×

Atomistic insights into dislocation-based mechanisms of void growth and coalescence. (English) Zbl 1270.74012

Summary: One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson’s model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers’) simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.

MSC:

74A45 Theories of fracture and damage
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74R20 Anelastic fracture and damage

Software:

VMD
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Admal, N. C.; Tadmor, E. B., A unified interpretation of stress in molecular systems, Journal of Elasticity, 100, 63-143 (2010) · Zbl 1260.74005
[2] Andersen, O. K., Linear methods in band theory, Physical Review B, 12, 3060-3083 (1975)
[3] Belak, J.; Minich, R., Simulation of void growth at high strain-rate, Materials Research Society Proceedings, 539, 257-261 (1998)
[4] Bringa, E. M.; Lubarda, V. A.; Meyers, M. A., Response to “shear impossibility: comments on ‘Void growth by dislocation emission’ and ‘Void growth in metals: atomistic calculations”’, Scripta Materialia, 63, 148-150 (2010)
[5] Bulatov, V. V.; Wolfer, W. G.; Kumar, M., Shear impossibility: comments on “Void growth by dislocation emission” and “Void growth in metals: atomistic calculations”, Scripta Materialia, 63, 144-147 (2010)
[6] Cuitino, A. M.; Ortiz, M., Ductile fracture by vacancy condensation in fcc single crystals, Acta Metallurgica et Materialia, 44, 427-436 (1996)
[7] Daw, M. S.; Baskes, M. I., Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Physical Review Letters, 50, 1285-1288 (1983)
[8] Daw, M. S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces and other defects in metals, Physical Review B, 29, 6443-6453 (1984)
[9] Dufek, E. J.; Seegmiller, J. C.; Bazito, R. C.; Buttry, D. A., Dioxygen reduction affects surface oxide growth and dissolution on AA2024-T3, Journal of the Electrochemical Society, 154, C458-C464 (2007)
[10] Foiles, S. M.; Daw, M. S.; Baskes, M. I., Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, 33, 7983-7991 (1986)
[11] Fontana, M. G., Corrosion Engineering (1986), McGraw-Hill: McGraw-Hill New York
[12] Gullett, P.M., Wagner, G., Slepoy, A., 2004. Numerical tools for atomistic simulations. Sandia Report, SAND2003-8782, Sandia National Laboratories.; Gullett, P.M., Wagner, G., Slepoy, A., 2004. Numerical tools for atomistic simulations. Sandia Report, SAND2003-8782, Sandia National Laboratories.
[13] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, 99, 2-15 (1977)
[14] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), John Wiley and Sons: John Wiley and Sons New York
[15] Hosford, W. F., Mechanical Behavior of Materials (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1188.74001
[16] Humphrey, W.; Dalke, A.; Schulten, K., VMD—visual molecular dynamics, Journal of Molecular Graphics, 14, 33-38 (1996)
[17] Jang, I.; Burris, D. L.; Dickrell, P. L.; Barry, P. R.; Santos, C.; Perry, S. S.; Phillpot, S. R.; Sinnott, S. B.; Sawyer, W. G., Sliding orientation effects on the tribological properties of polytetrafluoroethylene, Journal of Applied Physics, 102, 123509 (2007)
[18] Kelchner, C. L.; Plimpton, S. J.; Hamilton, J. C., Dislocation nucleation and defect structure during surface indentation, Physical Review B, 58, 11085-11088 (1998)
[19] Li, J.; Krystyn, J.; Vliet, V.; Zhu, T.; Yip, S.; Suresh, S., Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature, 418, 307-310 (2002)
[20] Lubarda, V. A.; Schneider, M. S.; Kalantar, D. H.; Remington, B. R.; Meyers, M. A., Void growth by dislocation emission, Acta Materialia, 52, 1397-1408 (2004)
[21] Lubarda, V. A., Emission of dislocations from nanovoids under combined loading, International Journal of Plasticity, 27, 181-200 (2011)
[22] Marian, J.; Knap, J.; Ortiz, M., Nanovoid cavitation by dislocation emission in aluminum, Physical Review Letters, 93, 165503 (2004)
[23] Mcclintock, F. A.; Argon, A. S.; Backer, S., Mechanical Behavior of Materials (1966), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, MA
[24] Meyers, M. A.; Chawla, K. K., Mechanical Behavior of Materials (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1280.74002
[25] Mishin, Y.; Farkas, D.; Mehl, M. J.; Papaconstantopoulos, D. A., Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, 59, 3393-3407 (1999)
[26] Onck, P. R.; van der Giessen, E., Growth of an initially sharp crack by grain boundary cavitation, Journal of the Mechanics and Physics of Solids, 47, 99-139 (1999) · Zbl 0982.74060
[27] Pei, Q.; Lu, C.; Liu, Z.; Lam, K., Molecular dynamics study on the nanoimprint of Coppor, Journal of Physics D: Applied Physics, 40, 4928-4935 (2007)
[28] Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117, 1-19 (1995) · Zbl 0830.65120
[29] Potirniche, G.; Horstemeyer, M.; Wagner, G.; Gullett, P., A molecular dynamics study of void growth and coalescence in single crystal nickel, International Journal of Plasticity, 22, 257-278 (2006)
[30] Rudd, R. E.; Seppala, E. T.; Dupuy, L. M.; Belak, J., Void coalescence processes quantified through atomistic and multiscale simulation, Journal of Computer-Aided Materials Design, 14, 425-434 (2007)
[31] Rudd, R. E., Void growth in bcc metals simulated with molecular dynamics using the Finnis-Sinclair potential, Philosophical Magazine, 89, 3133-3161 (2009)
[32] Scheyvaerts, F.; Onck, P. R.; Tekogˇlu, C.; Pardoen, T., The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, Journal of the Mechanics and Physics of Solids, 59, 373-397 (2011) · Zbl 1270.74191
[33] Shen, Y-L., On the atomistic simulation of plastic deformation and fracture in crystals, Journal of Materials Research, 19, 973-976 (2004)
[34] Shukla, M. M., The shear bounds of the cubic polycrystal and its experimental shear modulus, Journal of Physics D: Applied Physics, 15, L177-L180 (1982) · Zbl 0989.37063
[35] Strachan, A.; Cagin, T.; Goddard III, W. A., Critical behavior in spallation failure of metals, Physical Review B, 63, 060103 (2001)
[36] Subramaniyan, A. K.; Sun, C., Continuum interpretation of virial stress in molecular simulations, International Journal of Solids and Structures, 45, 4340-4346 (2008) · Zbl 1169.74328
[37] Traiviratana, S.; Bringa, E. M.; Benson, D. J.; Meyers, M. A., Void growth in metals: atomistic calculations, Acta Materialia, 56, 3874-3886 (2008)
[38] Tvergaard, V., Material failure by void growth to coalescence, Advances in Applied Mechanics, 27, 83-151 (1990) · Zbl 0728.73058
[39] Tvergaard, V.; Needleman, A., Effects of nonlocal damage in porous plastic solids, International Journal of Solids and Structures, 32, 1063-1077 (1995) · Zbl 0866.73060
[40] van der Giessen, E.; Tvergaard, V., On cavity nucleation effects at sliding grain boundaries in creeping polycrystals, (Wilshire, B.; Evans, R. W., Proceedings of the Fourth International Conference on “Creep and Fracture of Engineering Materials and Structures” (1990), Pineridge Press: Pineridge Press Swansea), 169-178
[41] Wei, S. H.; Krakauer, H., Local-density-functional calculation of the pressure-induced metallization of base and bate, Physical Review Letters, 55, 1200-1203 (1985)
[42] Wen, J.; Huang, Y.; Hwang, K. C.; Liu, C.; Li, M., The modified Gurson model accounting for the void size effect, International Journal of Plasticity, 21, 381-395 (2005) · Zbl 1114.74380
[43] Zhao, K.J., Chen, C., 2008. Atomistic modeling size dependence of nano-voided Copper yielding under uniaxial tension. In: Advances in Heterogeneous Material Mechanics 2008—Proceedings of the Second International Conference on Heterogeneous Material Mechanics, pp. 338-341.; Zhao, K.J., Chen, C., 2008. Atomistic modeling size dependence of nano-voided Copper yielding under uniaxial tension. In: Advances in Heterogeneous Material Mechanics 2008—Proceedings of the Second International Conference on Heterogeneous Material Mechanics, pp. 338-341.
[44] Zimmerman, J. A.; Kelchner, C. L.; Klein, P. A.; Hamilton, J. C.; Foiles, S. M., Surface step effects on nanoindentation, Physical Review Letters, 87, 165507 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.