×

Generalized multiscale finite element method for the poroelasticity problem in multicontinuum media. (English) Zbl 1433.74111

Summary: In this paper, we consider a poroelasticity problem in heterogeneous multicontinuum media that is widely used in simulations of the unconventional hydrocarbon reservoirs and geothermal fields. Mathematical model contains a coupled system of equations for pressures in each continuum and effective equation for displacement with volume force sources that are proportional to the sum of the pressure gradients for each continuum. To illustrate the idea of our approach, we consider a dual continuum background model with discrete fracture networks that can be generalized to a multicontinuum model for poroelasticity problem in complex heterogeneous media. We present a fine grid approximation based on the finite element method and discrete fracture model (DFM) approach for two and three-dimensional formulations. The coarse grid approximation is constructed using the generalized multiscale finite element method (GMsFEM), where we solve local spectral problems for construction of the multiscale basis functions for displacement and pressures in multicontinuum media. We present numerical results for the two and three dimensional model problems in heterogeneous fractured porous media. We investigate relative errors between reference fine grid solution and presented coarse grid approximation using GMsFEM with different numbers of multiscale basis functions. Our results indicate that the proposed method is able to give accurate solutions with few degrees of freedoms.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
74R10 Brittle fracture

Software:

FEniCS; Gmsh; SyFi
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Wu, Yu-Shu; Di, Yuan; Kang, Zhijiang; Fakcharoenphol, Perapon, A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs, J. Pet. Sci. Eng., 78, 1, 13-22 (2011)
[2] Li, Qiuqi; Wang, Yuhe; Vasilyeva, Maria, Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties, J. Comput. Appl. Math., 336, 127-146 (2018) · Zbl 1524.65568
[3] Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe, Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media, J. Nat. Gas Sci. Eng., 48, 65-76 (2017)
[4] Akkutlu, I. Yucel; Fathi, Ebrahim, Multiscale gas transport in shales with local kerogen heterogeneities, SPE J., 17, 04, 1-002 (2012)
[5] Wu, Yu-Shu; Ehlig-Economides, Christine; Qin, Guan; Kang, Zhijang; Zhang, Wangming; Ajayi, Babatunde; Tao, Qingfeng, A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir, Soc. Pet. Eng. (2007)
[6] Barenblatt, G. I.; Zheltov, Iu P.; Kochina, I. N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24, 5, 1286-1303 (1960) · Zbl 0104.21702
[7] Warren, J. E.; Root, P. J.j, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 03, 245-255 (1963)
[8] Arbogast, Todd; Douglas, Jim; Hornung, Ulrich, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21, 4, 823-836 (1990) · Zbl 0698.76106
[9] Kolesov, Alexandr E.; Vabishchevich, Petr N.; Vasilyeva, Maria V., Splitting schemes for poroelasticity and thermoelasticity problems, Comput. Math. Appl., 67, 12, 2185-2198 (2014) · Zbl 1368.74062
[10] Kim, Jihoon, Sequential methods for coupled geomechanics and multiphase flow, Diss. Abstr. Int., 71, 04 (2010)
[11] Martin, Vincent; Jaffré, Jérôme; Roberts, Jean E., Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26, 5, 1667-1691 (2005) · Zbl 1083.76058
[12] Formaggia, Luca; Fumagalli, Alessio; Scotti, Anna; Ruffo, Paolo, A reduced model for darcy’s problem in networks of fractures, ESAIM Math. Model. Numer. Anal., 48, 4, 1089-1116 (2014) · Zbl 1299.76254
[13] D’Angelo, Carlo; Scotti, Anna, A mixed finite element method for darcy flow in fractured porous media with non-matching grids, ESAIM Math. Model. Numer. Anal., 46, 2, 465-489 (2012) · Zbl 1271.76322
[14] D’angelo, Carlo; Quarteroni, Alfio, On the coupling of 1d and 3d diffusion-reaction equations: application to tissue perfusion problems, Math. Models Methods Appl. Sci., 18, 08, 1481-1504 (2008) · Zbl 1359.35200
[15] Lee, Seong H.; Lough, M. F.; Jensen, C. L., Hierarchical modeling of flow in naturally fractured formations with multiple length scales, Water Resour. Res., 37, 3, 443-455 (2001)
[16] Li, Liyong; Lee, Seong Hee, Efficient field-scale simulation for black oil in a naturally fractured reservoir via discrete fracture networks and homogenized media, (International Oil & Gas Conference and Exhibition in China (2006), Society of Petroleum Engineers)
[17] Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe, Multiscale model reduction for shale gas transport in poroelastic fractured media, J. Comput. Phys., 353, 356-376 (2018) · Zbl 1380.76032
[18] Li, Liyong; Lee, Seong H., Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 04, 750-758 (2008)
[19] Karimi-Fard, Mohammad; Durlofsky, Luis J.; Aziz, Khalid, An efficient discrete fracture model applicable for general purpose reservoir simulators, (SPE Reservoir Simulation Symposium (2003), Society of Petroleum Engineers)
[20] Tene, Matei; Al Kobaisi, M. S.; Hajibeygi, H., Algebraic multiscale solver for flow in heterogeneous fractured porous media, (SPE Reservoir Simulation Symposium (2015), Society of Petroleum Engineers)
[21] Efendiev, Y.; Galvis, J.; Hou, T., Generalized multiscale finite element methods, J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[22] Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95 (2016) · Zbl 1349.76191
[23] Efendiev, Y.; Hou, T., Multiscale finite element methods: Theory and applications, (Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (2009), Springer: Springer New York) · Zbl 1163.65080
[24] Jenny, Patrick; Lee, Seong H.; Tchelepi, Hamdi A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., 3, 1, 50-64 (2005) · Zbl 1160.76372
[25] Lunati, Ivan; Jenny, Patrick, Multiscale finite-volume method for compressible multiphase flow in porous media, J. Comput. Phys., 216, 2, 616-636 (2006) · Zbl 1220.76049
[26] Hajibeygi, Hadi; Bonfigli, Giuseppe; Hesse, Marc Andre; Jenny, Patrick, Iterative multiscale finite-volume method, J. Comput. Phys., 227, 19, 8604-8621 (2008) · Zbl 1151.65091
[27] Hajibeygi, H.; Kavounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 24, 8729-8743 (2011) · Zbl 1370.76095
[28] Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi, Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (f-ams), J. Comput. Phys., 321, 819-845 (2016) · Zbl 1349.76394
[29] Castelletto, Nicola; Klevtsov, Sergey; Hajibeygi, Hadi; Tchelepi, Hamdi A., Multiscale two-stage solver for biot’s poroelasticity equations in subsurface media, Comput. Geosci., 1-18 (2018) · Zbl 1414.76053
[30] Efendiev, Yalchin; Lee, Seong; Li, Guanglian; Yao, Jun; Zhang, Na, Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method, GEM-Int. J. Geomath., 6, 2, 141-162 (2015) · Zbl 1338.76052
[31] Akkutlu, I. Y.; Efendiev, Yalchin; Vasilyeva, Maria, Multiscale model reduction for shale gas transport in fractured media, Comput. Geosci., 1-21 (2015) · Zbl 1391.76714
[32] Brown, Donald L.; Vasilyeva, Maria, A generalized multiscale finite element method for poroelasticity problems i: linear problems, J. Comput. Appl. Math., 294, 372-388 (2016) · Zbl 1330.74151
[33] Brown, Donald L.; Vasilyeva, Maria, A generalized multiscale finite element method for poroelasticity problems ii: Nonlinear coupling, J. Comput. Appl. Math., 297, 132-146 (2016) · Zbl 1330.74152
[34] Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat; Vasilyeva, Maria; Wang, Yating, Non-local multi-continua upscaling for flows in heterogeneous fractured media, J. Comput. Phys., 372, 22-34 (2018) · Zbl 1415.76449
[35] Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat, Constraint energy minimizing generalized multiscale finite element method, Comput. Methods Appl. Mech. Engrg., 339, 298-319 (2018) · Zbl 1405.76049
[36] Vasilyeva, Maria; Chung, Eric T.; Efendiev, Yalchin; Kim, Jihoon, Constrained energy minimization based upscaling for coupled flow and mechanics, J. Comput. Phys., 376, 660-674 (2019) · Zbl 1416.76163
[37] Vasilyeva, Maria; Chung, Eric T.; Cheung, Siu Wun; Wang, Yating; Prokopev, Georgy, Nonlocal multicontinua upscaling for multicontinua flow problems in fractured porous media, J. Comput. Appl. Math., 355, 258-267 (2019) · Zbl 1432.76181
[38] Tyrylgin, A.; Vasilyeva, M.; Zhang, Q.; Spiridonov, D.; Alekseev, V., Mathematical modeling of the fluid flow and geo-mechanics in the fractured porous media using generalized multiscale finite element method, AIP Conf. Proc., 2025, 1, Article 100009 pp. (2018)
[39] Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe, Multiscale model reduction for shale gas transport in poroelastic fractured media, J. Comput. Phys., 353, 356-376 (2018) · Zbl 1380.76032
[40] Vasilyeva, Maria; Chung, Eric T.; Efendiev, Yalchin; Kim, Jihoon, Constrained energy minimization based upscaling for coupled flow and mechanics (2018), arXiv preprint arXiv:1805.09382 · Zbl 1416.76163
[41] Geuzaine, Christophe; Remacle, Jean-François, Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[42] Logg, Anders; Mardal, Kent-Andre; Wells, Garth, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media · Zbl 1247.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.