Dong, Bozhang; Nie, Tianyang; Wu, Zhen A maximum principle for discrete-time stochastic optimal control problem with delay. (English) Zbl 07765059 Syst. Control Lett. 181, Article ID 105631, 9 p. (2023). MSC: 93-XX PDF BibTeX XML Cite \textit{B. Dong} et al., Syst. Control Lett. 181, Article ID 105631, 9 p. (2023; Zbl 07765059) Full Text: DOI
Ghoul, Abdelhak; Hafayed, Mokhtar; Lakhdari, Imad Eddine; Meherrem, Shahlar Pointwise second-order necessary conditions for stochastic optimal control with jump diffusions. (English) Zbl 07758090 Commun. Math. Stat. 11, No. 4, 741-766 (2023). MSC: 93E20 60J74 60H30 PDF BibTeX XML Cite \textit{A. Ghoul} et al., Commun. Math. Stat. 11, No. 4, 741--766 (2023; Zbl 07758090) Full Text: DOI
Fu, Kang; Hu, Hongling; Pan, Kejia A sixth order quasi-compact finite difference method for Helmholtz equations with variable wave numbers. (English) Zbl 07741233 Appl. Math. Lett. 146, Article ID 108805, 9 p. (2023). MSC: 65N06 65N12 65H10 65F10 35J05 78A40 35Q60 PDF BibTeX XML Cite \textit{K. Fu} et al., Appl. Math. Lett. 146, Article ID 108805, 9 p. (2023; Zbl 07741233) Full Text: DOI
Knobloch, Petr An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes. (English) Zbl 07736700 Numer. Algorithms 94, No. 2, 547-580 (2023). MSC: 65N30 65H10 65N12 76V05 76R50 76M10 35Q35 PDF BibTeX XML Cite \textit{P. Knobloch}, Numer. Algorithms 94, No. 2, 547--580 (2023; Zbl 07736700) Full Text: DOI arXiv
Jha, Abhinav; John, Volker; Knobloch, Petr Adaptive grids in the context of algebraic stabilizations for convection-diffusion-reaction equations. (English) Zbl 07735425 SIAM J. Sci. Comput. 45, No. 4, B564-B589 (2023). MSC: 65N12 65N30 PDF BibTeX XML Cite \textit{A. Jha} et al., SIAM J. Sci. Comput. 45, No. 4, B564--B589 (2023; Zbl 07735425) Full Text: DOI arXiv
Choquet, Catherine; Comte, Eloïse Optimal control of lake eutrophication. (English) Zbl 1521.35173 J. Math. Anal. Appl. 528, No. 2, Article ID 127528, 19 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q92 92D40 86A05 49S05 49K40 49M25 49J20 35K55 35D30 35A01 35A02 35B50 PDF BibTeX XML Cite \textit{C. Choquet} and \textit{E. Comte}, J. Math. Anal. Appl. 528, No. 2, Article ID 127528, 19 p. (2023; Zbl 1521.35173) Full Text: DOI
Ye, Qihao; Tian, Xiaochuan Monotone meshfree methods for linear elliptic equations in non-divergence form via nonlocal relaxation. (English) Zbl 07730748 J. Sci. Comput. 96, No. 3, Paper No. 85, 33 p. (2023); correction ibid. 97, No. 2, Paper No. 46, 1 p. (2023). MSC: 65N06 65N12 65K10 35B50 35J15 65R20 35J70 45A05 PDF BibTeX XML Cite \textit{Q. Ye} and \textit{X. Tian}, J. Sci. Comput. 96, No. 3, Paper No. 85, 33 p. (2023; Zbl 07730748) Full Text: DOI arXiv
Lin, Lei; Lv, Jun-liang; Yue, Jing-yan; Yuan, Guang-wei Mesh conditions of the preserving-maximum-principle linear finite volume element method for anisotropic diffusion-convection-reaction equations. (English) Zbl 1518.65122 Acta Math. Appl. Sin., Engl. Ser. 39, No. 3, 707-732 (2023). MSC: 65N08 65N30 65N50 PDF BibTeX XML Cite \textit{L. Lin} et al., Acta Math. Appl. Sin., Engl. Ser. 39, No. 3, 707--732 (2023; Zbl 1518.65122) Full Text: DOI
Feng, Qiwei; Han, Bin; Minev, Peter Compact 9-point finite difference methods with high accuracy order and/or M-matrix property for elliptic cross-interface problems. (English) Zbl 1516.65114 J. Comput. Appl. Math. 428, Article ID 115151, 25 p. (2023). MSC: 65N06 35J15 76S05 41A58 PDF BibTeX XML Cite \textit{Q. Feng} et al., J. Comput. Appl. Math. 428, Article ID 115151, 25 p. (2023; Zbl 1516.65114) Full Text: DOI arXiv
Yang, Zheng; Zeng, Fanhai A linearly stabilized convolution quadrature method for the time-fractional Allen-Cahn equation. (English) Zbl 07708917 Appl. Math. Lett. 144, Article ID 108698, 8 p. (2023). MSC: 65Mxx 35Rxx 65Nxx PDF BibTeX XML Cite \textit{Z. Yang} and \textit{F. Zeng}, Appl. Math. Lett. 144, Article ID 108698, 8 p. (2023; Zbl 07708917) Full Text: DOI
Zhang, Guoyu; Huang, Chengming; Alikhanov, Anatoly A.; Yin, Baoli A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen-Cahn equation. (English) Zbl 07708340 J. Sci. Comput. 96, No. 2, Paper No. 39, 21 p. (2023). MSC: 65Mxx 35Qxx 74Axx PDF BibTeX XML Cite \textit{G. Zhang} et al., J. Sci. Comput. 96, No. 2, Paper No. 39, 21 p. (2023; Zbl 07708340) Full Text: DOI arXiv
Cai, Yao-Yuan; Fang, Zhi-Wei; Chen, Hao; Sun, Hai-Wei A fast two-level Strang splitting method for multi-dimensional spatial fractional Allen-Cahn equations with discrete maximum principle. (English) Zbl 1514.65159 East Asian J. Appl. Math. 13, No. 2, 340-360 (2023). MSC: 65N22 35K57 35R11 65F10 PDF BibTeX XML Cite \textit{Y.-Y. Cai} et al., East Asian J. Appl. Math. 13, No. 2, 340--360 (2023; Zbl 1514.65159) Full Text: DOI arXiv
Cai, Yao-Yuan; Sun, Hai-Wei; Tam, Sik-Chung Numerical study of a fast two-level Strang splitting method for spatial fractional Allen-Cahn equations. (English) Zbl 07698931 J. Sci. Comput. 95, No. 3, Paper No. 71, 23 p. (2023). MSC: 65Mxx 35Rxx PDF BibTeX XML Cite \textit{Y.-Y. Cai} et al., J. Sci. Comput. 95, No. 3, Paper No. 71, 23 p. (2023; Zbl 07698931) Full Text: DOI
Scagliotti, Alessandro Deep learning approximation of diffeomorphisms via linear-control systems. (English) Zbl 1516.49032 Math. Control Relat. Fields 13, No. 3, 1226-1257 (2023). MSC: 49N05 49M25 49J45 68T07 49J15 PDF BibTeX XML Cite \textit{A. Scagliotti}, Math. Control Relat. Fields 13, No. 3, 1226--1257 (2023; Zbl 1516.49032) Full Text: DOI arXiv
Krastanov, Mikhail I.; Stefanov, Boyan K. On decision making under uncertainty. (English) Zbl 1521.91072 Georgiev, Ivan (ed.) et al., Numerical methods and applications. 10th international conference, NMA 2022, Borovets, Bulgaria, August 22–26, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13858, 209-220 (2023). MSC: 91B06 49N90 PDF BibTeX XML Cite \textit{M. I. Krastanov} and \textit{B. K. Stefanov}, Lect. Notes Comput. Sci. 13858, 209--220 (2023; Zbl 1521.91072) Full Text: DOI
Zhang, Biao; Yang, Yin An adaptive unconditional maximum principle preserving and energy stability scheme for the space fractional Allen-Cahn equation. (English) Zbl 07692014 Comput. Math. Appl. 139, 28-37 (2023). MSC: 65-XX 82-XX PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Y. Yang}, Comput. Math. Appl. 139, 28--37 (2023; Zbl 07692014) Full Text: DOI
Li, Zhilin; Pan, Kejia High order compact schemes for flux type BCs. (English) Zbl 1516.65115 SIAM J. Sci. Comput. 45, No. 2, A646-A674 (2023). Reviewer: Ljiljana Teofanov (Novi Sad) MSC: 65N06 65N12 65F20 35J30 PDF BibTeX XML Cite \textit{Z. Li} and \textit{K. Pan}, SIAM J. Sci. Comput. 45, No. 2, A646--A674 (2023; Zbl 1516.65115) Full Text: DOI arXiv
Zhang, Biao; Yang, Yin A new linearized maximum principle preserving and energy stability scheme for the space fractional Allen-Cahn equation. (English) Zbl 07676515 Numer. Algorithms 93, No. 1, 179-202 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Y. Yang}, Numer. Algorithms 93, No. 1, 179--202 (2023; Zbl 07676515) Full Text: DOI
Liu, Hailiang; Tian, Xuping Data-driven optimal control of a SEIR model for COVID-19. (English) Zbl 1516.92112 Commun. Pure Appl. Anal. 22, No. 1, 19-39 (2023). MSC: 92D30 49M25 PDF BibTeX XML Cite \textit{H. Liu} and \textit{X. Tian}, Commun. Pure Appl. Anal. 22, No. 1, 19--39 (2023; Zbl 1516.92112) Full Text: DOI arXiv
Zhou, Huifang; Sheng, Zhiqiang; Yuan, Guangwei A finite volume method preserving maximum principle for the conjugate heat transfer problems with general interface conditions. (English) Zbl 1515.65231 J. Comput. Math. 41, No. 3, 345-369 (2023). MSC: 65M08 35K59 PDF BibTeX XML Cite \textit{H. Zhou} et al., J. Comput. Math. 41, No. 3, 345--369 (2023; Zbl 1515.65231) Full Text: DOI
Heidari, Saghar; Azari, Hossein Pricing perpetual American options under regime switching jump diffusion models. (Persian. English summary) Zbl 1508.91560 JAMM, J. Adv. Math. Model. 12, No. 4, 477-493 (2022). MSC: 91G20 60G40 45K05 PDF BibTeX XML Cite \textit{S. Heidari} and \textit{H. Azari}, JAMM, J. Adv. Math. Model. 12, No. 4, 477--493 (2022; Zbl 1508.91560) Full Text: DOI
Sun, Tao; Wang, Zhi; Sun, Hai-Wei; Zhang, Chengjian A sixth-order quasi-compact difference scheme for multidimensional Poisson equations without derivatives of source term. (English) Zbl 1503.65277 J. Sci. Comput. 93, No. 2, Paper No. 45, 27 p. (2022). MSC: 65N06 65N12 PDF BibTeX XML Cite \textit{T. Sun} et al., J. Sci. Comput. 93, No. 2, Paper No. 45, 27 p. (2022; Zbl 1503.65277) Full Text: DOI
Cavalcante, T. M.; Lira Filho, R. J. M.; Souza, A. C. R.; Carvalho, D. K. E.; Lyra, P. R. M. A multipoint flux approximation with a diamond stencil and a non-linear defect correction strategy for the numerical solution of steady state diffusion problems in heterogeneous and anisotropic media satisfying the discrete maximum principle. (English) Zbl 1504.65236 J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022). MSC: 65N06 65N12 76M20 35J05 PDF BibTeX XML Cite \textit{T. M. Cavalcante} et al., J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022; Zbl 1504.65236) Full Text: DOI
Chen, Yinggu; Nie, Tianyang; Wu, Zhen The stochastic maximum principle for relaxed control problem with regime-switching. (English) Zbl 1505.93282 Syst. Control Lett. 169, Article ID 105391, 11 p. (2022). MSC: 93E20 60H30 60J20 PDF BibTeX XML Cite \textit{Y. Chen} et al., Syst. Control Lett. 169, Article ID 105391, 11 p. (2022; Zbl 1505.93282) Full Text: DOI
Belfo, João P.; Aguiar, A. Pedro; Lemos, João M. Convergence of a distributed optimal control coordination method via the small-gain theorem. (English) Zbl 1504.93014 Zattoni, Elena (ed.) et al., 15th European workshop on advanced control and diagnosis, ACD 2019. Proceedings of the workshop, Bologna, Italy, November 21–22, 2019. Cham: Springer. Lect. Notes Control Inf. Sci. – Proc., 385-403 (2022). MSC: 93A16 93C10 49N45 91A80 PDF BibTeX XML Cite \textit{J. P. Belfo} et al., in: 15th European workshop on advanced control and diagnosis, ACD 2019. Proceedings of the workshop, Bologna, Italy, November 21--22, 2019. Cham: Springer. 385--403 (2022; Zbl 1504.93014) Full Text: DOI
Abdolkhaleghzade, S. M.; Effati, S.; Rakhshan, S. A. An efficient design for solving discrete optimal control problem with time-varying multi-delays. (English) Zbl 1502.49027 Iran. J. Numer. Anal. Optim. 12, No. 3, 719-738 (2022). MSC: 49M25 93C55 37N35 PDF BibTeX XML Cite \textit{S. M. Abdolkhaleghzade} et al., Iran. J. Numer. Anal. Optim. 12, No. 3, 719--738 (2022; Zbl 1502.49027) Full Text: DOI
Sheng, Zhiqiang; Yuan, Guangwei Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes. (English) Zbl 1500.65093 Sci. China, Math. 65, No. 11, 2379-2396 (2022). MSC: 65N08 65N12 65N50 76M12 35Q35 PDF BibTeX XML Cite \textit{Z. Sheng} and \textit{G. Yuan}, Sci. China, Math. 65, No. 11, 2379--2396 (2022; Zbl 1500.65093) Full Text: DOI
Song, Yuanzhuo; Wu, Zhen A general maximum principle for progressive optimal stochastic control problems with Markov regime-switching. (English) Zbl 1503.93051 ESAIM, Control Optim. Calc. Var. 28, Paper No. 61, 19 p. (2022). MSC: 93E20 60J20 PDF BibTeX XML Cite \textit{Y. Song} and \textit{Z. Wu}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 61, 19 p. (2022; Zbl 1503.93051) Full Text: DOI
Berlin, L. M.; Galyaev, A. A. Extremum conditions for constrained scalar control of two nonsynchronous oscillators in the time-optimal control problem. (English. Russian original) Zbl 1498.49039 Dokl. Math. 106, No. 1, 286-290 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 86-91 (2022). MSC: 49K30 93C30 93C55 70Q05 PDF BibTeX XML Cite \textit{L. M. Berlin} and \textit{A. A. Galyaev}, Dokl. Math. 106, No. 1, 286--290 (2022; Zbl 1498.49039); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 86--91 (2022) Full Text: DOI
Ji, Shaolin; Peng, Shige; Peng, Ying; Zhang, Xichuan Solving stochastic optimal control problem via stochastic maximum principle with deep learning method. (English) Zbl 1497.49042 J. Sci. Comput. 93, No. 1, Paper No. 30, 28 p. (2022). MSC: 49K45 49M25 68T20 PDF BibTeX XML Cite \textit{S. Ji} et al., J. Sci. Comput. 93, No. 1, Paper No. 30, 28 p. (2022; Zbl 1497.49042) Full Text: DOI arXiv
Chen, Tian; Song, Yuanzhuo; Wu, Zhen The maximum principle for stochastic control problem with Markov chain in progressive structure. (English) Zbl 1498.93773 Syst. Control Lett. 166, Article ID 105303, 7 p. (2022). MSC: 93E20 60J20 60J70 PDF BibTeX XML Cite \textit{T. Chen} et al., Syst. Control Lett. 166, Article ID 105303, 7 p. (2022; Zbl 1498.93773) Full Text: DOI
Dong, Bozhang; Nie, Tianyang; Wu, Zhen Maximum principle for discrete-time stochastic control problem of mean-field type. (English) Zbl 1498.93774 Automatica 144, Article ID 110497, 12 p. (2022). MSC: 93E20 49J40 93C55 39A50 91G10 PDF BibTeX XML Cite \textit{B. Dong} et al., Automatica 144, Article ID 110497, 12 p. (2022; Zbl 1498.93774) Full Text: DOI
Parkash, Om; Singh, Vikramjeet; Sharma, Ratneer A new discrete information model and its applications for the study of contingency tables. (English) Zbl 1494.94024 J. Discrete Math. Sci. Cryptography 25, No. 3, 785-792 (2022). MSC: 94A15 94A17 PDF BibTeX XML Cite \textit{O. Parkash} et al., J. Discrete Math. Sci. Cryptography 25, No. 3, 785--792 (2022; Zbl 1494.94024) Full Text: DOI
Shen, Jie; Zhang, Xiangxiong Discrete maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation. (English) Zbl 1489.65124 Commun. Math. Sci. 20, No. 5, 1409-1436 (2022). MSC: 65M06 65M12 65M60 PDF BibTeX XML Cite \textit{J. Shen} and \textit{X. Zhang}, Commun. Math. Sci. 20, No. 5, 1409--1436 (2022; Zbl 1489.65124) Full Text: DOI arXiv
Bouaicha, Nour El Houda; Chighoub, Farid; Alia, Ishak; Sohail, Ayesha Conditional LQ time-inconsistent Markov-switching stochastic optimal control problem for diffusion with jumps. (English) Zbl 1492.93193 Mod. Stoch., Theory Appl. 9, No. 2, 157-205 (2022). MSC: 93E20 49N10 60J74 PDF BibTeX XML Cite \textit{N. E. H. Bouaicha} et al., Mod. Stoch., Theory Appl. 9, No. 2, 157--205 (2022; Zbl 1492.93193) Full Text: DOI
Hong, Xue; Qiu, Jing-Mei A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems. (English) Zbl 07540344 J. Comput. Phys. 464, Article ID 111160, 22 p. (2022). MSC: 65Mxx 35Lxx 76Mxx PDF BibTeX XML Cite \textit{X. Hong} and \textit{J.-M. Qiu}, J. Comput. Phys. 464, Article ID 111160, 22 p. (2022; Zbl 07540344) Full Text: DOI arXiv
Dahmen, Nour; Droniou, Jérôme; Rogier, François A cost-effective nonlinear extremum-preserving finite volume scheme for highly anisotropic diffusion on Cartesian grids, with application to radiation belt dynamics. (English) Zbl 07536760 J. Comput. Phys. 463, Article ID 111258, 19 p. (2022). MSC: 65Nxx 35Jxx 65Mxx PDF BibTeX XML Cite \textit{N. Dahmen} et al., J. Comput. Phys. 463, Article ID 111258, 19 p. (2022; Zbl 07536760) Full Text: DOI arXiv
Chen, Hao; Sun, Hai-Wei Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations. (English) Zbl 07525419 Numer. Algorithms 90, No. 2, 749-771 (2022). MSC: 65Mxx 65F10 65L05 65N22 65F15 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H.-W. Sun}, Numer. Algorithms 90, No. 2, 749--771 (2022; Zbl 07525419) Full Text: DOI
Oladipo, Abiodun Tinuoye Generalized discrete probability distribution bounded by generalized Pascal snail domain. (English) Zbl 1499.30141 Afr. Mat. 33, No. 2, Paper No. 51, 7 p. (2022). MSC: 30C45 30C50 30C80 PDF BibTeX XML Cite \textit{A. T. Oladipo}, Afr. Mat. 33, No. 2, Paper No. 51, 7 p. (2022; Zbl 1499.30141) Full Text: DOI
Wu, Zhen; Zhang, Feng Maximum principle for discrete-time stochastic optimal control problem and stochastic game. (English) Zbl 1485.93641 Math. Control Relat. Fields 12, No. 2, 475-493 (2022). MSC: 93E20 93C55 91A15 91G99 PDF BibTeX XML Cite \textit{Z. Wu} and \textit{F. Zhang}, Math. Control Relat. Fields 12, No. 2, 475--493 (2022; Zbl 1485.93641) Full Text: DOI
Hashemi, Mohammad R.; Rossi, Riccardo; Ryzhakov, Pavel B. An enhanced non-oscillatory BFECC algorithm for finite element solution of advective transport problems. (English) Zbl 1507.76193 Comput. Methods Appl. Mech. Eng. 391, Article ID 114576, 24 p. (2022). MSC: 76Rxx 76M10 65M60 PDF BibTeX XML Cite \textit{M. R. Hashemi} et al., Comput. Methods Appl. Mech. Eng. 391, Article ID 114576, 24 p. (2022; Zbl 1507.76193) Full Text: DOI
Wang, Shuai; Yuan, Guangwei Discrete strong extremum principles for finite element solutions of diffusion problems with nonlinear corrections. (English) Zbl 1483.65193 Appl. Numer. Math. 174, 1-16 (2022). MSC: 65N30 35B50 65N12 35J25 65N50 PDF BibTeX XML Cite \textit{S. Wang} and \textit{G. Yuan}, Appl. Numer. Math. 174, 1--16 (2022; Zbl 1483.65193) Full Text: DOI
Hofmann, S.; Borzì, A. A sequential quadratic Hamiltonian algorithm for training explicit RK neural networks. (English) Zbl 1480.49004 J. Comput. Appl. Math. 405, Article ID 113943, 17 p. (2022). MSC: 49J15 49K15 49M05 65K10 92B20 68T05 PDF BibTeX XML Cite \textit{S. Hofmann} and \textit{A. Borzì}, J. Comput. Appl. Math. 405, Article ID 113943, 17 p. (2022; Zbl 1480.49004) Full Text: DOI
Wang, Jiangfu; Sheng, Zhiqiang; Yuan, Guangwei A vertex-centered finite volume scheme preserving the discrete maximum principle for anisotropic and discontinuous diffusion equations. (English) Zbl 1498.65191 J. Comput. Appl. Math. 402, Article ID 113785, 19 p. (2022). Reviewer: Abdellatif Bourhim (Syracuse) MSC: 65N08 35B09 35B50 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Comput. Appl. Math. 402, Article ID 113785, 19 p. (2022; Zbl 1498.65191) Full Text: DOI
Zhou, Huifang; Wang, Xiuli; Jia, Jiwei Discrete maximum principle for the weak Galerkin method on triangular and rectangular meshes. (English) Zbl 1477.65252 J. Comput. Appl. Math. 402, Article ID 113784, 22 p. (2022). MSC: 65N30 65N50 35J15 PDF BibTeX XML Cite \textit{H. Zhou} et al., J. Comput. Appl. Math. 402, Article ID 113784, 22 p. (2022; Zbl 1477.65252) Full Text: DOI
Ghosh, Abhik; Shreya, Preety; Basu, Banasri Maximum entropy framework for a universal rank order distribution with socio-economic applications. (English) Zbl 07573980 Physica A 563, Article ID 125433, 12 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{A. Ghosh} et al., Physica A 563, Article ID 125433, 12 p. (2021; Zbl 07573980) Full Text: DOI arXiv
Heidari, S.; Azari, H. A numerical method for pricing perpetual American options under regime switching jump diffusion models. (English) Zbl 1480.91315 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 143-163 (2021). MSC: 91G60 65M06 65M32 91G20 60H40 PDF BibTeX XML Cite \textit{S. Heidari} and \textit{H. Azari}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 143--163 (2021; Zbl 1480.91315) Full Text: Link
Gute, Amanda; Li, Xingjie Helen Maximum principle preserving finite difference scheme for 1-D nonlocal-to-local diffusion problems. (English) Zbl 1507.65139 Results Appl. Math. 12, Article ID 100211, 16 p. (2021). MSC: 65M06 65N06 41A58 65M12 35B50 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{A. Gute} and \textit{X. H. Li}, Results Appl. Math. 12, Article ID 100211, 16 p. (2021; Zbl 1507.65139) Full Text: DOI arXiv
Ghilani, Mustapha; Quenjel, El Houssaine; Rhoudaf, Mohamed Numerical analysis of a stable finite volume scheme for a generalized thermistor model. (English) Zbl 1473.65139 Comput. Methods Appl. Math. 21, No. 1, 69-87 (2021). MSC: 65M08 65M12 35K65 PDF BibTeX XML Cite \textit{M. Ghilani} et al., Comput. Methods Appl. Math. 21, No. 1, 69--87 (2021; Zbl 1473.65139) Full Text: DOI
Wang, Jiangfu; Sheng, Zhiqiang; Yuan, Guangwei A finite volume scheme preserving maximum principle with cell-centered and vertex unknowns for diffusion equations on distorted meshes. (English) Zbl 1508.65151 Appl. Math. Comput. 398, Article ID 125989, 22 p. (2021). MSC: 65N08 35J05 PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Comput. 398, Article ID 125989, 22 p. (2021; Zbl 1508.65151) Full Text: DOI
Nguyen, Son L.; Yin, George; Nguyen, Dung T. A general stochastic maximum principle for mean-field controls with regime switching. (English) Zbl 1475.60140 Appl. Math. Optim. 84, No. 3, 3255-3294 (2021). MSC: 60J25 60J27 60J60 93E20 37N35 37N40 PDF BibTeX XML Cite \textit{S. L. Nguyen} et al., Appl. Math. Optim. 84, No. 3, 3255--3294 (2021; Zbl 1475.60140) Full Text: DOI
Feng, Jundong; Zhou, Yingcong; Hou, Tianliang A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen-Cahn equations. (English) Zbl 07410047 Appl. Math. Lett. 118, Article ID 107179, 8 p. (2021). MSC: 65M06 65M12 65M15 65M50 65N06 PDF BibTeX XML Cite \textit{J. Feng} et al., Appl. Math. Lett. 118, Article ID 107179, 8 p. (2021; Zbl 07410047) Full Text: DOI
Bettiol, Piernicola; Bourdin, Loïc Pontryagin maximum principle for state constrained optimal sampled-data control problems on time scales. (English) Zbl 1470.49045 ESAIM, Control Optim. Calc. Var. 27, Paper No. 51, 36 p. (2021). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49J35 26E70 34H05 34K35 34N05 39A12 PDF BibTeX XML Cite \textit{P. Bettiol} and \textit{L. Bourdin}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 51, 36 p. (2021; Zbl 1470.49045) Full Text: DOI
Rilwan, Jewaidu; Kumam, Poom; Hernández-Lerma, Onésimo Potential difference games and applications. (English) Zbl 1464.91013 J. Difference Equ. Appl. 27, No. 3, 342-353 (2021). MSC: 91A14 91A10 91A50 49N70 PDF BibTeX XML Cite \textit{J. Rilwan} et al., J. Difference Equ. Appl. 27, No. 3, 342--353 (2021; Zbl 1464.91013) Full Text: DOI
Yanbarisov, Ruslan M.; Nikitin, Kirill D. Projection-based monotone embedded discrete fracture method for flow and transport in porous media. (English) Zbl 1464.76074 J. Comput. Appl. Math. 392, Article ID 113484, 14 p. (2021). MSC: 76M12 76S05 PDF BibTeX XML Cite \textit{R. M. Yanbarisov} and \textit{K. D. Nikitin}, J. Comput. Appl. Math. 392, Article ID 113484, 14 p. (2021; Zbl 1464.76074) Full Text: DOI
Chen, Hao; Sun, Hai-Wei A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations. (English) Zbl 1466.65099 J. Sci. Comput. 87, No. 1, Paper No. 30, 25 p. (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65N06 65F10 65F15 65L05 65F60 65M15 15B05 35Q53 35R11 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H.-W. Sun}, J. Sci. Comput. 87, No. 1, Paper No. 30, 25 p. (2021; Zbl 1466.65099) Full Text: DOI
Aleja, D.; Molina-Meyer, M. Nonlinear finite elements: sub- and supersolutions for the heterogeneous logistic equation. (English) Zbl 1458.65097 J. Differ. Equations 278, 189-219 (2021). MSC: 65N30 65N12 35J25 35B50 PDF BibTeX XML Cite \textit{D. Aleja} and \textit{M. Molina-Meyer}, J. Differ. Equations 278, 189--219 (2021; Zbl 1458.65097) Full Text: DOI
Liu, Yujie; Wang, Junping A discrete maximum principle for the weak Galerkin finite element method on nonuniform rectangular partitions. (English) Zbl 07771403 Numer. Methods Partial Differ. Equations 36, No. 3, 552-578 (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Wang}, Numer. Methods Partial Differ. Equations 36, No. 3, 552--578 (2020; Zbl 07771403) Full Text: DOI arXiv
Song, Teng; Liu, Bin A maximum principle for fully coupled controlled forward-backward stochastic difference systems of mean-field type. (English) Zbl 1482.60081 Adv. Difference Equ. 2020, Paper No. 188, 24 p. (2020). MSC: 60H10 93E20 49K45 49N10 60G42 91A16 PDF BibTeX XML Cite \textit{T. Song} and \textit{B. Liu}, Adv. Difference Equ. 2020, Paper No. 188, 24 p. (2020; Zbl 1482.60081) Full Text: DOI
Adewole, Matthew O. Finite element method for second order nonlinear parabolic interface problems. (English) Zbl 1476.65232 J. Niger. Math. Soc. 39, No. 1, 135-153 (2020). MSC: 65M60 65M12 35B50 PDF BibTeX XML Cite \textit{M. O. Adewole}, J. Niger. Math. Soc. 39, No. 1, 135--153 (2020; Zbl 1476.65232) Full Text: Link
Lin, Jia-Jiang; Luo, Xiong-Lin Hybrid parametric minimum principle. (English) Zbl 1479.49039 Nonlinear Anal., Hybrid Syst. 37, Article ID 100902, 19 p. (2020). MSC: 49K15 93C65 PDF BibTeX XML Cite \textit{J.-J. Lin} and \textit{X.-L. Luo}, Nonlinear Anal., Hybrid Syst. 37, Article ID 100902, 19 p. (2020; Zbl 1479.49039) Full Text: DOI
Mardanov, Misir J.; Malik, Samin T. Discrete maximum principle in systems with a delay in control. (English) Zbl 1465.49018 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 2, 284-293 (2020). MSC: 49K15 34H05 49M25 PDF BibTeX XML Cite \textit{M. J. Mardanov} and \textit{S. T. Malik}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 2, 284--293 (2020; Zbl 1465.49018) Full Text: DOI
Archibald, Richard; Bao, Feng; Yong, Jiongmin A stochastic gradient descent approach for stochastic optimal control. (English) Zbl 07340269 East Asian J. Appl. Math. 10, No. 4, 635-658 (2020). MSC: 65K10 49M37 49M25 PDF BibTeX XML Cite \textit{R. Archibald} et al., East Asian J. Appl. Math. 10, No. 4, 635--658 (2020; Zbl 07340269) Full Text: DOI
Ruszczyński, Andrzej; Yao, Jianing A dual method for evaluation of dynamic risk in diffusion processes. (English) Zbl 1458.60090 ESAIM, Control Optim. Calc. Var. 26, Paper No. 96, 20 p. (2020). MSC: 60J60 60H35 49L20 49M25 49M29 PDF BibTeX XML Cite \textit{A. Ruszczyński} and \textit{J. Yao}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 96, 20 p. (2020; Zbl 1458.60090) Full Text: DOI arXiv
Zhuravlev, V. G. A local algorithm for constructing derived tilings of the two-dimensional torus. (English. Russian original) Zbl 1479.52032 J. Math. Sci., New York 249, No. 1, 54-78 (2020); translation from Zap. Nauchn. Semin. POMI 479, 85-120 (2019). Reviewer: Christian Richter (Jena) MSC: 52C20 05B45 52C45 PDF BibTeX XML Cite \textit{V. G. Zhuravlev}, J. Math. Sci., New York 249, No. 1, 54--78 (2020; Zbl 1479.52032); translation from Zap. Nauchn. Semin. POMI 479, 85--120 (2019) Full Text: DOI
Zhou, Huifang; Sheng, Zhiqiang; Yuan, Guangwei A finite volume method preserving maximum principle for the diffusion equations with imperfect interface. (English) Zbl 1451.65124 Appl. Numer. Math. 158, 314-335 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 35K59 65N30 35J25 35R05 74M15 74S10 PDF BibTeX XML Cite \textit{H. Zhou} et al., Appl. Numer. Math. 158, 314--335 (2020; Zbl 1451.65124) Full Text: DOI
Liao, Hong-lin; Tang, Tao; Zhou, Tao A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. (English) Zbl 1440.65116 J. Comput. Phys. 414, Article ID 109473, 15 p. (2020). MSC: 65M22 35R11 65M50 65M15 PDF BibTeX XML Cite \textit{H.-l. Liao} et al., J. Comput. Phys. 414, Article ID 109473, 15 p. (2020; Zbl 1440.65116) Full Text: DOI arXiv
Liao, Hong-lin; Tang, Tao; Zhou, Tao On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation. (English) Zbl 1447.65083 SIAM J. Numer. Anal. 58, No. 4, 2294-2314 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M12 65L06 35K58 35B25 PDF BibTeX XML Cite \textit{H.-l. Liao} et al., SIAM J. Numer. Anal. 58, No. 4, 2294--2314 (2020; Zbl 1447.65083) Full Text: DOI arXiv
Zhao, Shubo; Xiao, Xufeng; Zhao, Jianping; Feng, Xinlong A Petrov-Galerkin finite element method for simulating chemotaxis models on stationary surfaces. (English) Zbl 1452.92011 Comput. Math. Appl. 79, No. 11, 3189-3205 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35Q92 65N30 PDF BibTeX XML Cite \textit{S. Zhao} et al., Comput. Math. Appl. 79, No. 11, 3189--3205 (2020; Zbl 1452.92011) Full Text: DOI
Krieg, David; Wegert, Elias Domain-filling circle packings. (English) Zbl 1444.52010 Beitr. Algebra Geom. 61, No. 3, 381-418 (2020). MSC: 52C26 30C80 30D40 05C10 PDF BibTeX XML Cite \textit{D. Krieg} and \textit{E. Wegert}, Beitr. Algebra Geom. 61, No. 3, 381--418 (2020; Zbl 1444.52010) Full Text: DOI Link
Bonilla, Jesús; Badia, Santiago Monotonicity-preserving finite element schemes with adaptive mesh refinement for hyperbolic problems. (English) Zbl 1437.65134 J. Comput. Phys. 416, Article ID 109522, 22 p. (2020). MSC: 65M60 35L65 76M10 65M50 PDF BibTeX XML Cite \textit{J. Bonilla} and \textit{S. Badia}, J. Comput. Phys. 416, Article ID 109522, 22 p. (2020; Zbl 1437.65134) Full Text: DOI arXiv
Li, Hao; Zhang, Xiangxiong On the monotonicity and discrete maximum principle of the finite difference implementation of \(C^0\)-\(Q^2\) finite element method. (English) Zbl 1451.65200 Numer. Math. 145, No. 2, 437-472 (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N06 65N12 65D32 35J25 PDF BibTeX XML Cite \textit{H. Li} and \textit{X. Zhang}, Numer. Math. 145, No. 2, 437--472 (2020; Zbl 1451.65200) Full Text: DOI arXiv
Hou, Tianliang; Leng, Haitao Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations. (English) Zbl 07206970 Appl. Math. Lett. 102, Article ID 106150, 9 p. (2020). MSC: 65M06 65M12 65M15 35Q35 65M20 65N06 65L06 PDF BibTeX XML Cite \textit{T. Hou} and \textit{H. Leng}, Appl. Math. Lett. 102, Article ID 106150, 9 p. (2020; Zbl 07206970) Full Text: DOI
Ji, Bingquan; Liao, Hong-lin; Zhang, Luming Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation. (English) Zbl 1437.35683 Adv. Comput. Math. 46, No. 2, Paper No. 37, 24 p. (2020). MSC: 35Q99 65M06 65M12 65M15 74A50 26A33 35R11 PDF BibTeX XML Cite \textit{B. Ji} et al., Adv. Comput. Math. 46, No. 2, Paper No. 37, 24 p. (2020; Zbl 1437.35683) Full Text: DOI arXiv
Assif P. K., Mishal; Chatterjee, Debasish; Banavar, Ravi A simple proof of the discrete time geometric Pontryagin maximum principle on smooth manifolds. (English) Zbl 1442.49023 Automatica 114, Article ID 108791, 7 p. (2020). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49K21 49K27 PDF BibTeX XML Cite \textit{M. Assif P. K.} et al., Automatica 114, Article ID 108791, 7 p. (2020; Zbl 1442.49023) Full Text: DOI arXiv
Rojas-Medar, Marko Antonio; Isoton, Camila; Batista Dos Santos, Lucelina; Vivanco-Orellana, Violeta Optimality conditions for discrete-time control problems. (English) Zbl 1436.93079 J. Optim. Theory Appl. 185, No. 1, 115-133 (2020). MSC: 93C55 49K99 90C46 PDF BibTeX XML Cite \textit{M. A. Rojas-Medar} et al., J. Optim. Theory Appl. 185, No. 1, 115--133 (2020; Zbl 1436.93079) Full Text: DOI
Lukyanov, Alexander A.; Vuik, Cornelis A stable SPH discretization of the elliptic operator with heterogeneous coefficients. (English) Zbl 1433.65337 J. Comput. Appl. Math. 374, Article ID 112745, 32 p. (2020). MSC: 65N75 PDF BibTeX XML Cite \textit{A. A. Lukyanov} and \textit{C. Vuik}, J. Comput. Appl. Math. 374, Article ID 112745, 32 p. (2020; Zbl 1433.65337) Full Text: DOI arXiv
Dellacherie, Claude; Martínez, Servet; San Martín, Jaime Inverse \(M\)-matrix, a new characterization. (English) Zbl 1434.15006 Linear Algebra Appl. 595, 182-191 (2020). MSC: 15A09 15B51 60J10 PDF BibTeX XML Cite \textit{C. Dellacherie} et al., Linear Algebra Appl. 595, 182--191 (2020; Zbl 1434.15006) Full Text: DOI arXiv
He, Dongdong; Pan, Kejia; Hu, Hongling A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. (English) Zbl 1434.65117 Appl. Numer. Math. 151, 44-63 (2020). MSC: 65M06 35R11 35Q56 65M12 PDF BibTeX XML Cite \textit{D. He} et al., Appl. Numer. Math. 151, 44--63 (2020; Zbl 1434.65117) Full Text: DOI
Chen, Chiun-Chuan; Hsiao, Ting-Yang; Hung, Li-Chang Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. (English) Zbl 1429.39003 Discrete Contin. Dyn. Syst. 40, No. 1, 153-187 (2020). MSC: 39A12 35B50 PDF BibTeX XML Cite \textit{C.-C. Chen} et al., Discrete Contin. Dyn. Syst. 40, No. 1, 153--187 (2020; Zbl 1429.39003) Full Text: DOI
Mardanov, Misir J.; Melikov, Telman K.; Malik, Samin T.; Malikov, Kamran First- and second-order necessary conditions with respect to components for discrete optimal control problems. (English) Zbl 1430.49017 J. Comput. Appl. Math. 364, Article ID 112342, 16 p. (2020). MSC: 49K10 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., J. Comput. Appl. Math. 364, Article ID 112342, 16 p. (2020; Zbl 1430.49017) Full Text: DOI Link
Zheng, Xiaoming; Sweidan, Mohye Analysis of ghost-fluid method with cubic extrapolation for two-point boundary value problem. (English) Zbl 1515.65273 Int. J. Numer. Methods Appl. 18, No. 1, 19-58 (2019). MSC: 65N06 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{M. Sweidan}, Int. J. Numer. Methods Appl. 18, No. 1, 19--58 (2019; Zbl 1515.65273) Full Text: DOI
Linderman, George C.; Steinerberger, Stefan Clustering with t-SNE, provably. (English) Zbl 1499.60259 SIAM J. Math. Data Sci. 1, No. 2, 313-332 (2019). MSC: 60J20 35K55 60J60 PDF BibTeX XML Cite \textit{G. C. Linderman} and \textit{S. Steinerberger}, SIAM J. Math. Data Sci. 1, No. 2, 313--332 (2019; Zbl 1499.60259) Full Text: DOI arXiv
Gao, Yanni; Wang, Shuai; Yuan, Guangwei; Hang, Xudeng A nonlinear finite volume element method satisfying maximum principle for anisotropic diffusion problems on arbitrary triangular meshes. (English) Zbl 1473.65262 Commun. Comput. Phys. 26, No. 1, 135-159 (2019). MSC: 65N08 65N12 65N15 PDF BibTeX XML Cite \textit{Y. Gao} et al., Commun. Comput. Phys. 26, No. 1, 135--159 (2019; Zbl 1473.65262) Full Text: DOI
Chang, Lina; Sheng, Zhiqiang; Yuan, Guangwei An improvement of the two-point flux approximation scheme on polygonal meshes. (English) Zbl 1452.65305 J. Comput. Phys. 392, 187-204 (2019). MSC: 65N08 65N50 PDF BibTeX XML Cite \textit{L. Chang} et al., J. Comput. Phys. 392, 187--204 (2019; Zbl 1452.65305) Full Text: DOI
Tamminen, Eero V. Strong Lagrange duality and the maximum principle for nonlinear discrete time optimal control problems. (English) Zbl 1442.49044 ESAIM, Control Optim. Calc. Var. 25, Paper No. 20, 13 p. (2019). MSC: 49N15 49K15 90C46 93C55 PDF BibTeX XML Cite \textit{E. V. Tamminen}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 20, 13 p. (2019; Zbl 1442.49044) Full Text: DOI
Bonilla, Jesús; Badia, Santiago Maximum-principle preserving space-time isogeometric analysis. (English) Zbl 1441.65076 Comput. Methods Appl. Mech. Eng. 354, 422-440 (2019). MSC: 65M60 65D07 65M12 PDF BibTeX XML Cite \textit{J. Bonilla} and \textit{S. Badia}, Comput. Methods Appl. Mech. Eng. 354, 422--440 (2019; Zbl 1441.65076) Full Text: DOI arXiv
Mardanov, M. J.; Melikov, T. K.; Malik, S. T. On the theory of optimal processes in discrete systems. (English. Russian original) Zbl 1433.49028 Math. Notes 106, No. 3, 390-401 (2019); translation from Mat. Zametki 106, No. 3, 409-423 (2019). MSC: 49K15 93C15 93C55 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Math. Notes 106, No. 3, 390--401 (2019; Zbl 1433.49028); translation from Mat. Zametki 106, No. 3, 409--423 (2019) Full Text: DOI
Ibragimov, D. N. On the optimal speed problem for the class of linear autonomous infinite-dimensional discrete-time systems with bounded control and degenerate operator. (English. Russian original) Zbl 1431.93040 Autom. Remote Control 80, No. 3, 393-412 (2019); translation from Avtom. Telemekh. 2019, No. 3, 3-25 (2019). MSC: 93C55 93C05 49N90 93B03 PDF BibTeX XML Cite \textit{D. N. Ibragimov}, Autom. Remote Control 80, No. 3, 393--412 (2019; Zbl 1431.93040); translation from Avtom. Telemekh. 2019, No. 3, 3--25 (2019) Full Text: DOI
Kotpalliwar, Shruti; Paruchuri, Pradyumna; Chatterjee, Debasish; Banavar, Ravi Discrete time optimal control with frequency constraints for non-smooth systems. (English) Zbl 1429.93214 Automatica 107, 493-501 (2019). MSC: 93C55 49N90 PDF BibTeX XML Cite \textit{S. Kotpalliwar} et al., Automatica 107, 493--501 (2019; Zbl 1429.93214) Full Text: DOI arXiv
Hošek, Radim; Volek, Jonáš Discrete advection-diffusion equations on graphs: maximum principle and finite volumes. (English) Zbl 1429.65212 Appl. Math. Comput. 361, 630-644 (2019). MSC: 65M08 34A33 35B50 35R02 39A06 39A12 65M22 65M50 PDF BibTeX XML Cite \textit{R. Hošek} and \textit{J. Volek}, Appl. Math. Comput. 361, 630--644 (2019; Zbl 1429.65212) Full Text: DOI
Nguyen, Anh Dao; Duc, Cam Hai Vo; Thanh, Hai Ong A monotone nonlinear cell-centered finite element method for anisotropic diffusion problems. (English) Zbl 1427.65336 Electron. J. Differ. Equ. 2019, Paper No. 122, 23 p. (2019). MSC: 65N08 65N30 65N12 35J15 PDF BibTeX XML Cite \textit{A. D. Nguyen} et al., Electron. J. Differ. Equ. 2019, Paper No. 122, 23 p. (2019; Zbl 1427.65336) Full Text: Link
Adewole, Matthew O. Approximation of linear hyperbolic interface problems on finite element: some new estimates. (English) Zbl 1429.65222 Appl. Math. Comput. 349, 245-257 (2019). MSC: 65M60 35B50 35L20 65M12 PDF BibTeX XML Cite \textit{M. O. Adewole}, Appl. Math. Comput. 349, 245--257 (2019; Zbl 1429.65222) Full Text: DOI
Chehabi, Hamza; Chakrone, Omar; Chehabi, Mohammed On the antimaximum principle for the discrete \(p\)-Laplacian with sign-changing weight. (English) Zbl 1428.39008 Appl. Math. Comput. 342, 112-117 (2019). MSC: 39A12 PDF BibTeX XML Cite \textit{H. Chehabi} et al., Appl. Math. Comput. 342, 112--117 (2019; Zbl 1428.39008) Full Text: DOI
Wang, Qipeng; Li, Xianjuan Numerical analysis of fractional-in-space Allen-Cahn equation with the logarithmic free energy. (Chinese. English summary) Zbl 1438.65194 J. Fuzhou Univ., Nat. Sci. 47, No. 2, 167-172 (2019). MSC: 65M06 65M15 26A33 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{X. Li}, J. Fuzhou Univ., Nat. Sci. 47, No. 2, 167--172 (2019; Zbl 1438.65194) Full Text: DOI
Gromova, Ekaterina V.; Magnitskaya, Natalya G. Solution of the differential game with hybrid structure. (English) Zbl 1425.91061 Petrosyan, Leon A. (ed.) et al., Contributions to game theory and management. Volume XII. Collected papers presented at the 12th international conference on game theory and management (GTM 2018), St. Petersburg, Russia, June 27–29, 2018. St. Petersburg: St. Petersburg State University. 159-176 (2019). MSC: 91A23 91A12 49N70 PDF BibTeX XML Cite \textit{E. V. Gromova} and \textit{N. G. Magnitskaya}, in: Contributions to game theory and management. Volume XII. Collected papers presented at the 12th international conference on game theory and management (GTM 2018), St. Petersburg, Russia, June 27--29, 2018. St. Petersburg: St. Petersburg State University. 159--176 (2019; Zbl 1425.91061) Full Text: Link
Dhariwal, Gaurav; Jüngel, Ansgar; Zamponi, Nicola Global martingale solutions for a stochastic population cross-diffusion system. (English) Zbl 1422.35186 Stochastic Processes Appl. 129, No. 10, 3792-3820 (2019). MSC: 35R60 60H15 35K57 35Q92 60J10 92D25 PDF BibTeX XML Cite \textit{G. Dhariwal} et al., Stochastic Processes Appl. 129, No. 10, 3792--3820 (2019; Zbl 1422.35186) Full Text: DOI arXiv
Kipka, Robert; Gupta, Rohit The discrete-time geometric maximum principle. (English) Zbl 1420.49028 SIAM J. Control Optim. 57, No. 4, 2939-2961 (2019). MSC: 49K21 49K40 90C30 PDF BibTeX XML Cite \textit{R. Kipka} and \textit{R. Gupta}, SIAM J. Control Optim. 57, No. 4, 2939--2961 (2019; Zbl 1420.49028) Full Text: DOI arXiv
Salgado, Abner J.; Zhang, Wujun Finite element approximation of the Isaacs equation. (English) Zbl 1433.65311 ESAIM, Math. Model. Numer. Anal. 53, No. 2, 351-374 (2019). Reviewer: Ljiljana Teofanov (Novi Sad) MSC: 65N30 65N12 65N15 35J60 35D40 35Q91 35B50 35R09 35B65 91G60 PDF BibTeX XML Cite \textit{A. J. Salgado} and \textit{W. Zhang}, ESAIM, Math. Model. Numer. Anal. 53, No. 2, 351--374 (2019; Zbl 1433.65311) Full Text: DOI arXiv
Yu, Xin; Huang, Jingfang; Liu, Kangsheng Finite element approximations of impulsive optimal control problems for heat equations. (English) Zbl 1416.49031 J. Math. Anal. Appl. 477, No. 1, 250-271 (2019). MSC: 49M25 65M60 35K05 PDF BibTeX XML Cite \textit{X. Yu} et al., J. Math. Anal. Appl. 477, No. 1, 250--271 (2019; Zbl 1416.49031) Full Text: DOI