Kritzinger, Ralph; Wiart, Jaspar Improved dispersion bounds for modified Fibonacci lattices. (English) Zbl 07316090 J. Complexity 63, Article ID 101522, 15 p. (2021). MSC: 11 52 PDF BibTeX XML Cite \textit{R. Kritzinger} and \textit{J. Wiart}, J. Complexity 63, Article ID 101522, 15 p. (2021; Zbl 07316090) Full Text: DOI
Li, Yanshen; Chong, Kai Leong; Bazyar, Hanieh; Lammertink, Rob G. H.; Lohse, Detlef Universality in microdroplet nucleation during solvent exchange in Hele-Shaw-like channels. (English) Zbl 07315240 J. Fluid Mech. 912, Article ID A35, 17 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Fluid Mech. 912, Article ID A35, 17 p. (2021; Zbl 07315240) Full Text: DOI
Saut, Jean-Claude; Wang, Yuexun Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. (English) Zbl 07314904 Discrete Contin. Dyn. Syst. 41, No. 3, 1133-1155 (2021). MSC: 76B15 76B03 35S30 35A20 PDF BibTeX XML Cite \textit{J.-C. Saut} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst. 41, No. 3, 1133--1155 (2021; Zbl 07314904) Full Text: DOI
Bodnár, Tomáš (ed.); Galdi, Giovanni P. (ed.); Nečasová, Šárka (ed.) Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27–31, 2018 (to appear). (English) Zbl 07312849 Advances in Mathematical Fluid Mechanics. Basel: Birkhäuser/Springer (ISBN 978-3-030-67844-9/hbk; 978-3-030-67845-6/ebook). viii, 359 p. (2021). MSC: 76-06 76B15 00B25 PDF BibTeX XML Cite \textit{T. Bodnár} (ed.) et al., Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27--31, 2018 (to appear). Basel: Birkhäuser/Springer (2021; Zbl 07312849) Full Text: DOI
Chiriţă, Stan; Arusoaie, Andreea Thermoelastic waves in double porosity materials. (English) Zbl 07312428 Eur. J. Mech., A, Solids 86, Article ID 104177, 12 p. (2021). MSC: 74F05 74F10 74J05 74J15 74L05 PDF BibTeX XML Cite \textit{S. Chiriţă} and \textit{A. Arusoaie}, Eur. J. Mech., A, Solids 86, Article ID 104177, 12 p. (2021; Zbl 07312428) Full Text: DOI
Wu, Tingting; Sun, Yuran; Cheng, Dongsheng A new finite difference scheme for the 3D Helmholtz equation with a preconditioned iterative solver. (English) Zbl 07310822 Appl. Numer. Math. 161, 348-371 (2021). MSC: 76M20 76Q05 65N12 PDF BibTeX XML Cite \textit{T. Wu} et al., Appl. Numer. Math. 161, 348--371 (2021; Zbl 07310822) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M 35R 39A PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Khader, M. M.; Saad, Khaled M.; Hammouch, Zakia; Baleanu, Dumitru A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. (English) Zbl 07310809 Appl. Numer. Math. 161, 137-146 (2021). MSC: 76M22 76M20 76B15 65M15 26A33 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Numer. Math. 161, 137--146 (2021; Zbl 07310809) Full Text: DOI
Izzo, Giuseppe; Jackiewicz, Zdzislaw Construction of SDIRK methods with dispersive stability functions. (English) Zbl 07310774 Appl. Numer. Math. 160, 265-280 (2021). MSC: 65L PDF BibTeX XML Cite \textit{G. Izzo} and \textit{Z. Jackiewicz}, Appl. Numer. Math. 160, 265--280 (2021; Zbl 07310774) Full Text: DOI
Chu, Jifeng; Yang, Yanjuan A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude. (English) Zbl 07308682 J. Differ. Equations 279, 46-62 (2021). MSC: 35Q31 35J60 76B15 35C07 76B47 76B45 35B34 PDF BibTeX XML Cite \textit{J. Chu} and \textit{Y. Yang}, J. Differ. Equations 279, 46--62 (2021; Zbl 07308682) Full Text: DOI
Henry, David; Lyons, Tony Pollard waves with underlying currents. (English) Zbl 07308538 Proc. Am. Math. Soc. 149, No. 3, 1175-1188 (2021). MSC: 35Q35 76B15 37N10 PDF BibTeX XML Cite \textit{D. Henry} and \textit{T. Lyons}, Proc. Am. Math. Soc. 149, No. 3, 1175--1188 (2021; Zbl 07308538) Full Text: DOI
Dastour, Hatef; Liao, Wenyuan An optimal 13-point finite difference scheme for a 2D Helmholtz equation with a perfectly matched layer boundary condition. (English) Zbl 07307382 Numer. Algorithms 86, No. 3, 1109-1141 (2021). MSC: 65N06 35J05 PDF BibTeX XML Cite \textit{H. Dastour} and \textit{W. Liao}, Numer. Algorithms 86, No. 3, 1109--1141 (2021; Zbl 07307382) Full Text: DOI
Singla, Komal; Gupta, R. K. Symmetry classification and exact solutions of (3 + 1)-dimensional fractional nonlinear incompressible non-hydrostatic coupled Boussinesq equations. (English) Zbl 07306516 J. Math. Phys. 62, No. 1, 011504, 17 p. (2021). MSC: 76B15 76M60 76M55 26A33 PDF BibTeX XML Cite \textit{K. Singla} and \textit{R. K. Gupta}, J. Math. Phys. 62, No. 1, 011504, 17 p. (2021; Zbl 07306516) Full Text: DOI
Haziot, Susanna V. Stratified large-amplitude steady periodic water waves with critical layers. (English) Zbl 07303887 Commun. Math. Phys. 381, No. 2, 765-797 (2021). MSC: 76B15 76B70 76M40 35Q35 PDF BibTeX XML Cite \textit{S. V. Haziot}, Commun. Math. Phys. 381, No. 2, 765--797 (2021; Zbl 07303887) Full Text: DOI
Abreu, E.; Matos, V.; Pérez, J.; Rodríguez-Bermúdez, P. A class of Lagrangian-Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms. (English) Zbl 07301292 J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021). MSC: 65M06 65M12 35L65 35L45 76S05 76T06 76N10 76L05 76B15 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021; Zbl 07301292) Full Text: DOI
Wei, Long; Zeng, Qi Blow-up analysis and spatial asymptotic profiles of solutions to a modified two-component hyperelastic rod system. (English) Zbl 07299665 Anal. Math. Phys. 11, No. 1, Paper No. 3, 15 p. (2021). MSC: 35Q35 35B44 76B15 35B40 PDF BibTeX XML Cite \textit{L. Wei} and \textit{Q. Zeng}, Anal. Math. Phys. 11, No. 1, Paper No. 3, 15 p. (2021; Zbl 07299665) Full Text: DOI
Aquino, Tomás; Le Borgne, Tanguy The diffusing-velocity random walk: a spatial-Markov formulation of heterogeneous advection and diffusion. (English) Zbl 07298877 J. Fluid Mech. 910, Article ID A12, 37 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{T. Aquino} and \textit{T. Le Borgne}, J. Fluid Mech. 910, Article ID A12, 37 p. (2021; Zbl 07298877) Full Text: DOI
Albeverio, Sergio; Brzeźniak, Zdzisław; Daletskii, Alexei Stochastic Camassa-Holm equation with convection type noise. (English) Zbl 07297755 J. Differ. Equations 276, 404-432 (2021). MSC: 60H15 60H25 35R60 76B15 35Q86 PDF BibTeX XML Cite \textit{S. Albeverio} et al., J. Differ. Equations 276, 404--432 (2021; Zbl 07297755) Full Text: DOI
Subramanian, Sundarraman Median regression from twice censored data. (English) Zbl 07290505 Stat. Probab. Lett. 168, Article ID 108955, 10 p. (2021). MSC: 62G08 62N01 PDF BibTeX XML Cite \textit{S. Subramanian}, Stat. Probab. Lett. 168, Article ID 108955, 10 p. (2021; Zbl 07290505) Full Text: DOI
van Ee, Martijn Approximability of the dispersed \(\vec{p}\)-neighbor \(k\)-supplier problem. (English) Zbl 07289383 Discrete Appl. Math. 289, 219-229 (2021). MSC: 90B22 90B80 68W25 90C27 90C35 PDF BibTeX XML Cite \textit{M. van Ee}, Discrete Appl. Math. 289, 219--229 (2021; Zbl 07289383) Full Text: DOI
Wang, Le; Su, Junwei; Gu, Zhaolin; Tang, Liyu Numerical study on flow field and pollutant dispersion in an ideal street canyon within a real tree model at different wind velocities. (English) Zbl 07288738 Comput. Math. Appl. 81, 679-692 (2021). MSC: 92 76 PDF BibTeX XML Cite \textit{L. Wang} et al., Comput. Math. Appl. 81, 679--692 (2021; Zbl 07288738) Full Text: DOI
Hsu, Hung-Chu; Li, Meng-Syue Lagrangian motion of fluid particles in gravity-capillary standing waves. (English) Zbl 07284883 Nonlinear Anal., Real World Appl. 57, Article ID 103186, 17 p. (2021). MSC: 76B15 76B45 76M45 PDF BibTeX XML Cite \textit{H.-C. Hsu} and \textit{M.-S. Li}, Nonlinear Anal., Real World Appl. 57, Article ID 103186, 17 p. (2021; Zbl 07284883) Full Text: DOI
Martin, Calin Iulian; Basu, Biswajit Resonances for water waves over flows with piecewise constant vorticity. (English) Zbl 07284880 Nonlinear Anal., Real World Appl. 57, Article ID 103176, 19 p. (2021). MSC: 76B15 76B45 76B47 PDF BibTeX XML Cite \textit{C. I. Martin} and \textit{B. Basu}, Nonlinear Anal., Real World Appl. 57, Article ID 103176, 19 p. (2021; Zbl 07284880) Full Text: DOI
Fan, Yongqiang; Guo, Lihui; Fan, Xingya; You, Shouke One dimensional piston problem for compressible Euler equations of generalized Chaplygin gas. (English) Zbl 07281303 Appl. Math. Lett. 112, Article ID 106744, 8 p. (2021). MSC: 35Q31 76B15 76L05 PDF BibTeX XML Cite \textit{Y. Fan} et al., Appl. Math. Lett. 112, Article ID 106744, 8 p. (2021; Zbl 07281303) Full Text: DOI
Su, Jing-Jing; Zhang, Sheng \(N\)th-order rogue waves for the \(AB\) system via the determinants. (English) Zbl 1448.86007 Appl. Math. Lett. 112, Article ID 106714, 8 p. (2021). MSC: 86A05 76U60 76B15 PDF BibTeX XML Cite \textit{J.-J. Su} and \textit{S. Zhang}, Appl. Math. Lett. 112, Article ID 106714, 8 p. (2021; Zbl 1448.86007) Full Text: DOI
Koleva, Miglena N.; Poveschenko, Yuri; Vulkov, Lubin G. Numerical simulation of thermoelastic nonlinear waves in fluid saturated porous media with non-local Darcy law. (English) Zbl 1440.76145 Dimov, Ivan (ed.) et al., Advances in high performance computing. Results of the international conference on high performance computing, Borovets, Bulgaria, September 2–6, 2019. Cham: Springer. Stud. Comput. Intell. 902, 279-289 (2021). MSC: 76S05 76M20 76B15 PDF BibTeX XML Cite \textit{M. N. Koleva} et al., Stud. Comput. Intell. 902, 279--289 (2021; Zbl 1440.76145) Full Text: DOI
Needham, D. J.; McGovern, S.; Leach, J. A. The linearised dam-break problem (to appear). (English) Zbl 06758515 Series on Analysis, Applications and Computation 8. Hackensack, NJ: World Scientific (ISBN 978-981-3223-87-5/hbk). 168 p. (2021). MSC: 76-02 76B15 00A79 PDF BibTeX XML Cite \textit{D. J. Needham} et al., The linearised dam-break problem (to appear). Hackensack, NJ: World Scientific (2021; Zbl 06758515) Full Text: DOI
Hinrichs, Aicke; Krieg, David; Kunsch, Robert J.; Rudolf, Daniel Expected dispersion of uniformly distributed points. (English) Zbl 07316073 J. Complexity 61, Article ID 101483, 9 p. (2020). MSC: 60 05 PDF BibTeX XML Cite \textit{A. Hinrichs} et al., J. Complexity 61, Article ID 101483, 9 p. (2020; Zbl 07316073) Full Text: DOI
Antonelli, Paolo; Marcati, Pierangelo; Zheng, Hao 1D quantum hydrodynamic system: global existence, stability and dispersion. (English) Zbl 07315470 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 264-270 (2020). MSC: 76E PDF BibTeX XML Cite \textit{P. Antonelli} et al., AIMS Ser. Appl. Math. 10, 264--270 (2020; Zbl 07315470)
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Shashkin, Vladimir V.; Goyman, Gordey S. Semi-Lagrangian exponential time-integration method for the shallow water equations on the cubed sphere grid. (English) Zbl 07315210 Russ. J. Numer. Anal. Math. Model. 35, No. 6, 355-366 (2020). MSC: 86-08 86A10 76B15 PDF BibTeX XML Cite \textit{V. V. Shashkin} and \textit{G. S. Goyman}, Russ. J. Numer. Anal. Math. Model. 35, No. 6, 355--366 (2020; Zbl 07315210) Full Text: DOI
Mao, Hui Obtaining multisoliton solutions of the \((2+1)\)-dimensional Camassa-Holm system using Darboux transformations. (English. Russian original) Zbl 07314347 Theor. Math. Phys. 205, No. 3, 1638-1651 (2020); translation from Teor. Mat. Fiz. 205, No. 3, 451-466 (2020). MSC: 37K10 37K35 76B15 76B25 PDF BibTeX XML Cite \textit{H. Mao}, Theor. Math. Phys. 205, No. 3, 1638--1651 (2020; Zbl 07314347); translation from Teor. Mat. Fiz. 205, No. 3, 451--466 (2020) Full Text: DOI
Chen, Nan An information criterion for choosing observation locations in data assimilation and prediction. (English) Zbl 07307675 SIAM/ASA J. Uncertain. Quantif. 8, 1548-1573 (2020). MSC: 93E11 94A15 PDF BibTeX XML Cite \textit{N. Chen}, SIAM/ASA J. Uncertain. Quantif. 8, 1548--1573 (2020; Zbl 07307675) Full Text: DOI
Berkolaiko, Gregory; Kha, Minh Degenerate band edges in periodic quantum graphs. (English) Zbl 07305702 Lett. Math. Phys. 110, No. 11, 2965-2982 (2020). MSC: 81Q35 34B45 05C50 34L05 35J05 35P15 81U30 PDF BibTeX XML Cite \textit{G. Berkolaiko} and \textit{M. Kha}, Lett. Math. Phys. 110, No. 11, 2965--2982 (2020; Zbl 07305702) Full Text: DOI
Bristeau, Marie-Odile; Di Martino, Bernard; Mangeney, Ange; Sainte-Marie, Jacques; Souille, Fabien Some quasi-analytical solutions for propagative waves in free surface Euler equations. (English. French summary) Zbl 07303383 C. R., Math., Acad. Sci. Paris 358, No. 11-12, 1111-1118 (2020). MSC: 76B15 76B07 PDF BibTeX XML Cite \textit{M.-O. Bristeau} et al., C. R., Math., Acad. Sci. Paris 358, No. 11--12, 1111--1118 (2020; Zbl 07303383) Full Text: DOI
Moura, Rodrigo C.; Aman, Mansoor; Peiró, Joaquim; Sherwin, Spencer J. Spatial eigenanalysis of spectral/hp continuous Galerkin schemes and their stabilisation via DG-mimicking spectral vanishing viscosity for high Reynolds number flows. (English) Zbl 1453.76153 J. Comput. Phys. 406, Article ID 109112, 20 p. (2020). MSC: 76M22 76M10 PDF BibTeX XML Cite \textit{R. C. Moura} et al., J. Comput. Phys. 406, Article ID 109112, 20 p. (2020; Zbl 1453.76153) Full Text: DOI
Du, Ning; Guo, Xu; Wang, Hong Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations. (English) Zbl 1453.65247 J. Comput. Phys. 405, Article ID 109127, 15 p. (2020). MSC: 65M08 35R09 26A33 76S05 PDF BibTeX XML Cite \textit{N. Du} et al., J. Comput. Phys. 405, Article ID 109127, 15 p. (2020; Zbl 1453.65247) Full Text: DOI
Tyvand, Peder A.; Sveen, Eivind B. Wave emission from bottom vibrations in subsurface open-channel shear flow. (English) Zbl 07302966 Water Waves 2, No. 2, 415-432 (2020). MSC: 76B15 PDF BibTeX XML Cite \textit{P. A. Tyvand} and \textit{E. B. Sveen}, Water Waves 2, No. 2, 415--432 (2020; Zbl 07302966) Full Text: DOI
Maxwell, Peter; Ellingsen, Simen Å. Path-following methods for calculating linear surface wave dispersion relations on vertical shear flows. (English) Zbl 07302965 Water Waves 2, No. 2, 381-414 (2020). MSC: 65L 65D PDF BibTeX XML Cite \textit{P. Maxwell} and \textit{S. Å. Ellingsen}, Water Waves 2, No. 2, 381--414 (2020; Zbl 07302965) Full Text: DOI
Curtis, Christopher W.; Murphy, Mackensie Evolution of spectral distributions in deep-water constant vorticity flows. (English) Zbl 07302964 Water Waves 2, No. 2, 361-380 (2020). MSC: 76B15 76B47 76E17 76M35 PDF BibTeX XML Cite \textit{C. W. Curtis} and \textit{M. Murphy}, Water Waves 2, No. 2, 361--380 (2020; Zbl 07302964) Full Text: DOI
Nguyen, Nghiem V.; Liu, Chuangye Some models for the interaction of long and short waves in dispersive media. I: Derivation. (English) Zbl 07302963 Water Waves 2, No. 2, 327-359 (2020). MSC: 35Q31 35Q55 35Q41 35Q53 35A15 35B35 76B15 PDF BibTeX XML Cite \textit{N. V. Nguyen} and \textit{C. Liu}, Water Waves 2, No. 2, 327--359 (2020; Zbl 07302963) Full Text: DOI
Tkachenko, Sergey; Gavrilyuk, Sergey; Shyue, Keh-Ming Hyperbolicity of the modulation equations for the Serre-Green-Naghdi model. (English) Zbl 07302962 Water Waves 2, No. 2, 299-326 (2020). MSC: 76B15 76E17 PDF BibTeX XML Cite \textit{S. Tkachenko} et al., Water Waves 2, No. 2, 299--326 (2020; Zbl 07302962) Full Text: DOI
Grilli, Stephan T.; Horrillo, Juan; Guignard, Stéphan Fully nonlinear potential flow simulations of wave shoaling over slopes: spilling breaker model and integral wave properties. (English) Zbl 07302961 Water Waves 2, No. 2, 263-297 (2020). MSC: 76M15 76B15 76B07 PDF BibTeX XML Cite \textit{S. T. Grilli} et al., Water Waves 2, No. 2, 263--297 (2020; Zbl 07302961) Full Text: DOI
Slunyaev, Alexey; Kokorina, Anna Account of occasional wave breaking in numerical simulations of irregular water waves in the focus of the rogue wave problem. (English) Zbl 07302960 Water Waves 2, No. 2, 243-262 (2020). MSC: 76B15 76M22 86A05 PDF BibTeX XML Cite \textit{A. Slunyaev} and \textit{A. Kokorina}, Water Waves 2, No. 2, 243--262 (2020; Zbl 07302960) Full Text: DOI
Bacigaluppi, Paola; Ricchiuto, Mario; Bonneton, Philippe Implementation and evaluation of breaking detection criteria for a hybrid Boussinesq model. (English) Zbl 1453.76020 Water Waves 2, No. 2, 207-241 (2020). MSC: 76B15 76M12 76M10 86A05 65M06 76B25 PDF BibTeX XML Cite \textit{P. Bacigaluppi} et al., Water Waves 2, No. 2, 207--241 (2020; Zbl 1453.76020) Full Text: DOI
Scolan, Yves-Marie; Guilcher, Pierre-Michel Wave kinematics in a two-dimensional plunging breaker. (English) Zbl 07302958 Water Waves 2, No. 2, 185-206 (2020). MSC: 76B07 76B15 PDF BibTeX XML Cite \textit{Y.-M. Scolan} and \textit{P.-M. Guilcher}, Water Waves 2, No. 2, 185--206 (2020; Zbl 07302958) Full Text: DOI
Peng, Zhichao; Bokil, Vrushali A.; Cheng, Yingda; Li, Fengyan Asymptotic and positivity preserving methods for Kerr-Debye model with Lorentz dispersion in one dimension. (English) Zbl 1453.78010 J. Comput. Phys. 402, Article ID 109101, 34 p. (2020). MSC: 78M10 78A40 78A10 65M12 PDF BibTeX XML Cite \textit{Z. Peng} et al., J. Comput. Phys. 402, Article ID 109101, 34 p. (2020; Zbl 1453.78010) Full Text: DOI
Maklakov, D. V. A note on the existence of pure gravity waves at the interface of two fluids. (English) Zbl 1453.76024 Physica D 401, Article ID 132157, 5 p. (2020). MSC: 76B15 35C07 65Z05 PDF BibTeX XML Cite \textit{D. V. Maklakov}, Physica D 401, Article ID 132157, 5 p. (2020; Zbl 1453.76024) Full Text: DOI
Hazard, Christophe; Paolantoni, Sandrine Spectral analysis of polygonal cavities containing a negative-index material. (Analyse spectrale de cavités polygonales contenant un matériau d’indice négatif.) (English. French summary) Zbl 07300116 Ann. Henri Lebesgue 3, 1161-1193 (2020). MSC: 35P05 35P30 35J25 35Q60 47A10 78A25 PDF BibTeX XML Cite \textit{C. Hazard} and \textit{S. Paolantoni}, Ann. Henri Lebesgue 3, 1161--1193 (2020; Zbl 07300116) Full Text: DOI
Chen, Robin Ming; Walsh, Samuel; Wheeler, Miles H. Large-amplitude internal fronts in two-fluid systems. (Fronts internes de grandes amplitudes pour des systèmes à deux fluides.) (English. French summary) Zbl 07299539 C. R., Math., Acad. Sci. Paris 358, No. 9-10, 1073-1083 (2020). MSC: 35J25 35B32 76B15 35J60 35J66 PDF BibTeX XML Cite \textit{R. M. Chen} et al., C. R., Math., Acad. Sci. Paris 358, No. 9--10, 1073--1083 (2020; Zbl 07299539) Full Text: DOI
Bhamidipati, Neeraja; Woods, Andrew W. Boundary-induced shear and tracer transport in heterogeneous porous rock. (English) Zbl 07298356 J. Fluid Mech. 908, Article ID A45, 22 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{N. Bhamidipati} and \textit{A. W. Woods}, J. Fluid Mech. 908, Article ID A45, 22 p. (2020; Zbl 07298356) Full Text: DOI
Ahmad, Aboubacrène Ag; Deme, El Hadji; Diop, Aliou; Girard, Stéphane; Usseglio-Carleve, Antoine Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model. (English) Zbl 07298081 Electron. J. Stat. 14, No. 2, 4421-4456 (2020). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 62G32 62G30 62E20 62P12 PDF BibTeX XML Cite \textit{A. A. Ahmad} et al., Electron. J. Stat. 14, No. 2, 4421--4456 (2020; Zbl 07298081) Full Text: DOI Euclid
Hidalgo, Juan J.; Neuweiler, I.; Dentz, M. Transport under advective trapping. (English) Zbl 07297691 J. Fluid Mech. 907, Article ID A36, 26 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{J. J. Hidalgo} et al., J. Fluid Mech. 907, Article ID A36, 26 p. (2020; Zbl 07297691) Full Text: DOI
Kokonendji, Célestin C.; Touré, Aboubacar Y.; Sawadogo, Amadou Relative variation indexes for multivariate continuous distributions on \([0,\infty)^k\) and extensions. (English) Zbl 07297167 AStA, Adv. Stat. Anal. 104, No. 2, 285-307 (2020). MSC: 62H10 62H05 62H12 62E10 62F10 62R07 PDF BibTeX XML Cite \textit{C. C. Kokonendji} et al., AStA, Adv. Stat. Anal. 104, No. 2, 285--307 (2020; Zbl 07297167) Full Text: DOI
He, Yingying; Zhang, Yu; Cheng, Linhai; Lv, Yuejin Interval rough number covering rough set model. (Chinese. English summary) Zbl 07295141 Fuzzy Syst. Math. 34, No. 3, 79-88 (2020). MSC: 03E72 PDF BibTeX XML Cite \textit{Y. He} et al., Fuzzy Syst. Math. 34, No. 3, 79--88 (2020; Zbl 07295141)
Davidovich, Mikhaĭl Vladimirovich The energy transfer velocity by a plane monochromatic electromagnetic wave through a layer of matter. (Russian. English summary) Zbl 07294525 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 22-40 (2020). MSC: 34B60 35Q40 81Q99 PDF BibTeX XML Cite \textit{M. V. Davidovich}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 22--40 (2020; Zbl 07294525) Full Text: DOI MNR
Banquet, Carlos; Villamizar-Roa, Élder J. On the management fourth-order Schrödinger-Hartree equation. (English) Zbl 1452.35178 Evol. Equ. Control Theory 9, No. 3, 865-889 (2020). MSC: 35Q55 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{C. Banquet} and \textit{É. J. Villamizar-Roa}, Evol. Equ. Control Theory 9, No. 3, 865--889 (2020; Zbl 1452.35178) Full Text: DOI
Bychkov, Evgeniĭ Viktorovich; Bogomolov, Alekseĭ Valer’evich; Kotlovanov, Konstantin Yur’evich Stochastic mathematical model of internal waves. (English) Zbl 07293386 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 33-42 (2020). MSC: 35Q35 35C15 60H30 60H40 76B15 76U05 35Q60 PDF BibTeX XML Cite \textit{E. V. Bychkov} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 33--42 (2020; Zbl 07293386) Full Text: DOI MNR
Tsvetova, E. V.; Kovalnogov, V. N.; Fedorov, R. V. Research of integrated passive methods of heat dissipation intensification to improve the efficiency of gas-dynamic temperature stratification. (English) Zbl 1452.76207 JNAIAM, J. Numer. Anal. Ind. Appl. Math. 15, No. 1, 13-16 (2020). MSC: 76N15 76-10 PDF BibTeX XML Cite \textit{E. V. Tsvetova} et al., JNAIAM, J. Numer. Anal. Ind. Appl. Math. 15, No. 1, 13--16 (2020; Zbl 1452.76207) Full Text: Link
Shams, Moniba Wave-propagation in an incompressible hollow elastic cylinder with residual stress. (English) Zbl 1451.74051 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2877-2904 (2020). MSC: 74B20 74J99 74H99 PDF BibTeX XML Cite \textit{M. Shams}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2877--2904 (2020; Zbl 1451.74051) Full Text: DOI
Anco, Stephen C.; Gandarias, Maria Luz; Recio, Elena Conservation laws and line soliton solutions of a family of modified KP equations. (English) Zbl 07292855 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2655-2665 (2020). MSC: 35C08 35G25 37K10 PDF BibTeX XML Cite \textit{S. C. Anco} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2655--2665 (2020; Zbl 07292855) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Bilinear forms through the binary Bell polynomials, \(N\) solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach. (English) Zbl 1451.76023 Commun. Theor. Phys. 72, No. 9, Article ID 095002, 5 p. (2020). MSC: 76B15 37K35 35Q53 35C08 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Commun. Theor. Phys. 72, No. 9, Article ID 095002, 5 p. (2020; Zbl 1451.76023) Full Text: DOI
Manafian, Jalil; Ilhan, Onur Alp; Alizadeh, As’ad; Mohammed, Sizar Abid Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. (English) Zbl 1451.76026 Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020). MSC: 76B15 35Q53 35C08 35Q51 PDF BibTeX XML Cite \textit{J. Manafian} et al., Commun. Theor. Phys. 72, No. 7, Article ID 075002, 13 p. (2020; Zbl 1451.76026) Full Text: DOI
Younis, Muhammad; Sulaiman, Tukur Abdulkadir; Bilal, Muhammad; Rehman, Shafqat Ur; Younas, Usman Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. (English) Zbl 1451.82022 Commun. Theor. Phys. 72, No. 6, Article ID 065001, 12 p. (2020). MSC: 82B44 76B15 35Q55 PDF BibTeX XML Cite \textit{M. Younis} et al., Commun. Theor. Phys. 72, No. 6, Article ID 065001, 12 p. (2020; Zbl 1451.82022) Full Text: DOI
Wang, Gaihua; Li, Nianhua; Liu, Q. P. Multi-soliton solutions of a two-component Camassa-Holm system: Darboux transformation approach. (English) Zbl 1451.35053 Commun. Theor. Phys. 72, No. 4, Article ID 045003, 6 p. (2020). MSC: 35C08 35Q51 76B15 PDF BibTeX XML Cite \textit{G. Wang} et al., Commun. Theor. Phys. 72, No. 4, Article ID 045003, 6 p. (2020; Zbl 1451.35053) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Viewing the solar system via a variable-coefficient nonlinear dispersive-wave system. (English) Zbl 1451.86003 Acta Mech. 231, No. 10, 4415-4420 (2020). MSC: 86A05 76B15 85A04 37N10 37K35 37K40 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Acta Mech. 231, No. 10, 4415--4420 (2020; Zbl 1451.86003) Full Text: DOI
Soltanpour, Moghadam A.; Arabameri, M.; Barfeie, M. Andbaleanu D. Numerical solution of space-time variable fractional order advection-dispersion equation using Jacobi spectral collocation method. (English) Zbl 07290672 Malays. J. Math. Sci. 14, No. 1, 139-168 (2020). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. A. Soltanpour} et al., Malays. J. Math. Sci. 14, No. 1, 139--168 (2020; Zbl 07290672) Full Text: Link
Ray, S.; De, S.; Mandal, B. N. Water wave scattering by a bottom-standing thick rectangular barrier in the presence of an ice cover. (English. Russian original) Zbl 1451.76029 J. Appl. Mech. Tech. Phys. 61, No. 3, 400-408 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 3, 100-109 (2020). MSC: 76B15 65R20 PDF BibTeX XML Cite \textit{S. Ray} et al., J. Appl. Mech. Tech. Phys. 61, No. 3, 400--408 (2020; Zbl 1451.76029); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 3, 100--109 (2020) Full Text: DOI
Liapidevskii, V. Yu.; Turbin, M. V.; Khrapchenkov, F. F.; Kukarin, V. F. Nonlinear internal waves in multilayer shallow water. (English. Russian original) Zbl 1451.76034 J. Appl. Mech. Tech. Phys. 61, No. 1, 45-53 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 1, 53-62 (2020). MSC: 76B55 76B15 PDF BibTeX XML Cite \textit{V. Yu. Liapidevskii} et al., J. Appl. Mech. Tech. Phys. 61, No. 1, 45--53 (2020; Zbl 1451.76034); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 1, 53--62 (2020) Full Text: DOI
Dong, Xiaofang Blow-up issues for the weakly dissipative periodic b-family of equations revisited. (English) Zbl 07290167 J. Math. Phys. 61, No. 12, 121503, 15 p. (2020). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{X. Dong}, J. Math. Phys. 61, No. 12, 121503, 15 p. (2020; Zbl 07290167) Full Text: DOI
Baev, A. V. On the solution of an inverse problem for equations of shallow water in a pool with variable depth. (Russian. English summary) Zbl 07288927 Mat. Model. 32, No. 11, 3-15 (2020). MSC: 76B15 76M21 PDF BibTeX XML Cite \textit{A. V. Baev}, Mat. Model. 32, No. 11, 3--15 (2020; Zbl 07288927) Full Text: DOI MNR
Gubaidullin, D. A.; Fedorov, Yu. Yu. Wave dynamics of coated inclusions in a viscoelastic medium. (English. Russian original) Zbl 1451.74078 J. Appl. Mech. Tech. Phys. 61, No. 4, 517-524 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 22-30 (2020). MSC: 74F10 74K25 76T10 80A19 PDF BibTeX XML Cite \textit{D. A. Gubaidullin} and \textit{Yu. Yu. Fedorov}, J. Appl. Mech. Tech. Phys. 61, No. 4, 517--524 (2020; Zbl 1451.74078); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 22--30 (2020) Full Text: DOI
Do, Ngoc; Kuchment, Peter; Sottile, Frank Generic properties of dispersion relations for discrete periodic operators. (English) Zbl 07287291 J. Math. Phys. 61, No. 10, 103502, 19 p. (2020). MSC: 81Q05 81U30 14N10 PDF BibTeX XML Cite \textit{N. Do} et al., J. Math. Phys. 61, No. 10, 103502, 19 p. (2020; Zbl 07287291) Full Text: DOI
Chen, Yong; Ran, Lixia The effect of a noise on the stochastic modified Camassa-Holm equation. (English) Zbl 07287223 J. Math. Phys. 61, No. 9, 091504, 16 p. (2020). MSC: 76B15 37K10 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{L. Ran}, J. Math. Phys. 61, No. 9, 091504, 16 p. (2020; Zbl 07287223) Full Text: DOI
Dong, Xiaofang Revisit to wave breaking phenomena for the periodic Dullin-Gottwald-Holm equation. (English) Zbl 07287152 J. Math. Phys. 61, No. 7, 071509, 12 p. (2020). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{X. Dong}, J. Math. Phys. 61, No. 7, 071509, 12 p. (2020; Zbl 07287152) Full Text: DOI
Zhang, Zaiyun; Liu, Zhenhai; Deng, Youjun; Huang, Chuangxia; Lin, Shiyou; Zhu, Wen Global well-posedness and infinite propagation speed for the \(N - abc\) family of Camassa-Holm type equation with both dissipation and dispersion. (English) Zbl 07287145 J. Math. Phys. 61, No. 7, 071502, 8 p. (2020). MSC: 76B15 49K40 37K10 PDF BibTeX XML Cite \textit{Z. Zhang} et al., J. Math. Phys. 61, No. 7, 071502, 8 p. (2020; Zbl 07287145) Full Text: DOI
Shestopalov, Y. Trigonometric and cylindrical polynomials and their applications in electromagnetics. (English) Zbl 07286889 Appl. Anal. 99, No. 16, 2807-2822 (2020). MSC: 26C10 33B10 33C10 34B24 78M22 PDF BibTeX XML Cite \textit{Y. Shestopalov}, Appl. Anal. 99, No. 16, 2807--2822 (2020; Zbl 07286889) Full Text: DOI
Su, Qingtang Long time behavior of 2D water waves with point vortices. (English) Zbl 07286864 Commun. Math. Phys. 380, No. 3, 1173-1266 (2020). MSC: 76B15 76B47 76M40 35Q35 PDF BibTeX XML Cite \textit{Q. Su}, Commun. Math. Phys. 380, No. 3, 1173--1266 (2020; Zbl 07286864) Full Text: DOI
Lazar, Markus; Leck, Jakob Second gradient electrodynamics: a non-singular relativistic field theory. (English) Zbl 1451.78011 Ann. Phys. 423, Article ID 168330, 18 p. (2020). MSC: 78A25 78A40 PDF BibTeX XML Cite \textit{M. Lazar} and \textit{J. Leck}, Ann. Phys. 423, Article ID 168330, 18 p. (2020; Zbl 1451.78011) Full Text: DOI
Zharinov, V. V. Binary relations, Bäcklund transformations, and wave packet propagation. (English. Russian original) Zbl 1453.81022 Theor. Math. Phys. 205, No. 1, 1245-1263 (2020); translation from Teor. Mat. Fiz. 205, No. 1, 3-22 (2020). MSC: 81Q05 35Q55 81U30 35R13 58J72 PDF BibTeX XML Cite \textit{V. V. Zharinov}, Theor. Math. Phys. 205, No. 1, 1245--1263 (2020; Zbl 1453.81022); translation from Teor. Mat. Fiz. 205, No. 1, 3--22 (2020) Full Text: DOI
Agoshkov, V. I.; Lezina, N. R.; Sheloput, T. O. Recovery of boundary functions on external and internal open boundaries in an open sea hydrodynamic problem. (English. Russian original) Zbl 1451.86002 Comput. Math. Math. Phys. 60, No. 11, 1855-1871 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1915-1932 (2020). MSC: 86A05 86-10 76B15 35R30 35Q35 PDF BibTeX XML Cite \textit{V. I. Agoshkov} et al., Comput. Math. Math. Phys. 60, No. 11, 1855--1871 (2020; Zbl 1451.86002); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1915--1932 (2020) Full Text: DOI
Wagner, Aaron B.; Shende, Nirmal V.; Altuğ, Yücel A new method for employing feedback to improve coding performance. (English) Zbl 1453.94048 IEEE Trans. Inf. Theory 66, No. 11, 6660-6681 (2020). MSC: 94A29 94A40 PDF BibTeX XML Cite \textit{A. B. Wagner} et al., IEEE Trans. Inf. Theory 66, No. 11, 6660--6681 (2020; Zbl 1453.94048) Full Text: DOI
Wang, Yu; Shang, Pengjian Complexity analysis of time series based on generalized fractional order refined composite multiscale dispersion entropy. (English) Zbl 1453.91091 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050211, 15 p. (2020). MSC: 91G15 62P05 62M10 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{P. Shang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050211, 15 p. (2020; Zbl 1453.91091) Full Text: DOI
Keller, Rachael T.; Marzuola, Jeremy L.; Osting, Braxton; Weinstein, Michael I. Erratum to: “Spectral band degeneracies of \(\frac{\pi}{2}\)-rotationally invariant periodic Schrödinger operators”. (English) Zbl 07281457 Multiscale Model. Simul. 18, No. 3, 1371-1373 (2020). MSC: 35Q40 35Q60 35P99 82B10 78A60 PDF BibTeX XML Cite \textit{R. T. Keller} et al., Multiscale Model. Simul. 18, No. 3, 1371--1373 (2020; Zbl 07281457) Full Text: DOI
Lou, S. Y. A (1+1)-dimensional integrable system with fifth order spectral problems and four dispersion relations. (English) Zbl 1448.35434 Phys. Lett., A 384, No. 29, Article ID 126761, 10 p. (2020). MSC: 35Q51 35C08 37J35 PDF BibTeX XML Cite \textit{S. Y. Lou}, Phys. Lett., A 384, No. 29, Article ID 126761, 10 p. (2020; Zbl 1448.35434) Full Text: DOI
Maccari, Attilio The Maccari system as model system for rogue waves. (English) Zbl 1448.76038 Phys. Lett., A 384, No. 28, Article ID 126740, 5 p. (2020). MSC: 76B15 35L70 PDF BibTeX XML Cite \textit{A. Maccari}, Phys. Lett., A 384, No. 28, Article ID 126740, 5 p. (2020; Zbl 1448.76038) Full Text: DOI
Adem, Abdullahi Rashid; Ntsime, Basetsana Pauline; Biswas, Anjan; Asma, Mir; Ekici, Mehmet; Moshokoa, Seithuti P.; Alzahrani, Abdullah Kamis; Belic, Milivoj R. Stationary optical solitons with Sasa-Satsuma equation having nonlinear chromatic dispersion. (English) Zbl 1448.35077 Phys. Lett., A 384, No. 27, Article ID 126721, 3 p. (2020). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{A. R. Adem} et al., Phys. Lett., A 384, No. 27, Article ID 126721, 3 p. (2020; Zbl 1448.35077) Full Text: DOI
Adem, Abdullahi Rashid; Ekici, Mehmet; Biswas, Anjan; Asma, Mir; Zayed, Elsayed M. E.; Kamis Alzahrani, Abdullah; Belic, Milivoj R. Stationary optical solitons with nonlinear chromatic dispersion having quadratic-cubic law of refractive index. (English) Zbl 1448.35076 Phys. Lett., A 384, No. 25, Article ID 126606, 3 p. (2020). MSC: 35C08 35Q51 35Q55 78A60 PDF BibTeX XML Cite \textit{A. R. Adem} et al., Phys. Lett., A 384, No. 25, Article ID 126606, 3 p. (2020; Zbl 1448.35076) Full Text: DOI
Min, Dandan; Chen, Fangqi Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach. (English) Zbl 07279041 Math. Methods Appl. Sci. 43, No. 15, 9151-9168 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34A08 34B09 34B24 34B37 47J30 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, Math. Methods Appl. Sci. 43, No. 15, 9151--9168 (2020; Zbl 07279041) Full Text: DOI
Dong, Jian A robust central scheme for the shallow water flows with an abrupt topography based on modified hydrostatic reconstructions. (English) Zbl 07279034 Math. Methods Appl. Sci. 43, No. 15, 9024-9045 (2020). MSC: 76M12 76B15 86A05 PDF BibTeX XML Cite \textit{J. Dong}, Math. Methods Appl. Sci. 43, No. 15, 9024--9045 (2020; Zbl 07279034) Full Text: DOI
Zhao, Zinan; Wang, Bin; Qian, Zhenghua; Yong, Yook-Kong A novel approach to quantitative predictions of high-frequency coupled vibrations in layered piezoelectric plates. (English) Zbl 07278792 Int. J. Eng. Sci. 157, Article ID 103407, 15 p. (2020). MSC: 74 78 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Int. J. Eng. Sci. 157, Article ID 103407, 15 p. (2020; Zbl 07278792) Full Text: DOI
Molina, Mario I. The two-dimensional fractional discrete nonlinear Schrödinger equation. (English) Zbl 1448.34146 Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020). MSC: 34K37 35Q55 81Q05 PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020; Zbl 1448.34146) Full Text: DOI
Wang, Gangwei; Vega-Guzman, Jose; Biswas, Anjan; Kamis Alzahrani, Abdullah; Kara, A. H. (2 + 1)-dimensional Boiti-Leon-Pempinelli equation – domain walls, invariance properties and conservation laws. (English) Zbl 1448.76045 Phys. Lett., A 384, No. 10, Article ID 126255, 4 p. (2020). MSC: 76B15 76B25 PDF BibTeX XML Cite \textit{G. Wang} et al., Phys. Lett., A 384, No. 10, Article ID 126255, 4 p. (2020; Zbl 1448.76045) Full Text: DOI
Lannes, David; Weynans, L. Generating boundary conditions for a Boussinesq system. (English) Zbl 07278326 Nonlinearity 33, No. 12, 6868-6889 (2020). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M06 65M12 76B15 35Q35 PDF BibTeX XML Cite \textit{D. Lannes} and \textit{L. Weynans}, Nonlinearity 33, No. 12, 6868--6889 (2020; Zbl 07278326) Full Text: DOI
Miraglio, Pietro; Valdinoci, Enrico Energy asymptotics of a Dirichlet to Neumann problem related to water waves. (English) Zbl 1453.76026 Nonlinearity 33, No. 11, 5997-6025 (2020). MSC: 76B15 76M45 35Q35 PDF BibTeX XML Cite \textit{P. Miraglio} and \textit{E. Valdinoci}, Nonlinearity 33, No. 11, 5997--6025 (2020; Zbl 1453.76026) Full Text: DOI
Gavrilyuk, Sergey; Nkonga, Boniface; Shyue, Keh-Ming; Truskinovsky, Lev Stationary shock-like transition fronts in dispersive systems. (English) Zbl 1452.35101 Nonlinearity 33, No. 10, 5477-5509 (2020). MSC: 35L67 35L40 35Q35 35Q74 PDF BibTeX XML Cite \textit{S. Gavrilyuk} et al., Nonlinearity 33, No. 10, 5477--5509 (2020; Zbl 1452.35101) Full Text: DOI
Ifrim, Mihaela; Tataru, Daniel No solitary waves in 2D gravity and capillary waves in deep water. (English) Zbl 07278280 Nonlinearity 33, No. 10, 5457-5476 (2020). MSC: 76B15 76B25 PDF BibTeX XML Cite \textit{M. Ifrim} and \textit{D. Tataru}, Nonlinearity 33, No. 10, 5457--5476 (2020; Zbl 07278280) Full Text: DOI
Khimich, A. N.; Selezov, I. T.; Sydoruk, V. A. Simulation of elastic wave diffraction by a sphere in semibounded region. (English) Zbl 07277695 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 10, 22-27 (2020). MSC: 76B15 74J20 74J25 76Q05 PDF BibTeX XML Cite \textit{A. N. Khimich} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 10, 22--27 (2020; Zbl 07277695) Full Text: DOI
Bagno, O. M. On surface instability of incompressible elastic layer exposed to the finite initial deformation. (Ukrainian. English summary) Zbl 07277691 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 9, 31-37 (2020). MSC: 74J20 PDF BibTeX XML Cite \textit{O. M. Bagno}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 9, 31--37 (2020; Zbl 07277691) Full Text: DOI
Donna, Javier D.; Schenone, Pablo; Veramendi, Gregory F. Networks, frictions, and price dispersion. (English) Zbl 1452.91150 Games Econ. Behav. 124, 406-431 (2020). MSC: 91B24 91B68 PDF BibTeX XML Cite \textit{J. D. Donna} et al., Games Econ. Behav. 124, 406--431 (2020; Zbl 1452.91150) Full Text: DOI