinear \(\nu\)th order Atıcı-Eloe frational difference equation satisfying left focal boundary conditions. (English) Zbl 07559311 J. Fract. Calc. Appl. 13, No. 2, 156-162 (2022). MSC: 39A27 39A12 26A33 34B15 PDF BibTeX XML Cite \textit{J. Henderson}, J. Fract. Calc. Appl. 13, No. 2, 156--162 (2022; Zbl 07559311) Full Text: Link OpenURL
Xiong, Feng; Zhou, Zhan Three positive solutions for a nonlinear partial discrete Dirichlet problem with \((p,q)\)-Laplacian operator. (English) Zbl 1498.39012 Bound. Value Probl. 2022, Paper No. 9, 13 p. (2022). Reviewer: Bashir Ahmad (Jeddah) MSC: 39A14 39A27 39A12 PDF BibTeX XML Cite \textit{F. Xiong} and \textit{Z. Zhou}, Bound. Value Probl. 2022, Paper No. 9, 13 p. (2022; Zbl 1498.39012) Full Text: DOI OpenURL
Foko, Séverin; Tadmon, Calvin Consistent discrete global dynamics of a general initial boundary value problem for hepatitis B virus infection with capsids and adaptive immunity. (English) Zbl 1495.31018 J. Difference Equ. Appl. 28, No. 6, 777-852 (2022). MSC: 31C20 92D25 PDF BibTeX XML Cite \textit{S. Foko} and \textit{C. Tadmon}, J. Difference Equ. Appl. 28, No. 6, 777--852 (2022; Zbl 1495.31018) Full Text: DOI OpenURL
Beirão da Veiga, Lourenço; Dassi, Franco; Di Pietro, Daniele A.; Droniou, Jérôme Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. (English) Zbl 07543705 Comput. Methods Appl. Mech. Eng. 397, Article ID 115061, 31 p. (2022). MSC: 65N12 65N30 65N99 76D07 PDF BibTeX XML Cite \textit{L. Beirão da Veiga} et al., Comput. Methods Appl. Mech. Eng. 397, Article ID 115061, 31 p. (2022; Zbl 07543705) Full Text: DOI arXiv OpenURL
Du, Shaohong; Cai, Zhiqiang A finite element method for Dirichlet boundary control of elliptic partial differential equations. (English) Zbl 1486.49032 Commun. Math. Sci. 20, No. 4, 1081-1102 (2022). MSC: 49K20 49M25 65K10 65N21 65N30 PDF BibTeX XML Cite \textit{S. Du} and \textit{Z. Cai}, Commun. Math. Sci. 20, No. 4, 1081--1102 (2022; Zbl 1486.49032) Full Text: DOI OpenURL
Zhang, Wensheng; Zhao, Zhongliu Convergence analysis of a coefficient inverse problem for the semi-discrete damped wave equation. (English) Zbl 1487.35454 Appl. Anal. 101, No. 4, 1430-1455 (2022). MSC: 35R30 35L35 39A12 65N21 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{Z. Zhao}, Appl. Anal. 101, No. 4, 1430--1455 (2022; Zbl 1487.35454) Full Text: DOI OpenURL
Khieu, Tran Thi; Khanh, Tra Quoc Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type. (English) Zbl 1486.65153 Numer. Algorithms 89, No. 4, 1743-1767 (2022). MSC: 65M32 65M30 65M06 65N21 65N20 65T50 60J70 35R30 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. T. Khieu} and \textit{T. Q. Khanh}, Numer. Algorithms 89, No. 4, 1743--1767 (2022; Zbl 1486.65153) Full Text: DOI OpenURL
Khandelwal, Pooja; Khan, Arshad; Sultana, Talat Discrete cubic spline technique for solving one-dimensional Bratu’s problem. (English) Zbl 1482.34069 Asian-Eur. J. Math. 15, No. 1, Article ID 2250011, 12 p. (2022). MSC: 34B15 65D07 PDF BibTeX XML Cite \textit{P. Khandelwal} et al., Asian-Eur. J. Math. 15, No. 1, Article ID 2250011, 12 p. (2022; Zbl 1482.34069) Full Text: DOI OpenURL
Wang, Xianchao; Zhu, Jiaqi; Song, Minghui; Wu, Wei Fourier method for reconstructing elastic body force from the coupled-wave field. (English) Zbl 1484.35418 Inverse Probl. Imaging 16, No. 2, 325-340 (2022). MSC: 35R30 65M32 65T50 74G75 74J25 PDF BibTeX XML Cite \textit{X. Wang} et al., Inverse Probl. Imaging 16, No. 2, 325--340 (2022; Zbl 1484.35418) Full Text: DOI OpenURL
Otárola, Enrique Fractional semilinear optimal control: optimality conditions, convergence, and error analysis. (English) Zbl 07463749 SIAM J. Numer. Anal. 60, No. 1, 1-27 (2022). MSC: 65-XX 35R11 49J20 49M25 65K10 65N15 65N30 PDF BibTeX XML Cite \textit{E. Otárola}, SIAM J. Numer. Anal. 60, No. 1, 1--27 (2022; Zbl 07463749) Full Text: DOI arXiv OpenURL
Tang, Qinglin; Xie, Manting; Zhang, Yong; Zhang, Yuqing A spectrally accurate numerical method for computing the Bogoliubov-de Gennes excitations of dipolar Bose-Einstein condensates. (English) Zbl 1484.65273 SIAM J. Sci. Comput. 44, No. 1, B100-B121 (2022). MSC: 65M70 68Q25 65T50 65R20 65F15 82C10 82D05 35Q82 PDF BibTeX XML Cite \textit{Q. Tang} et al., SIAM J. Sci. Comput. 44, No. 1, B100--B121 (2022; Zbl 1484.65273) Full Text: DOI OpenURL
Ousbika, Mohamed; El Allali, Zakaria A discrete problem involving the \(p(k)\)-Laplacian operator with three variable exponents. (English) Zbl 07637491 Int. J. Nonlinear Anal. Appl. 12, No. 1, 521-532 (2021). MSC: 65L15 34B15 65Q10 PDF BibTeX XML Cite \textit{M. Ousbika} and \textit{Z. El Allali}, Int. J. Nonlinear Anal. Appl. 12, No. 1, 521--532 (2021; Zbl 07637491) Full Text: DOI OpenURL
Vitkauskas, Jonas; Štikonas, Artūras Relations between spectrum curves of discrete Sturm-Liouville problem with nonlocal boundary conditions and graph theory. II. (English) Zbl 1500.39009 Liet. Mat. Rink., Proc. Lith. Math. Soc., Ser. A 62, 1-8 (2021). MSC: 39A27 39A12 34B24 PDF BibTeX XML Cite \textit{J. Vitkauskas} and \textit{A. Štikonas}, Liet. Mat. Rink., Proc. Lith. Math. Soc., Ser. A 62, 1--8 (2021; Zbl 1500.39009) Full Text: DOI OpenURL
Xiong, Feng; Zhou, Zhan Three solutions to Dirichlet problems for second-order self-adjoint difference equations involving \(p\)-Laplacian. (English) Zbl 1494.39016 Adv. Difference Equ. 2021, Paper No. 192, 15 p. (2021). MSC: 39A27 39A12 34B15 PDF BibTeX XML Cite \textit{F. Xiong} and \textit{Z. Zhou}, Adv. Difference Equ. 2021, Paper No. 192, 15 p. (2021; Zbl 1494.39016) Full Text: DOI OpenURL
Papukashvili, Archil; Vashakidze, Zurab; Sharikadze, Meri An approximate solution of the anti-plane problems of the elasticity theory for isotropic composite plane weakened by crack using a method of discrete singularity. (English) Zbl 07564074 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 75-78 (2021). MSC: 65R20 45E05 45F15 65M70 PDF BibTeX XML Cite \textit{A. Papukashvili} et al., Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 35, 75--78 (2021; Zbl 07564074) Full Text: Link OpenURL
Cui, Xia; Yuan, Guangwei; Zhao, Fei Analysis on a numerical scheme with second-order time accuracy for nonlinear diffusion equations. (English) Zbl 1499.65383 J. Comput. Math. 39, No. 5, 777-800 (2021). MSC: 65M06 65N06 65M12 65M15 PDF BibTeX XML Cite \textit{X. Cui} et al., J. Comput. Math. 39, No. 5, 777--800 (2021; Zbl 1499.65383) Full Text: DOI OpenURL
Liu, Jie; Zhou, Zhaojie Finite element approximation of time fractional optimal control problem with integral state constraint. (English) Zbl 1484.49055 AIMS Math. 6, No. 1, 979-997 (2021). MSC: 49M25 49J20 65N30 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Z. Zhou}, AIMS Math. 6, No. 1, 979--997 (2021; Zbl 1484.49055) Full Text: DOI OpenURL
Lu, Zuliang; Wu, Xiankui; Cai, Fei; Huang, Fei; Liu, Shang; Yang, Yin Error estimates in \(L^2\) and \(L^\infty\) norms of finite volume method for the bilinear elliptic optimal control problem. (English) Zbl 1485.49036 AIMS Math. 6, No. 8, 8585-8599 (2021). MSC: 49M41 49M25 65M08 PDF BibTeX XML Cite \textit{Z. Lu} et al., AIMS Math. 6, No. 8, 8585--8599 (2021; Zbl 1485.49036) Full Text: DOI OpenURL
Wang, Shaohong; Zhou, Zhan Three solutions for a partial discrete Dirichlet boundary value problem with \(p\)-Laplacian. (English) Zbl 1487.39022 Bound. Value Probl. 2021, Paper No. 39, 17 p. (2021). MSC: 39A27 39A12 39A14 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Zhou}, Bound. Value Probl. 2021, Paper No. 39, 17 p. (2021; Zbl 1487.39022) Full Text: DOI OpenURL
Umbricht, Guillermo Federico Identification of the source for full parabolic equations. (English) Zbl 1486.35475 Math. Model. Anal. 26, No. 3, 339-357 (2021). MSC: 35R30 35R25 35K20 47A52 58J35 65T50 PDF BibTeX XML Cite \textit{G. F. Umbricht}, Math. Model. Anal. 26, No. 3, 339--357 (2021; Zbl 1486.35475) Full Text: DOI OpenURL
Atıcı, Ferhan Merdivenci; Bennett, William R. A study on discrete Ponzi scheme model through Sturm-Liouville theory. (English) Zbl 1482.39023 Int. J. Dyn. Syst. Differ. Equ. 11, No. 3-4, 227-240 (2021). MSC: 39A60 39A27 39A12 34B24 91G30 PDF BibTeX XML Cite \textit{F. M. Atıcı} and \textit{W. R. Bennett}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 3--4, 227--240 (2021; Zbl 1482.39023) Full Text: DOI OpenURL
Kapanadze, David On the discrete problem of wave diffraction by semi-infinite rigid constraint. (English) Zbl 1481.78004 Trans. A. Razmadze Math. Inst. 175, No. 3, 443-449 (2021). MSC: 78A45 35J05 PDF BibTeX XML Cite \textit{D. Kapanadze}, Trans. A. Razmadze Math. Inst. 175, No. 3, 443--449 (2021; Zbl 1481.78004) Full Text: Link OpenURL
Heidari, S.; Azari, H. A numerical method for pricing perpetual American options under regime switching jump diffusion models. (English) Zbl 1480.91315 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 143-163 (2021). MSC: 91G60 65M06 65M32 91G20 60H40 PDF BibTeX XML Cite \textit{S. Heidari} and \textit{H. Azari}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 143--163 (2021; Zbl 1480.91315) Full Text: Link OpenURL
Ortega, Fernando; Cho, Sung; Barros, Maria Filomena A non-consistent boundary value problem of a generalized linear discrete time system. (English) Zbl 1483.39007 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 6, 415-428 (2021). MSC: 39A27 PDF BibTeX XML Cite \textit{F. Ortega} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 6, 415--428 (2021; Zbl 1483.39007) Full Text: Link OpenURL
Manohar, Ram; Sinha, Rajen Kumar A posteriori \(L^\infty(L^\infty)\)-error estimates for finite-element approximations to parabolic optimal control problems. (English) Zbl 1499.49019 Comput. Appl. Math. 40, No. 8, Paper No. 298, 31 p. (2021). MSC: 49J20 49N05 49M05 49M15 49M25 49M29 65N30 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, Comput. Appl. Math. 40, No. 8, Paper No. 298, 31 p. (2021; Zbl 1499.49019) Full Text: DOI OpenURL
Ling, Jiaoxiu; Zhou, Zhan Positive solutions of the discrete Robin problem with \(\phi\)-Laplacian. (English) Zbl 1481.39014 Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3183-3196 (2021). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{J. Ling} and \textit{Z. Zhou}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3183--3196 (2021; Zbl 1481.39014) Full Text: DOI OpenURL
Wang, Rui; Lu, Yanqiong Existence of positive solutions for a class of semi-positone second-order discrete periodic boundary value problem with parameter. (Chinese. English summary) Zbl 1499.39067 J. Jilin Univ., Sci. 59, No. 4, 725-730 (2021). MSC: 39A27 39A12 47N20 PDF BibTeX XML Cite \textit{R. Wang} and \textit{Y. Lu}, J. Jilin Univ., Sci. 59, No. 4, 725--730 (2021; Zbl 1499.39067) Full Text: DOI OpenURL
Ibrango, I.; Kone, B.; Guiro, A.; Ouaro, S. Weak solutions for anisotropic nonlinear discrete Dirichlet boundary value problems in a two-dimensional Hilbert space. (English) Zbl 1499.39060 Nonlinear Dyn. Syst. Theory 21, No. 1, 90-99 (2021). MSC: 39A27 39A14 PDF BibTeX XML Cite \textit{I. Ibrango} et al., Nonlinear Dyn. Syst. Theory 21, No. 1, 90--99 (2021; Zbl 1499.39060) Full Text: Link OpenURL
Gapeev, Pavel V.; Rodosthenous, Neofytos Optimal stopping games in models with various information flows. (English) Zbl 1490.60098 Stochastic Anal. Appl. 39, No. 6, 1050-1094 (2021). Reviewer: Krzysztof J. Szajowski (Wrocław) MSC: 60G40 91G20 34K10 60J60 60J27 62M20 PDF BibTeX XML Cite \textit{P. V. Gapeev} and \textit{N. Rodosthenous}, Stochastic Anal. Appl. 39, No. 6, 1050--1094 (2021; Zbl 1490.60098) Full Text: DOI Link OpenURL
Bohner, Martin; Fewster-Young, Nick Discrete fractional boundary value problems and inequalities. (English) Zbl 1498.39005 Fract. Calc. Appl. Anal. 24, No. 6, 1777-1796 (2021). MSC: 39A13 39A12 39A70 26A33 26D20 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{N. Fewster-Young}, Fract. Calc. Appl. Anal. 24, No. 6, 1777--1796 (2021; Zbl 1498.39005) Full Text: DOI OpenURL
Ousbika, M.; El Allali, Z. An eigenvalue of anisotropic discrete problem with three variable exponents. (English) Zbl 1479.39015 Ukr. Math. J. 73, No. 6, 977-987 (2021) and Ukr. Mat. Zh. 73, No. 6, 839-848 (2021). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{M. Ousbika} and \textit{Z. El Allali}, Ukr. Math. J. 73, No. 6, 977--987 (2021; Zbl 1479.39015) Full Text: DOI OpenURL
Dimitriou, Ioannis On partially homogeneous nearest-neighbour random walks in the quarter plane and their application in the analysis of two-dimensional queues with limited state-dependency. (English) Zbl 1475.60179 Queueing Syst. 98, No. 1-2, 95-143 (2021). MSC: 60K25 60J10 68M20 90B22 PDF BibTeX XML Cite \textit{I. Dimitriou}, Queueing Syst. 98, No. 1--2, 95--143 (2021; Zbl 1475.60179) Full Text: DOI arXiv OpenURL
Cunis, Torbjørn; Kolmanovsky, Ilya Viability, viscosity, and storage functions in model-predictive control with terminal constraints. (English) Zbl 1478.93165 Automatica 131, Article ID 109748, 11 p. (2021). MSC: 93B45 93D30 93B03 93C55 PDF BibTeX XML Cite \textit{T. Cunis} and \textit{I. Kolmanovsky}, Automatica 131, Article ID 109748, 11 p. (2021; Zbl 1478.93165) Full Text: DOI OpenURL
Behringer, Niklas Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. (English) Zbl 1473.49033 Math. Control Relat. Fields 11, No. 2, 313-328 (2021). MSC: 49M25 35Q35 35R06 65N15 65N30 PDF BibTeX XML Cite \textit{N. Behringer}, Math. Control Relat. Fields 11, No. 2, 313--328 (2021; Zbl 1473.49033) Full Text: DOI OpenURL
Kapanadze, D.; Pesetskaya, E. Diffraction problems for two-dimensional lattice waves in a quadrant. (English) Zbl 07425547 Wave Motion 100, Article ID 102671, 15 p. (2021). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{D. Kapanadze} and \textit{E. Pesetskaya}, Wave Motion 100, Article ID 102671, 15 p. (2021; Zbl 07425547) Full Text: DOI OpenURL
Qiu, Zihua On the multiplicity of solutions for the discrete boundary problem involving the singular \(\phi\)-Laplacian. (English) Zbl 1479.39016 J. Funct. Spaces 2021, Article ID 7013733, 7 p. (2021). MSC: 39A27 39A21 PDF BibTeX XML Cite \textit{Z. Qiu}, J. Funct. Spaces 2021, Article ID 7013733, 7 p. (2021; Zbl 1479.39016) Full Text: DOI OpenURL
Zhang, Zhuomin; Zhou, Zhan Infinitely many solutions for discrete boundary value problems with the \((p, q)\)-Laplacian operator. (English) Zbl 1476.39017 J. Funct. Spaces 2021, Article ID 1980285, 9 p. (2021). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Z. Zhou}, J. Funct. Spaces 2021, Article ID 1980285, 9 p. (2021; Zbl 1476.39017) Full Text: DOI OpenURL
Shakya, Pratibha; Sinha, Rajen Kumar Finite element approximations of parabolic optimal control problem with measure data in time. (English) Zbl 1475.49007 Appl. Anal. 100, No. 12, 2706-2734 (2021). MSC: 49J20 49K20 65N15 65N30 PDF BibTeX XML Cite \textit{P. Shakya} and \textit{R. K. Sinha}, Appl. Anal. 100, No. 12, 2706--2734 (2021; Zbl 1475.49007) Full Text: DOI OpenURL
Sultanova, Vusala Problems for the first-order differential equations with discrete additive and discrete multiplicative derivatives. (English) Zbl 1499.39065 J. Contemp. Appl. Math. 11, No. 2, 3-10 (2021). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{V. Sultanova}, J. Contemp. Appl. Math. 11, No. 2, 3--10 (2021; Zbl 1499.39065) Full Text: Link OpenURL
Liao, Huiqing; Ma, Heping Error estimate of a Legendre-Galerkin Chebyshev collocation method for a class of parabolic inverse problem. (English) Zbl 07398300 Appl. Numer. Math. 170, 179-189 (2021). MSC: 65M32 65M70 65M60 65N35 65N30 65D05 65D30 65M15 42C10 35K05 49M25 PDF BibTeX XML Cite \textit{H. Liao} and \textit{H. Ma}, Appl. Numer. Math. 170, 179--189 (2021; Zbl 07398300) Full Text: DOI OpenURL
El Moutea, Omar; El Amri, Hassan Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media. (English) Zbl 1477.65210 Analysis, München 41, No. 3, 123-144 (2021). MSC: 65N30 76M10 76M12 76S05 76R50 PDF BibTeX XML Cite \textit{O. El Moutea} and \textit{H. El Amri}, Analysis, München 41, No. 3, 123--144 (2021; Zbl 1477.65210) Full Text: DOI OpenURL
Stegliński, Robert Sharp Lyapunov-type inequalities for second-order half-linear difference equations with different kinds of boundary conditions. (English) Zbl 1471.39010 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 140, 12 p. (2021). MSC: 39A27 PDF BibTeX XML Cite \textit{R. Stegliński}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 140, 12 p. (2021; Zbl 1471.39010) Full Text: DOI OpenURL
Luan, Tran Nhat; Khanh, Tra Quoc Determination of initial distribution for a space-fractional diffusion equation with time-dependent diffusivity. (English) Zbl 1481.65175 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3461-3487 (2021). MSC: 65M30 65M06 65N06 65T50 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. N. Luan} and \textit{T. Q. Khanh}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3461--3487 (2021; Zbl 1481.65175) Full Text: DOI OpenURL
Abdulla, Ugur G.; Cosgrove, Evan Optimal control of multiphase free boundary problems for nonlinear parabolic equations. (English) Zbl 1470.35423 Appl. Math. Optim. 84, No. 1, 589-619 (2021). MSC: 35R30 35R35 35K20 35Q93 47H05 49J20 65M06 65M12 PDF BibTeX XML Cite \textit{U. G. Abdulla} and \textit{E. Cosgrove}, Appl. Math. Optim. 84, No. 1, 589--619 (2021; Zbl 1470.35423) Full Text: DOI arXiv OpenURL
Vasilyev, V. B. Operators and equations: discrete and continuous. (English. Russian original) Zbl 07380558 J. Math. Sci., New York 257, No. 1, 17-26 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 18-27 (2019). MSC: 47G30 42B10 45G05 65R20 35S05 PDF BibTeX XML Cite \textit{V. B. Vasilyev}, J. Math. Sci., New York 257, No. 1, 17--26 (2021; Zbl 07380558); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 18--27 (2019) Full Text: DOI Link OpenURL
Tuan, Nguyen Huy; Thach, Tran Ngoc; Can, Nguyen Huu; O’Regan, Donal Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data. (English) Zbl 1470.35415 Math. Methods Appl. Sci. 44, No. 4, 2879-2891 (2021). MSC: 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Math. Methods Appl. Sci. 44, No. 4, 2879--2891 (2021; Zbl 1470.35415) Full Text: DOI OpenURL
Lubyshev, F. V.; Manapova, A. R. Approximations to problems of optimal control of leading coefficients of elliptic equations in nondivergence form with an unbounded nonlinearity in the coefficients. (English. Russian original) Zbl 1468.49031 Differ. Equ. 57, No. 6, 780-804 (2021); translation from Differ. Uravn. 57, No. 6, 796-820 (2021). MSC: 49M25 65N06 90C30 49J20 PDF BibTeX XML Cite \textit{F. V. Lubyshev} and \textit{A. R. Manapova}, Differ. Equ. 57, No. 6, 780--804 (2021; Zbl 1468.49031); translation from Differ. Uravn. 57, No. 6, 796--820 (2021) Full Text: DOI OpenURL
Imbesi, Maurizio; Lashkaripour, Rahmatollah; Ahmadi, Zahra Existence of three weak solutions for a class of discrete problems driven by \(p\)-Laplacian operator. (English) Zbl 1470.39033 Fixed Point Theory 22, No. 1, 231-240 (2021). MSC: 39A27 39A12 47H10 58E05 PDF BibTeX XML Cite \textit{M. Imbesi} et al., Fixed Point Theory 22, No. 1, 231--240 (2021; Zbl 1470.39033) Full Text: Link OpenURL
Graef, John R.; Kong, Lingju; Wang, Min A variational framework for a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1468.39004 Result. Math. 76, No. 2, Paper No. 98, 12 p. (2021). MSC: 39A27 39A12 34B15 49K30 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Result. Math. 76, No. 2, Paper No. 98, 12 p. (2021; Zbl 1468.39004) Full Text: DOI OpenURL
Chen, Huiqin; Cui, Yaqiong; Kang, Shugui; Lu, Youmin; Feng, Wenying Existence of solutions for a class of fractional difference equations at resonance. (English) Zbl 1469.39007 Stud. Appl. Math. 146, No. 4, 881-900 (2021). MSC: 39A27 39A12 39A13 PDF BibTeX XML Cite \textit{H. Chen} et al., Stud. Appl. Math. 146, No. 4, 881--900 (2021; Zbl 1469.39007) Full Text: DOI OpenURL
Bodaghi, Soheila; Zakeri, Ali; Amiraslani, Amir Regularization of a nonlinear inverse problem by discrete mollification method. (English) Zbl 1474.35687 Comput. Methods Differ. Equ. 9, No. 1, 313-326 (2021). MSC: 35R25 35R30 65M12 PDF BibTeX XML Cite \textit{S. Bodaghi} et al., Comput. Methods Differ. Equ. 9, No. 1, 313--326 (2021; Zbl 1474.35687) Full Text: DOI OpenURL
Li, Zizun Some generalized Gronwall-Bellman type difference inequalities and applications. (English) Zbl 1469.39004 J. Math. Inequal. 15, No. 1, 173-200 (2021). MSC: 39A12 26D15 26D10 PDF BibTeX XML Cite \textit{Z. Li}, J. Math. Inequal. 15, No. 1, 173--200 (2021; Zbl 1469.39004) Full Text: DOI OpenURL
Tisdell, Christopher C. The roles that shooting methods can play in the theory of discrete boundary value problems. (English) Zbl 07355107 J. Difference Equ. Appl. 27, No. 2, 241-249 (2021). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{C. C. Tisdell}, J. Difference Equ. Appl. 27, No. 2, 241--249 (2021; Zbl 07355107) Full Text: DOI OpenURL
Van Thang, Nguyen; Van Duc, Nguyen; Minh, Luong Duy Nhat; Thành, Nguyen Trung Identifying an unknown source term in a time-space fractional parabolic equation. (English) Zbl 1475.65112 Appl. Numer. Math. 166, 313-332 (2021). MSC: 65M32 65M15 65M12 65T50 35B45 26A33 35R11 35R30 PDF BibTeX XML Cite \textit{N. Van Thang} et al., Appl. Numer. Math. 166, 313--332 (2021; Zbl 1475.65112) Full Text: DOI OpenURL
Leng, Haitao; Chen, Yanping Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. (English) Zbl 1465.65053 Adv. Comput. Math. 47, No. 3, Paper No. 30, 20 p. (2021). MSC: 65K10 65N30 49M25 49M41 PDF BibTeX XML Cite \textit{H. Leng} and \textit{Y. Chen}, Adv. Comput. Math. 47, No. 3, Paper No. 30, 20 p. (2021; Zbl 1465.65053) Full Text: DOI arXiv OpenURL
Glusa, Christian; Otárola, Enrique Error estimates for the optimal control of a parabolic fractional PDE. (English) Zbl 1464.49001 SIAM J. Numer. Anal. 59, No. 2, 1140-1165 (2021). MSC: 49J20 49M25 65M12 65M15 65M60 49N10 35R11 PDF BibTeX XML Cite \textit{C. Glusa} and \textit{E. Otárola}, SIAM J. Numer. Anal. 59, No. 2, 1140--1165 (2021; Zbl 1464.49001) Full Text: DOI OpenURL
Leng, Haitao; Chen, Huangxin Adaptive HDG methods for the Brinkman equations with application to optimal control. (English) Zbl 1462.49055 J. Sci. Comput. 87, No. 2, Paper No. 46, 34 p. (2021). MSC: 49M25 65K10 65M50 PDF BibTeX XML Cite \textit{H. Leng} and \textit{H. Chen}, J. Sci. Comput. 87, No. 2, Paper No. 46, 34 p. (2021; Zbl 1462.49055) Full Text: DOI OpenURL
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). Reviewer: Robert Plato (Siegen) MSC: 35R60 26A33 35A01 35A02 35R11 35R30 35R25 49M37 60G60 60H40 60J65 65M30 65M32 65T50 90C25 35K20 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 1475.35432) Full Text: DOI arXiv OpenURL
Bai, Zhong-Zhi; Lu, Kang-Ya Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations. (English) Zbl 1466.49029 Appl. Numer. Math. 163, 126-146 (2021). MSC: 49M41 26A33 35R11 49M25 65F08 65M22 PDF BibTeX XML Cite \textit{Z.-Z. Bai} and \textit{K.-Y. Lu}, Appl. Numer. Math. 163, 126--146 (2021; Zbl 1466.49029) Full Text: DOI OpenURL
Macías-Díaz, Jorge E. A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. (English) Zbl 1456.65074 Numer. Algorithms 86, No. 1, 75-102 (2021). MSC: 65M06 65M12 74K05 74H45 74B20 35R11 35Q74 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Numer. Algorithms 86, No. 1, 75--102 (2021; Zbl 1456.65074) Full Text: DOI OpenURL
Gracia, José Luis; Stynes, Martin A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative. (English) Zbl 1448.65101 J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{M. Stynes}, J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021; Zbl 1448.65101) Full Text: DOI OpenURL
Vitkauskas, Jonas; Štikonas, Artūras Relations between spectrum curves of discrete Sturm-Liouville problem with nonlocal boundary conditions and graph theory. (English) Zbl 1500.39008 Liet. Mat. Rink., Proc. Lith. Math. Soc., Ser. A 61, 1-6 (2020). MSC: 39A27 39A12 34B24 PDF BibTeX XML Cite \textit{J. Vitkauskas} and \textit{A. Štikonas}, Liet. Mat. Rink., Proc. Lith. Math. Soc., Ser. A 61, 1--6 (2020; Zbl 1500.39008) Full Text: DOI OpenURL
Papukashvili, Archil; Papukashvili, Giorgi; Sharikadze, Meri On the numerical computations of an anti-plane problem in the case of isotropic composite body weakened by a crack. (English) Zbl 07564048 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 34, 65-68 (2020). MSC: 65R20 45E05 45F15 65M70 PDF BibTeX XML Cite \textit{A. Papukashvili} et al., Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 34, 65--68 (2020; Zbl 07564048) Full Text: Link OpenURL
Jonnalagadda, Jagan Mohan On a nabla fractional boundary value problem with general boundary conditions. (English) Zbl 1485.34040 AIMS Math. 5, No. 1, 204-215 (2020). MSC: 34A08 34B05 34N05 39A12 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda}, AIMS Math. 5, No. 1, 204--215 (2020; Zbl 1485.34040) Full Text: DOI arXiv OpenURL
Berkane, Abdelhak; Zekri, Abdelkrim On approximation of abstract first order differential equation with an integral condition. (English) Zbl 1484.65335 Bull. Math. Anal. Appl. 12, No. 3, 19-33 (2020). MSC: 65R20 34B10 45B05 47D06 47N20 PDF BibTeX XML Cite \textit{A. Berkane} and \textit{A. Zekri}, Bull. Math. Anal. Appl. 12, No. 3, 19--33 (2020; Zbl 1484.65335) Full Text: Link OpenURL
Ayoujil, Abdesslem; Berrajaa, Mohammed; Ouhamou, Brahim Positive solutions for discrete anisotropic equations. (English) Zbl 1499.35085 Mathematica 62(85), No. 2, 107-116 (2020). MSC: 35B38 47A75 35P30 34L05 34L30 PDF BibTeX XML Cite \textit{A. Ayoujil} et al., Mathematica 62(85), No. 2, 107--116 (2020; Zbl 1499.35085) Full Text: DOI OpenURL
Selvam, A. George Maria; Alzabut, Jehad; Dhineshbabu, R.; Rashid, S.; Rehman, M. Discrete fractional order two-point boundary value problem with some relevant physical applications. (English) Zbl 07460996 J. Inequal. Appl. 2020, Paper No. 221, 18 p. (2020). MSC: 39A27 39A13 26A33 47N20 PDF BibTeX XML Cite \textit{A. G. M. Selvam} et al., J. Inequal. Appl. 2020, Paper No. 221, 18 p. (2020; Zbl 07460996) Full Text: DOI OpenURL
Adewole, Matthew O. Finite element method for second order nonlinear parabolic interface problems. (English) Zbl 1476.65232 J. Niger. Math. Soc. 39, No. 1, 135-153 (2020). MSC: 65M60 65M12 35B50 PDF BibTeX XML Cite \textit{M. O. Adewole}, J. Niger. Math. Soc. 39, No. 1, 135--153 (2020; Zbl 1476.65232) Full Text: Link OpenURL
Selvam, A. George Maria; Dhineshbabu, R. Ulam stability results for boundary value problem of fractional difference equations. (English) Zbl 1476.34034 Adv. Math., Sci. J. 9, No. 1, 219-230 (2020). MSC: 34A08 34B15 34K10 34K20 39A12 PDF BibTeX XML Cite \textit{A. G. M. Selvam} and \textit{R. Dhineshbabu}, Adv. Math., Sci. J. 9, No. 1, 219--230 (2020; Zbl 1476.34034) Full Text: Link OpenURL
Miao, Liangying; Liu, Jing; He, Zhiqian \(S\)-shaped connected component of positive solutions for second-order discrete Neumann boundary value problems. (English) Zbl 1478.39017 Open Math. 18, 1658-1666 (2020). MSC: 39A27 39A28 PDF BibTeX XML Cite \textit{L. Miao} et al., Open Math. 18, 1658--1666 (2020; Zbl 1478.39017) Full Text: DOI OpenURL
Wang, Xiuli; Liu, Yuanyuan; Zhai, Qilong The weak Galerkin finite element method for solving the time-dependent Stokes flow. (English) Zbl 1471.65205 Int. J. Numer. Anal. Model. 17, No. 5, 732-745 (2020). MSC: 65N30 65N15 76D07 PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Numer. Anal. Model. 17, No. 5, 732--745 (2020; Zbl 1471.65205) Full Text: Link OpenURL
Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou The weak Galerkin finite element method for solving the time-dependent integro-differential equations. (English) Zbl 1488.65470 Adv. Appl. Math. Mech. 12, No. 1, 164-188 (2020). MSC: 65M60 65M06 65N30 65M15 65M12 35R09 45K05 PDF BibTeX XML Cite \textit{X. Wang} et al., Adv. Appl. Math. Mech. 12, No. 1, 164--188 (2020; Zbl 1488.65470) Full Text: DOI OpenURL
Heidarkhani, Shapour; Salari, Amjad Solutions for difference equations through variational methods. (Persian. English summary) Zbl 1473.39001 JAMM, J. Adv. Math. Model. 10, No. 2, 400-417 (2020). MSC: 39A05 39A27 PDF BibTeX XML Cite \textit{S. Heidarkhani} and \textit{A. Salari}, JAMM, J. Adv. Math. Model. 10, No. 2, 400--417 (2020; Zbl 1473.39001) Full Text: DOI OpenURL
Bergmann, Ronny; Herrmann, Marc; Herzog, Roland; Schmidt, Stephan; Vidal-Núñez, José Discrete total variation of the normal vector field as shape prior with applications in geometric inverse problems. (English) Zbl 07371364 Inverse Probl. 36, No. 5, Article ID 054003, 20 p. (2020). MSC: 65Kxx 94Axx 68Uxx 65Nxx 49Mxx PDF BibTeX XML Cite \textit{R. Bergmann} et al., Inverse Probl. 36, No. 5, Article ID 054003, 20 p. (2020; Zbl 07371364) Full Text: DOI arXiv OpenURL
Howard, Kimberly; Wang, Long; Wang, Min Existence of multiple solutions to a discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1468.39005 Involve 13, No. 4, 673-681 (2020). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{K. Howard} et al., Involve 13, No. 4, 673--681 (2020; Zbl 1468.39005) Full Text: DOI OpenURL