Chen, Qingshan; Ju, Lili; Temam, Roger Conservative numerical schemes with optimal dispersive wave relations. II: Numerical evaluations. (English) Zbl 07568876 J. Sci. Comput. 92, No. 2, Paper No. 72, 30 p. (2022). MSC: 35Q86 86-08 86-10 37K06 65P10 PDF BibTeX XML Cite \textit{Q. Chen} et al., J. Sci. Comput. 92, No. 2, Paper No. 72, 30 p. (2022; Zbl 07568876) Full Text: DOI OpenURL
Klaus, Friedrich; Kunstmann, Peer Global wellposedness of NLS in \(H^1(\mathbb{R}) + H^s(\mathbb{T})\). (English) Zbl 07545085 J. Math. Anal. Appl. 514, No. 2, Article ID 126359, 14 p. (2022). MSC: 35Qxx 35Axx 37Kxx PDF BibTeX XML Cite \textit{F. Klaus} and \textit{P. Kunstmann}, J. Math. Anal. Appl. 514, No. 2, Article ID 126359, 14 p. (2022; Zbl 07545085) Full Text: DOI OpenURL
Gormley, B.; Ferapontov, E. V.; Novikov, V. S.; Pavlov, M. V. Integrable systems of the intermediate long wave type in \(2 + 1\) dimensions. (English) Zbl 07529721 Physica D 435, Article ID 133310, 9 p. (2022). MSC: 35A22 35Q35 37K10 PDF BibTeX XML Cite \textit{B. Gormley} et al., Physica D 435, Article ID 133310, 9 p. (2022; Zbl 07529721) Full Text: DOI OpenURL
Holmer, Justin; Zhang, Katherine Zhiyuan Benjamin-Ono soliton dynamics in a slowly varying potential revisited. (English) Zbl 07517191 SIAM J. Math. Anal. 54, No. 2, 2634-2690 (2022). MSC: 35Q53 35Q51 37K40 35C08 35A22 44A15 PDF BibTeX XML Cite \textit{J. Holmer} and \textit{K. Z. Zhang}, SIAM J. Math. Anal. 54, No. 2, 2634--2690 (2022; Zbl 07517191) Full Text: DOI OpenURL
Bernier, Joackim; Grébert, Benoît Birkhoff normal forms for Hamiltonian PDEs in their energy space. (Formes normales de Birkhoff pour les EDP Hamiltoniennes dans l’espace d’énergie.) (English. French summary) Zbl 07510279 J. Éc. Polytech., Math. 9, 681-745 (2022). MSC: 35Q55 81Q05 37K55 35P20 35B65 PDF BibTeX XML Cite \textit{J. Bernier} and \textit{B. Grébert}, J. Éc. Polytech., Math. 9, 681--745 (2022; Zbl 07510279) Full Text: DOI OpenURL
Novruzov, Emil; Bayrak, Vural Blow-up criteria for a two-component nonlinear dispersive wave system. (English) Zbl 1486.35079 J. Funct. Anal. 282, No. 12, Article ID 109454, 19 p. (2022). MSC: 35B44 35L71 35L90 37K10 74K10 PDF BibTeX XML Cite \textit{E. Novruzov} and \textit{V. Bayrak}, J. Funct. Anal. 282, No. 12, Article ID 109454, 19 p. (2022; Zbl 1486.35079) Full Text: DOI OpenURL
Sy, Mouhamadou; Yu, Xueying Global well-posedness for the cubic fractional NLS on the unit disk. (English) Zbl 07489727 Nonlinearity 35, No. 4, 2020-2072 (2022). MSC: 35Q55 35A01 35A02 35R01 37K06 37L50 PDF BibTeX XML Cite \textit{M. Sy} and \textit{X. Yu}, Nonlinearity 35, No. 4, 2020--2072 (2022; Zbl 07489727) Full Text: DOI arXiv OpenURL
Wang, Deng-Shan; Xu, Ling; Xuan, Zuxing The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation. (English) Zbl 1486.37034 J. Nonlinear Sci. 32, No. 1, Paper No. 3, 46 p. (2022). MSC: 37K10 37K15 35Q53 35Q51 PDF BibTeX XML Cite \textit{D.-S. Wang} et al., J. Nonlinear Sci. 32, No. 1, Paper No. 3, 46 p. (2022; Zbl 1486.37034) Full Text: DOI OpenURL
Laurens, Thierry KdV on an incoming tide. (English) Zbl 1479.35737 Nonlinearity 35, No. 1, 343-387 (2022). MSC: 35Q53 35B20 35A01 35A02 37K10 PDF BibTeX XML Cite \textit{T. Laurens}, Nonlinearity 35, No. 1, 343--387 (2022; Zbl 1479.35737) Full Text: DOI arXiv OpenURL
Alam, Md. Nur; Uddin, Md. Sabur; Tunc, Cemil Soliton wave solutions of the Oskolkov equation arising in incompressible visco-elastic Kelvin-Voigt fluid. (English) Zbl 07540178 Appl. Anal. Optim. 5, No. 3, 335-342 (2021). MSC: 35Qxx 35E05 35C08 35Q51 37L50 37J25 33F05 PDF BibTeX XML Cite \textit{Md. N. Alam} et al., Appl. Anal. Optim. 5, No. 3, 335--342 (2021; Zbl 07540178) Full Text: Link OpenURL
Bhattacharya, Debdeep Mass-concentration of low-regularity blow-up solutions to the focusing 2D modified Zakharov-Kuznetsov equation. (English) Zbl 1476.35221 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021). MSC: 35Q53 35B44 37K40 35C07 37L50 PDF BibTeX XML Cite \textit{D. Bhattacharya}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021; Zbl 1476.35221) Full Text: DOI arXiv OpenURL
Pandir, Yusuf; Turhan, Nail Multiple soliton solutions for nonlinear differential equations with a new version of extended F-expansion method. (English) Zbl 07439462 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 495-501 (2021). MSC: 35C08 37K40 PDF BibTeX XML Cite \textit{Y. Pandir} and \textit{N. Turhan}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 3, 495--501 (2021; Zbl 07439462) Full Text: DOI OpenURL
Creedon, Ryan; Deconinck, Bernard; Trichtchenko, Olga High-frequency instabilities of the Kawahara equation: a perturbative approach. (English) Zbl 1478.35072 SIAM J. Appl. Dyn. Syst. 20, No. 3, 1571-1595 (2021). MSC: 35C07 35B35 35G25 37K45 34L05 PDF BibTeX XML Cite \textit{R. Creedon} et al., SIAM J. Appl. Dyn. Syst. 20, No. 3, 1571--1595 (2021; Zbl 1478.35072) Full Text: DOI arXiv OpenURL
Chen, Qingshan; Ju, Lili; Temam, Roger Conservative numerical schemes with optimal dispersive wave relations: part I. Derivation and analysis. (English) Zbl 1477.35273 Numer. Math. 149, No. 1, 43-85 (2021). MSC: 35Q86 35Q35 76B47 76U60 76U65 86A05 65M08 65P10 86-08 PDF BibTeX XML Cite \textit{Q. Chen} et al., Numer. Math. 149, No. 1, 43--85 (2021; Zbl 1477.35273) Full Text: DOI arXiv OpenURL
Ismailov, Mansur I. Inverse scattering transform in two spatial dimensions for the \(N\)-wave interaction problem with a dispersive term. (English) Zbl 1481.37079 J. Inverse Ill-Posed Probl. 29, No. 5, 741-752 (2021). Reviewer: Giovanni S. Alberti (Genova) MSC: 37K15 37L50 35R30 35Q35 PDF BibTeX XML Cite \textit{M. I. Ismailov}, J. Inverse Ill-Posed Probl. 29, No. 5, 741--752 (2021; Zbl 1481.37079) Full Text: DOI OpenURL
Duarte, V. N. A class of solutions of the two-dimensional Toda lattice equation. (English) Zbl 1487.37083 Phys. Lett., A 385, Article ID 126979, 3 p. (2021). Reviewer: Andrei Pranevich (Grodno) MSC: 37K10 35C08 37K40 PDF BibTeX XML Cite \textit{V. N. Duarte}, Phys. Lett., A 385, Article ID 126979, 3 p. (2021; Zbl 1487.37083) Full Text: DOI arXiv OpenURL
Zhou, Deqin Local well-posedness for a type of periodic fifth-order Korteweg-de Vries equations without nonlinear dispersive term. (English) Zbl 1472.35346 Math. Methods Appl. Sci. 44, No. 6, 4448-4466 (2021). MSC: 35Q53 35A01 35A02 35B44 37K10 PDF BibTeX XML Cite \textit{D. Zhou}, Math. Methods Appl. Sci. 44, No. 6, 4448--4466 (2021; Zbl 1472.35346) Full Text: DOI OpenURL
Onodera, Eiji; Yamasaki, Haruka A fifth-order dispersive partial differential equation for curve flow on the sphere. (English) Zbl 1477.35267 J. Math. Anal. Appl. 503, No. 1, Article ID 125297, 33 p. (2021). MSC: 35Q82 35Q35 35Q55 35Q56 82D40 76B47 37K10 35K25 35A01 35A02 PDF BibTeX XML Cite \textit{E. Onodera} and \textit{H. Yamasaki}, J. Math. Anal. Appl. 503, No. 1, Article ID 125297, 33 p. (2021; Zbl 1477.35267) Full Text: DOI OpenURL
Ryskamp, S.; Hoefer, M. A.; Biondini, G. Oblique interactions between solitons and mean flows in the Kadomtsev-Petviashvili equation. (English) Zbl 1467.35094 Nonlinearity 34, No. 6, 3583-3617 (2021). MSC: 35C08 35L67 35Q53 37K40 76B25 PDF BibTeX XML Cite \textit{S. Ryskamp} et al., Nonlinearity 34, No. 6, 3583--3617 (2021; Zbl 1467.35094) Full Text: DOI arXiv OpenURL
Rizvi, Syed Tahir Raza; Khan, Salah Ud-Din; Hassan, Mohsan; Fatima, Ishrat; Khan, Shahab Ud-Din Stable propagation of optical solitons for nonlinear Schrödinger equation with dispersion and self phase modulation. (English) Zbl 07318170 Math. Comput. Simul. 179, 126-136 (2021). MSC: 37Kxx 58Jxx 35Qxx 37Jxx PDF BibTeX XML Cite \textit{S. T. R. Rizvi} et al., Math. Comput. Simul. 179, 126--136 (2021; Zbl 07318170) Full Text: DOI OpenURL
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. (English) Zbl 07504865 Chaos Solitons Fractals 138, Article ID 109950, 4 p. (2020). MSC: 35Q35 35C07 37K35 35A30 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Chaos Solitons Fractals 138, Article ID 109950, 4 p. (2020; Zbl 07504865) Full Text: DOI OpenURL
Yang, Di Hamiltonian perturbations at the second-order approximation. (English) Zbl 1471.37064 Ann. Henri Poincaré 21, No. 12, 3919-3937 (2020). Reviewer: Dimitar A. Kolev (Sofia) MSC: 37K10 37J30 35Q53 37L50 PDF BibTeX XML Cite \textit{D. Yang}, Ann. Henri Poincaré 21, No. 12, 3919--3937 (2020; Zbl 1471.37064) Full Text: DOI arXiv OpenURL
Kang, Jing; Liu, Xiaochuan; Olver, P. J.; Qu, Changzheng Liouville correspondences between multicomponent integrable hierarchies. (English. Russian original) Zbl 1457.37087 Theor. Math. Phys. 204, No. 1, 843-874 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 10-45 (2020). MSC: 37K10 37K06 35Q51 35Q35 PDF BibTeX XML Cite \textit{J. Kang} et al., Theor. Math. Phys. 204, No. 1, 843--874 (2020; Zbl 1457.37087); translation from Teor. Mat. Fiz. 203, No. 1, 10--45 (2020) Full Text: DOI arXiv OpenURL
Biswas, Anjan; Kara, Abdul H.; Zhou, Qin; Alzahrani, Abdullah Kamis; Belic, Milivoj R. Conservation laws for highly dispersive optical solitons in birefringent fibers. (English) Zbl 1433.78019 Regul. Chaotic Dyn. 25, No. 2, 166-177 (2020). MSC: 78A60 35Q53 35A30 35C08 37K40 35L65 PDF BibTeX XML Cite \textit{A. Biswas} et al., Regul. Chaotic Dyn. 25, No. 2, 166--177 (2020; Zbl 1433.78019) Full Text: DOI OpenURL
Zhang, Katherine Zhiyuan Benjamin-Ono soliton dynamics in a slowly varying potential. (English) Zbl 1433.35349 Nonlinearity 33, No. 3, 1064-1093 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35Q51 37K40 35A30 44A15 35B20 PDF BibTeX XML Cite \textit{K. Z. Zhang}, Nonlinearity 33, No. 3, 1064--1093 (2020; Zbl 1433.35349) Full Text: DOI arXiv OpenURL
Bensouilah, Abdelwahab; Dinh, Van Duong; Majdoub, Mohamed Scattering in the weighted \( L^2 \)-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. (English) Zbl 1483.35198 Commun. Pure Appl. Anal. 18, No. 5, 2735-2755 (2019). MSC: 35Q55 35L70 35B40 35B33 37K06 37L50 PDF BibTeX XML Cite \textit{A. Bensouilah} et al., Commun. Pure Appl. Anal. 18, No. 5, 2735--2755 (2019; Zbl 1483.35198) Full Text: DOI arXiv OpenURL
Durán, Angel; Dutykh, Denys; Mitsotakis, Dimitrios On the multi-symplectic structure of Boussinesq-type systems. I: Derivation and mathematical properties. (English) Zbl 1448.37081 Physica D 388, 10-21 (2019). MSC: 37K25 76B15 35Q53 35C08 35C07 PDF BibTeX XML Cite \textit{A. Durán} et al., Physica D 388, 10--21 (2019; Zbl 1448.37081) Full Text: DOI arXiv OpenURL
Kong, Liang-Qian; Wang, Lei; Wang, Deng-Shan; Dai, Chao-Qing; Wen, Xiao-Yong; Xu, Ling Evolution of initial discontinuity for the defocusing complex modified KdV equation. (English) Zbl 1430.37085 Nonlinear Dyn. 98, No. 1, 691-702 (2019). MSC: 37K40 37K10 76L05 PDF BibTeX XML Cite \textit{L.-Q. Kong} et al., Nonlinear Dyn. 98, No. 1, 691--702 (2019; Zbl 1430.37085) Full Text: DOI OpenURL
Ahmed, Tanvir; Atai, Javid Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating. (English) Zbl 1430.74071 Nonlinear Dyn. 97, No. 2, 1515-1523 (2019). MSC: 74J35 35C08 37K40 PDF BibTeX XML Cite \textit{T. Ahmed} and \textit{J. Atai}, Nonlinear Dyn. 97, No. 2, 1515--1523 (2019; Zbl 1430.74071) Full Text: DOI OpenURL
Cavalcante, Márcio Initial boundary value problems for some nonlinear dispersive models on the half-line: a review and open problems. (English) Zbl 1431.35151 São Paulo J. Math. Sci. 13, No. 2, 418-434 (2019). MSC: 35Q53 35Q55 35G31 35B65 37K15 PDF BibTeX XML Cite \textit{M. Cavalcante}, São Paulo J. Math. Sci. 13, No. 2, 418--434 (2019; Zbl 1431.35151) Full Text: DOI OpenURL
Trogdon, Thomas; Biondini, Gino Evolution partial differential equations with discontinuous data. (English) Zbl 1428.35649 Q. Appl. Math. 77, No. 4, 689-726 (2019). MSC: 35Q99 65M99 37L50 42B20 37K10 PDF BibTeX XML Cite \textit{T. Trogdon} and \textit{G. Biondini}, Q. Appl. Math. 77, No. 4, 689--726 (2019; Zbl 1428.35649) Full Text: DOI arXiv OpenURL
Genovese, Giuseppe; Lucà, Renato; Valeri, Daniele Invariant measures for the periodic derivative nonlinear Schrödinger equation. (English) Zbl 1420.35354 Math. Ann. 374, No. 3-4, 1075-1138 (2019). MSC: 35Q55 35Q30 37K05 37L50 37K10 37K30 17B69 17B80 76X05 PDF BibTeX XML Cite \textit{G. Genovese} et al., Math. Ann. 374, No. 3--4, 1075--1138 (2019; Zbl 1420.35354) Full Text: DOI arXiv OpenURL
Marvan, Michal; Pavlov, Maxim V. Integrable dispersive chains and their multi-phase solutions. (English) Zbl 1420.37100 Lett. Math. Phys. 109, No. 5, 1219-1245 (2019). Reviewer: Rakib Efendiev (Baku) MSC: 37K15 37K05 37K10 PDF BibTeX XML Cite \textit{M. Marvan} and \textit{M. V. Pavlov}, Lett. Math. Phys. 109, No. 5, 1219--1245 (2019; Zbl 1420.37100) Full Text: DOI arXiv OpenURL
Jin, Jiayin; Liao, Shasha; Lin, Zhiwu Nonlinear modulational instability of dispersive PDE models. (English) Zbl 1410.37067 Arch. Ration. Mech. Anal. 231, No. 3, 1487-1530 (2019). MSC: 37L50 37K45 35Q53 37L15 PDF BibTeX XML Cite \textit{J. Jin} et al., Arch. Ration. Mech. Anal. 231, No. 3, 1487--1530 (2019; Zbl 1410.37067) Full Text: DOI arXiv OpenURL
Zilburg, Alon; Rosenau, Philip Multi-dimensional compactons and compact vortices. (English) Zbl 1411.35063 J. Phys. A, Math. Theor. 51, No. 39, Article ID 395201, 20 p. (2018). MSC: 35C08 35Q53 37K10 76B15 76B25 76B47 PDF BibTeX XML Cite \textit{A. Zilburg} and \textit{P. Rosenau}, J. Phys. A, Math. Theor. 51, No. 39, Article ID 395201, 20 p. (2018; Zbl 1411.35063) Full Text: DOI OpenURL
Pavlov, Maxim V.; Stoilov, Nikola M. The WDVV associativity equations as a high-frequency limit. (English) Zbl 1404.37077 J. Nonlinear Sci. 28, No. 5, 1843-1864 (2018). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K05 37K10 37K20 37K25 PDF BibTeX XML Cite \textit{M. V. Pavlov} and \textit{N. M. Stoilov}, J. Nonlinear Sci. 28, No. 5, 1843--1864 (2018; Zbl 1404.37077) Full Text: DOI OpenURL
Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay Remarks on the Gibbs measures for nonlinear dispersive equations. (English. French summary) Zbl 1405.35193 Ann. Fac. Sci. Toulouse, Math. (6) 27, No. 3, 527-597 (2018). MSC: 35Q55 37K05 37L50 35D30 35R06 35Q53 PDF BibTeX XML Cite \textit{N. Burq} et al., Ann. Fac. Sci. Toulouse, Math. (6) 27, No. 3, 527--597 (2018; Zbl 1405.35193) Full Text: DOI arXiv OpenURL
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor Whitham modulation theory for \((2+1)\)-dimensional equations of Kadomtsev-Petviashvili type. (English) Zbl 1397.37069 J. Phys. A, Math. Theor. 51, No. 21, Article ID 215501, 28 p. (2018). MSC: 37K10 35Q53 35Q35 35L67 76L05 PDF BibTeX XML Cite \textit{M. J. Ablowitz} et al., J. Phys. A, Math. Theor. 51, No. 21, Article ID 215501, 28 p. (2018; Zbl 1397.37069) Full Text: DOI arXiv OpenURL
Zhang, Hai-Qiang; Wang, Yue Multi-dark soliton solutions for the higher-order nonlinear Schrödinger equation in optical fibers. (English) Zbl 1390.37121 Nonlinear Dyn. 91, No. 3, 1921-1930 (2018). MSC: 37K35 35Q55 PDF BibTeX XML Cite \textit{H.-Q. Zhang} and \textit{Y. Wang}, Nonlinear Dyn. 91, No. 3, 1921--1930 (2018; Zbl 1390.37121) Full Text: DOI OpenURL
Rodrigues, L. Miguel Linear asymptotic stability and modulation behavior near periodic waves of the Korteweg-de Vries equation. (English) Zbl 1392.35267 J. Funct. Anal. 274, No. 9, 2553-2605 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35B10 37K45 35P05 35B40 35C07 35B35 PDF BibTeX XML Cite \textit{L. M. Rodrigues}, J. Funct. Anal. 274, No. 9, 2553--2605 (2018; Zbl 1392.35267) Full Text: DOI arXiv OpenURL
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa Traveling wave solutions and conservation laws for nonlinear evolution equation. (English) Zbl 1386.37076 J. Math. Phys. 59, No. 2, 023506, 16 p. (2018). Reviewer: Rodica Luca (Iaşi) MSC: 37L05 37L65 35G20 35C07 35C08 35Q53 35A30 37K40 76M60 70S10 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Math. Phys. 59, No. 2, 023506, 16 p. (2018; Zbl 1386.37076) Full Text: DOI OpenURL
Faver, Timothy E.; Wright, J. Douglas Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity. (English) Zbl 1381.37092 SIAM J. Math. Anal. 50, No. 1, 182-250 (2018). MSC: 37K60 37L60 37L50 74J35 PDF BibTeX XML Cite \textit{T. E. Faver} and \textit{J. D. Wright}, SIAM J. Math. Anal. 50, No. 1, 182--250 (2018; Zbl 1381.37092) Full Text: DOI arXiv OpenURL
Kang, Jing; Liu, Xiaochuan; Olver, Peter J.; Qu, Changzheng Bäcklund transformations for tri-Hamiltonian dual structures of multi-component integrable systems. (English) Zbl 1403.37080 J. Integrable Syst. 2, Article ID xyw016, 43 p. (2017). MSC: 37K35 37K10 35Q35 PDF BibTeX XML Cite \textit{J. Kang} et al., J. Integrable Syst. 2, Article ID xyw016, 43 p. (2017; Zbl 1403.37080) Full Text: DOI OpenURL
Xiao, Zi-Jian; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Wu, Xiao-Yu Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid. (English) Zbl 1375.35075 Waves Random Complex Media 27, No. 1, 1-14 (2017). MSC: 35C08 35Q53 35Q51 76B15 37K40 PDF BibTeX XML Cite \textit{Z.-J. Xiao} et al., Waves Random Complex Media 27, No. 1, 1--14 (2017; Zbl 1375.35075) Full Text: DOI OpenURL
Dinvay, Evgueni; Moldabayev, Daulet; Dutykh, Denys; Kalisch, Henrik The Whitham equation with surface tension. (English) Zbl 1375.76025 Nonlinear Dyn. 88, No. 2, 1125-1138 (2017). MSC: 76B15 76B07 35Q53 70S05 PDF BibTeX XML Cite \textit{E. Dinvay} et al., Nonlinear Dyn. 88, No. 2, 1125--1138 (2017; Zbl 1375.76025) Full Text: DOI arXiv OpenURL
Hoefer, M. A.; El, G. A.; Kamchatnov, A. M. Oblique spatial dispersive shock waves in nonlinear Schrödinger flows. (English) Zbl 1376.37128 SIAM J. Appl. Math. 77, No. 4, 1352-1374 (2017). MSC: 37N10 35C08 35Q55 76L05 35L67 37K40 PDF BibTeX XML Cite \textit{M. A. Hoefer} et al., SIAM J. Appl. Math. 77, No. 4, 1352--1374 (2017; Zbl 1376.37128) Full Text: DOI arXiv OpenURL
Bhatt, Ashish; Moore, Brian E. Structure-preserving exponential Runge-Kutta methods. (English) Zbl 1365.65271 SIAM J. Sci. Comput. 39, No. 2, A593-A612 (2017). MSC: 65P10 37M15 65L06 37L50 PDF BibTeX XML Cite \textit{A. Bhatt} and \textit{B. E. Moore}, SIAM J. Sci. Comput. 39, No. 2, A593--A612 (2017; Zbl 1365.65271) Full Text: DOI OpenURL
Saanouni, Tarek Decay of solutions to a fourth-order nonlinear Schrödinger equation. (English) Zbl 1359.35180 Analysis, München 37, No. 1, 47-54 (2017). MSC: 35Q55 35B40 35B33 37K05 37L50 35P25 35L76 PDF BibTeX XML Cite \textit{T. Saanouni}, Analysis, München 37, No. 1, 47--54 (2017; Zbl 1359.35180) Full Text: DOI OpenURL
Tchakoutio Nguetcho, Aurélien Serge; Li, Jibin; Bilbault, Jean-Marie Global dynamical behaviors in a physical shallow water system. (English) Zbl 1470.37095 Commun. Nonlinear Sci. Numer. Simul. 36, 285-302 (2016). MSC: 37K40 76B25 PDF BibTeX XML Cite \textit{A. S. Tchakoutio Nguetcho} et al., Commun. Nonlinear Sci. Numer. Simul. 36, 285--302 (2016; Zbl 1470.37095) Full Text: DOI OpenURL
Dubrovin, B.; Grava, T.; Klein, C. On critical behaviour in generalized Kadomtsev-Petviashvili equations. (English) Zbl 1415.37095 Physica D 333, 157-170 (2016). MSC: 37K40 35Q51 35B44 PDF BibTeX XML Cite \textit{B. Dubrovin} et al., Physica D 333, 157--170 (2016; Zbl 1415.37095) Full Text: DOI arXiv OpenURL
Zhang, Chaoyan; Li, Biao Nonlocal symmetries and consistent Riccati expansion integrability of \((2+1)\)-dimensional dispersive long-wave equations. (Chinese. English summary) Zbl 1374.35337 Commun. Appl. Math. Comput. 30, No. 4, 618-626 (2016). MSC: 35Q51 37J15 37J35 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{B. Li}, Commun. Appl. Math. Comput. 30, No. 4, 618--626 (2016; Zbl 1374.35337) Full Text: DOI OpenURL
Wang, Junjie; Li, Shengping Multi-symplectic Preissmann methods for DGH equation with strong dispersive term. (Chinese. English summary) Zbl 1374.65209 Chin. Ann. Math., Ser. A 37, No. 3, 291-302 (2016). MSC: 65P10 37M15 35L70 PDF BibTeX XML Cite \textit{J. Wang} and \textit{S. Li}, Chin. Ann. Math., Ser. A 37, No. 3, 291--302 (2016; Zbl 1374.65209) Full Text: DOI OpenURL
Egorova, I.; Gladka, Z.; Teschl, G. On the form of dispersive shock waves of the Korteweg-de Vries equation. (English) Zbl 1361.37063 J. Math. Phys. Anal. Geom. 12, No. 1, 3-16 (2016). MSC: 37K40 35Q53 33E05 37K10 PDF BibTeX XML Cite \textit{I. Egorova} et al., J. Math. Phys. Anal. Geom. 12, No. 1, 3--16 (2016; Zbl 1361.37063) Full Text: DOI arXiv OpenURL
Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M. Co-periodic stability of periodic waves in some Hamiltonian PDEs. (English) Zbl 1362.35037 Nonlinearity 29, No. 11, 3241-3308 (2016). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B35 35B10 35Q35 35Q51 35Q53 37K05 37K45 35C07 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 29, No. 11, 3241--3308 (2016; Zbl 1362.35037) Full Text: DOI arXiv OpenURL
El, G. A.; Khamis, E. G.; Tovbis, A. Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves. (English) Zbl 1391.35354 Nonlinearity 29, No. 9, 2798-2836 (2016). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q55 37K40 35Q15 35C08 PDF BibTeX XML Cite \textit{G. A. El} et al., Nonlinearity 29, No. 9, 2798--2836 (2016; Zbl 1391.35354) Full Text: DOI arXiv Link OpenURL
Genovese, Giuseppe; Lucà, Renato; Valeri, Daniele Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation. (English) Zbl 1350.35181 Sel. Math., New Ser. 22, No. 3, 1663-1702 (2016). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q55 37K05 37L50 37K10 37K30 17B69 17B80 35B05 PDF BibTeX XML Cite \textit{G. Genovese} et al., Sel. Math., New Ser. 22, No. 3, 1663--1702 (2016; Zbl 1350.35181) Full Text: DOI arXiv OpenURL
Kiselev, V. V. Asymptotic behavior of dispersive waves in a spiral structure at large times. (English. Russian original) Zbl 1342.35343 Theor. Math. Phys. 187, No. 1, 463-478 (2016); translation from Teor. Mat. Fiz. 187, No. 1, 21-38 (2016). MSC: 35Q55 37K35 PDF BibTeX XML Cite \textit{V. V. Kiselev}, Theor. Math. Phys. 187, No. 1, 463--478 (2016; Zbl 1342.35343); translation from Teor. Mat. Fiz. 187, No. 1, 21--38 (2016) Full Text: DOI OpenURL
Lee, C. T.; Lee, C. C. On the study of a nonlinear higher order dispersive wave equation: its mathematical physical structure and anomaly soliton phenomena. (English) Zbl 1378.35073 Waves Random Complex Media 25, No. 2, 197-222 (2015). MSC: 35C08 35Q53 37K05 37K40 PDF BibTeX XML Cite \textit{C. T. Lee} and \textit{C. C. Lee}, Waves Random Complex Media 25, No. 2, 197--222 (2015; Zbl 1378.35073) Full Text: DOI OpenURL
Klein, C.; Roidot, K. Numerical study of the long wavelength limit of the Toda lattice. (English) Zbl 1331.35018 Nonlinearity 28, No. 8, 2993-3025 (2015). MSC: 35A35 35B40 35B44 37K60 37K10 34A33 PDF BibTeX XML Cite \textit{C. Klein} and \textit{K. Roidot}, Nonlinearity 28, No. 8, 2993--3025 (2015; Zbl 1331.35018) Full Text: DOI arXiv Link OpenURL
Terng, Chuu-Lian Dispersive geometric curve flows. (English) Zbl 1325.37050 Cao, Huai-Dong (ed.) et al., Regularity and evolution of nonlinear equations. Essays dedicated to Richard Hamilton, Leon Simon, and Karen Uhlenbeck. Somerville, MA: International Press (ISBN 978-1-57146-303-6/hbk). Surveys in Differential Geometry 19, 179-229 (2015). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K10 37K25 37K35 53C44 PDF BibTeX XML Cite \textit{C.-L. Terng}, Surv. Differ. Geom. 19, 179--229 (2015; Zbl 1325.37050) Full Text: arXiv OpenURL
Germain, Pierre; Hani, Zaher; Thomann, Laurent On the continuous resonant equation for NLS. II: Statistical study. (English) Zbl 1326.35344 Anal. PDE 8, No. 7, 1733-1756 (2015). MSC: 35Q55 37K05 37L50 35D30 35R06 PDF BibTeX XML Cite \textit{P. Germain} et al., Anal. PDE 8, No. 7, 1733--1756 (2015; Zbl 1326.35344) Full Text: DOI arXiv OpenURL
Ma, Zheng-Yi; Fei, Jin-Xi; Du, Xiao-Yang Symmetry reduction of the \((2+1)\)-dimensional modified dispersive water-wave system. (English) Zbl 1321.37064 Commun. Theor. Phys. 64, No. 2, 127-132 (2015). MSC: 37K05 37N10 37K40 37K30 35C08 PDF BibTeX XML Cite \textit{Z.-Y. Ma} et al., Commun. Theor. Phys. 64, No. 2, 127--132 (2015; Zbl 1321.37064) Full Text: DOI OpenURL
Nahmod, Andrea R.; Staffilani, Gigliola Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space. (English) Zbl 1326.35353 J. Eur. Math. Soc. (JEMS) 17, No. 7, 1687-1759 (2015). Reviewer: Alessandro Selvitella (Hamilton) MSC: 35Q55 37K05 37L50 35B10 35B34 35R60 PDF BibTeX XML Cite \textit{A. R. Nahmod} and \textit{G. Staffilani}, J. Eur. Math. Soc. (JEMS) 17, No. 7, 1687--1759 (2015; Zbl 1326.35353) Full Text: DOI arXiv OpenURL
Jenkins, Robert Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation. (English) Zbl 1322.35107 Nonlinearity 28, No. 7, 2131-2180 (2015). MSC: 35Q15 35Q55 37K15 35B40 78A60 76L05 35B65 PDF BibTeX XML Cite \textit{R. Jenkins}, Nonlinearity 28, No. 7, 2131--2180 (2015; Zbl 1322.35107) Full Text: DOI arXiv OpenURL
Yang, JianWei Nonlinear Schrödinger equations on compact Zoll manifolds with odd growth. (English) Zbl 1323.35169 Sci. China, Math. 58, No. 5, 1023-1046 (2015). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q55 37K05 37L50 81Q20 PDF BibTeX XML Cite \textit{J. Yang}, Sci. China, Math. 58, No. 5, 1023--1046 (2015; Zbl 1323.35169) Full Text: DOI OpenURL
Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay Global infinite energy solutions for the cubic wave equation. (Solutions globales d’énergie infinie pour l’équation des ondes cubique.) (English. French summary) Zbl 1320.35217 Bull. Soc. Math. Fr. 143, No. 2, 301-313 (2015). MSC: 35L71 37K05 37L50 35D30 35L15 PDF BibTeX XML Cite \textit{N. Burq} et al., Bull. Soc. Math. Fr. 143, No. 2, 301--313 (2015; Zbl 1320.35217) Full Text: DOI arXiv Link OpenURL
Tzvetkov, Nikolay; Visciglia, Nicola Invariant measures and long time behaviour for the Benjamin-Ono equation. II. (English. French summary) Zbl 1315.37051 J. Math. Pures Appl. (9) 103, No. 1, 102-141 (2015). Reviewer: Andrew Pickering (Madrid) MSC: 37L40 37K10 PDF BibTeX XML Cite \textit{N. Tzvetkov} and \textit{N. Visciglia}, J. Math. Pures Appl. (9) 103, No. 1, 102--141 (2015; Zbl 1315.37051) Full Text: DOI arXiv OpenURL
Chen, Junchao; Chen, Yong Nonlocal symmetry constraints and exact interaction solutions of the \((2+1)\) dimensional modified generalized long dispersive wave equation. (English) Zbl 1420.35311 J. Nonlinear Math. Phys. 21, No. 3, 454-472 (2014). MSC: 35Q53 17B80 58J70 37K10 76B25 PDF BibTeX XML Cite \textit{J. Chen} and \textit{Y. Chen}, J. Nonlinear Math. Phys. 21, No. 3, 454--472 (2014; Zbl 1420.35311) Full Text: DOI OpenURL
Frénod, Emmanuel; Lutz, Mathieu On the geometrical gyro-kinetic theory. (English) Zbl 1353.37147 Kinet. Relat. Models 7, No. 4, 621-659 (2014). MSC: 37L50 37K05 37K25 53D05 82D10 70G45 70G65 PDF BibTeX XML Cite \textit{E. Frénod} and \textit{M. Lutz}, Kinet. Relat. Models 7, No. 4, 621--659 (2014; Zbl 1353.37147) Full Text: DOI arXiv OpenURL
Schlag, W. The method of concentration compactness and dispersive Hamiltonian evolution equations. (English) Zbl 1319.35112 Jensen, Arne (ed.), XVIIth international congress on mathematical physics, Aalborg, Denmark, August 6–11, 2012. Hackensack, NJ: World Scientific (ISBN 978-981-4449-23-6/hbk; 978-981-4449-25-0/ebook). 174-196 (2014). Reviewer: Song Jiang (Beijing) MSC: 35L70 35L52 35B30 35B06 35B40 35B44 PDF BibTeX XML Cite \textit{W. Schlag}, in: XVIIth international congress on mathematical physics, Aalborg, Denmark, August 6--11, 2012. Hackensack, NJ: World Scientific. 174--196 (2014; Zbl 1319.35112) Full Text: DOI Link OpenURL
Klein, C.; Roidot, K. Numerical study of the semiclassical limit of the Davey-Stewartson II equations. (English) Zbl 1301.35153 Nonlinearity 27, No. 9, 2177-2214 (2014). MSC: 35Q55 37K10 37K40 65M70 35B44 PDF BibTeX XML Cite \textit{C. Klein} and \textit{K. Roidot}, Nonlinearity 27, No. 9, 2177--2214 (2014; Zbl 1301.35153) Full Text: DOI arXiv OpenURL
Pavlov, Maxim V. Integrable dispersive chains and energy dependent Schrödinger operator. (English) Zbl 1304.35470 J. Phys. A, Math. Theor. 47, No. 29, Article ID 295204, 22 p. (2014). Reviewer: Svetlin Georgiev (Rousse) MSC: 35P30 35J10 35Q53 37K10 PDF BibTeX XML Cite \textit{M. V. Pavlov}, J. Phys. A, Math. Theor. 47, No. 29, Article ID 295204, 22 p. (2014; Zbl 1304.35470) Full Text: DOI arXiv OpenURL
Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay Long time dynamics for the one dimensional non linear Schrödinger equation. (Dynamiques en temps long pour l’équation de Schrödinger non linéaire.) (English. French summary) Zbl 1317.35226 Ann. Inst. Fourier 63, No. 6, 2137-2198 (2013). Reviewer: Andrew Pickering (Madrid) MSC: 35Q55 35B45 37K05 37L50 PDF BibTeX XML Cite \textit{N. Burq} et al., Ann. Inst. Fourier 63, No. 6, 2137--2198 (2013; Zbl 1317.35226) Full Text: DOI arXiv Link OpenURL
Gordoa, P. R.; Muğan, U.; Pickering, A. Generalized scaling reductions and Painlevé hierarchies. (English) Zbl 1293.35278 Appl. Math. Comput. 219, No. 15, 8104-8111 (2013). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{P. R. Gordoa} et al., Appl. Math. Comput. 219, No. 15, 8104--8111 (2013; Zbl 1293.35278) Full Text: DOI OpenURL
Isaza, Pedro Unique continuation principle for high order equations of Korteweg-de Vries type. (English) Zbl 1288.35420 Electron. J. Differ. Equ. 2013, Paper No. 246, 25 p. (2013). MSC: 35Q53 37K05 37K10 PDF BibTeX XML Cite \textit{P. Isaza}, Electron. J. Differ. Equ. 2013, Paper No. 246, 25 p. (2013; Zbl 1288.35420) Full Text: arXiv EMIS OpenURL
Comech, Andrew Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. (English) Zbl 1277.39010 Discrete Contin. Dyn. Syst. 33, No. 7, 2711-2755 (2013). MSC: 39A12 35B40 35B41 35C08 37K40 37L30 65M06 65M12 65N06 81Q05 PDF BibTeX XML Cite \textit{A. Comech}, Discrete Contin. Dyn. Syst. 33, No. 7, 2711--2755 (2013; Zbl 1277.39010) Full Text: DOI arXiv OpenURL
Masoero, Davide; Raimondo, Andrea Semiclassical limit for generalized KdV equations before the gradient catastrophe. (English) Zbl 1291.35300 Lett. Math. Phys. 103, No. 5, 559-583 (2013). MSC: 35Q53 37L50 37K06 47D60 PDF BibTeX XML Cite \textit{D. Masoero} and \textit{A. Raimondo}, Lett. Math. Phys. 103, No. 5, 559--583 (2013; Zbl 1291.35300) Full Text: DOI arXiv OpenURL
Shi, Wei; Wu, Xinyuan; Xia, Jianlin Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. (English) Zbl 1284.65186 J. Comput. Phys. 231, No. 22, 7671-7694 (2012). MSC: 65P10 37M15 35L65 35L05 PDF BibTeX XML Cite \textit{W. Shi} et al., J. Comput. Phys. 231, No. 22, 7671--7694 (2012; Zbl 1284.65186) Full Text: DOI OpenURL
Wang, Xiao-Li; Zhang, Wei-Guo; Zhai, Bao-Guo; Zhang, Hai-Qiang Rogue waves of the higher-order dispersive nonlinear Schrödinger equation. (English) Zbl 1264.35234 Commun. Theor. Phys. 58, No. 4, 531-538 (2012). MSC: 35Q55 37K35 78A50 PDF BibTeX XML Cite \textit{X.-L. Wang} et al., Commun. Theor. Phys. 58, No. 4, 531--538 (2012; Zbl 1264.35234) Full Text: DOI OpenURL
Deng, Yu Two-dimensional nonlinear Schrödinger equation with random radial data. (English) Zbl 1264.35212 Anal. PDE 5, No. 5, 913-960 (2012). MSC: 35Q55 37L40 37L50 37K05 PDF BibTeX XML Cite \textit{Y. Deng}, Anal. PDE 5, No. 5, 913--960 (2012; Zbl 1264.35212) Full Text: DOI arXiv Link OpenURL
Ferapontov, E. V.; Novikov, V. S.; Stoilov, N. M. Dispersive deformations of Hamiltonian systems of hydrodynamic type in \(2+1\) dimensions. (English) Zbl 1321.37069 Physica D 241, No. 23-24, 2138-2144 (2012). MSC: 37K10 PDF BibTeX XML Cite \textit{E. V. Ferapontov} et al., Physica D 241, No. 23--24, 2138--2144 (2012; Zbl 1321.37069) Full Text: DOI arXiv OpenURL
Wen, Xiao-Yyong Fission and fusion interaction phenomena of the \((2+1)\)-dimensional dispersive long wave equations. (English) Zbl 1248.35179 Rep. Math. Phys. 69, No. 2, 197-212 (2012). MSC: 35Q51 35C08 37K35 68W30 PDF BibTeX XML Cite \textit{X.-Y. Wen}, Rep. Math. Phys. 69, No. 2, 197--212 (2012; Zbl 1248.35179) Full Text: DOI OpenURL
Mizumachi, Tetsu; Pelinovsky, Dmitry On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. (English) Zbl 1260.37047 Discrete Contin. Dyn. Syst., Ser. S 5, No. 5, 971-987 (2012). Reviewer: Jens Rademacher (Bremen) MSC: 37K60 35B35 35Q55 37K40 PDF BibTeX XML Cite \textit{T. Mizumachi} and \textit{D. Pelinovsky}, Discrete Contin. Dyn. Syst., Ser. S 5, No. 5, 971--987 (2012; Zbl 1260.37047) Full Text: DOI OpenURL
Ibrahim, S.; Majdoub, M.; Masmoudi, N.; Nakanishi, K. Scattering for the two-dimensional NLS with exponential nonlinearity. (English) Zbl 1241.35188 Nonlinearity 25, No. 6, 1843-1849 (2012). MSC: 35Q55 35L70 35B40 35B33 37K05 37L50 PDF BibTeX XML Cite \textit{S. Ibrahim} et al., Nonlinearity 25, No. 6, 1843--1849 (2012; Zbl 1241.35188) Full Text: DOI Link OpenURL
Herrmann, Michael Oscillatory waves in discrete scalar conservation laws. (English) Zbl 1261.65088 Math. Models Methods Appl. Sci. 22, No. 1, 1150002, 21 p. (2012). Reviewer: Fozi Dannan (Damascus) MSC: 65M06 35L65 65P10 37M15 PDF BibTeX XML Cite \textit{M. Herrmann}, Math. Models Methods Appl. Sci. 22, No. 1, 1150002, 21 p. (2012; Zbl 1261.65088) Full Text: DOI arXiv OpenURL
Gérard, Patrick; Grellier, Sandrine Invariant tori for the cubic Szegö equation. (English) Zbl 1252.35026 Invent. Math. 187, No. 3, 707-754 (2012). Reviewer: Jiansheng Geng (Nanjing) MSC: 35B15 37K15 47B35 35B35 35C07 PDF BibTeX XML Cite \textit{P. Gérard} and \textit{S. Grellier}, Invent. Math. 187, No. 3, 707--754 (2012; Zbl 1252.35026) Full Text: DOI arXiv OpenURL
Colliander, James; Oh, Tadahiro Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^{2}(\mathbb{T})\). (English) Zbl 1260.35199 Duke Math. J. 161, No. 3, 367-414 (2012). Reviewer: Jiansheng Geng (Nanjing) MSC: 35Q55 37K05 37L50 37L40 PDF BibTeX XML Cite \textit{J. Colliander} and \textit{T. Oh}, Duke Math. J. 161, No. 3, 367--414 (2012; Zbl 1260.35199) Full Text: DOI arXiv OpenURL
Novikov, V. S.; Ferapontov, E. V. On the classification of scalar evolutionary integrable equations in 2 + 1 dimensions. (English) Zbl 1314.35131 J. Math. Phys. 52, No. 2, 023516, 11 p. (2011). MSC: 35Q51 35Q53 37K10 37L05 37L50 35L77 PDF BibTeX XML Cite \textit{V. S. Novikov} and \textit{E. V. Ferapontov}, J. Math. Phys. 52, No. 2, 023516, 11 p. (2011; Zbl 1314.35131) Full Text: DOI arXiv OpenURL
Zhang, Yu-Feng A few expanding integrable models, Hamiltonian structures and constrained flows. (English) Zbl 1264.37036 Commun. Theor. Phys. 55, No. 2, 273-290 (2011). MSC: 37K10 37K30 35Q53 PDF BibTeX XML Cite \textit{Y.-F. Zhang}, Commun. Theor. Phys. 55, No. 2, 273--290 (2011; Zbl 1264.37036) Full Text: DOI OpenURL
Saanouni, Tarek Decay of solutions to a 2D Schrödinger equation. (English) Zbl 1240.35521 J. Partial Differ. Equations 24, No. 1, 37-54 (2011). MSC: 35Q55 35B40 35B33 37K05 37L50 PDF BibTeX XML Cite \textit{T. Saanouni}, J. Partial Differ. Equations 24, No. 1, 37--54 (2011; Zbl 1240.35521) Full Text: DOI OpenURL
Bambusi, Dario; Cuccagna, Scipio On dispersion of small energy solutions of the nonlinear Klein-Gordon equation with a potential. (On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential.) (English) Zbl 1237.35115 Am. J. Math. 133, No. 5, 1421-1468 (2011). Reviewer: Shun-Tang Wu (Zhonghe) MSC: 35L71 35Q55 37K10 35B40 37K55 81Q05 PDF BibTeX XML Cite \textit{D. Bambusi} and \textit{S. Cuccagna}, Am. J. Math. 133, No. 5, 1421--1468 (2011; Zbl 1237.35115) Full Text: DOI arXiv OpenURL
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S. Non-perturbative string theory from water waves. (English) Zbl 1254.81054 J. Phys. A, Math. Theor. 44, No. 37, Article ID 375401, 26 p. (2011). Reviewer: T. C. Mohan (Dehra Dun) MSC: 81R12 37K10 81T30 PDF BibTeX XML Cite \textit{R. Iyer} et al., J. Phys. A, Math. Theor. 44, No. 37, Article ID 375401, 26 p. (2011; Zbl 1254.81054) Full Text: DOI arXiv OpenURL
Mukhopadhyay, B.; Demircioglu, B.; Chatterjee, A. Quantum dynamics of a nonlinear kicked oscillator. (English) Zbl 1234.35206 Nonlinear Dyn. Syst. Theory 11, No. 2, 173-182 (2011). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q40 81Q50 37L50 PDF BibTeX XML Cite \textit{B. Mukhopadhyay} et al., Nonlinear Dyn. Syst. Theory 11, No. 2, 173--182 (2011; Zbl 1234.35206) OpenURL
Nakanishi, Kenji; Schlag, Wilhelm Invariant manifolds and dispersive Hamiltonian evolution equations. (English) Zbl 1235.37002 Zurich Lectures in Advanced Mathematics. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-095-1/pbk). 253 p. (2011). Reviewer: Ömer Kavaklioglu (Washington) MSC: 37-02 37D10 37K40 37K45 35L70 35Q55 PDF BibTeX XML Cite \textit{K. Nakanishi} and \textit{W. Schlag}, Invariant manifolds and dispersive Hamiltonian evolution equations. Zürich: European Mathematical Society (EMS) (2011; Zbl 1235.37002) Full Text: DOI Link OpenURL
Long, Yao; Rui, Weiguo; Li, Zhenyang New soliton-like solutions and compacton-like periodic wave solutions of parametric type to a nonlinear dispersive equation. (English) Zbl 1237.37051 Int. J. Comput. Math. 88, No. 5, 957-968 (2011). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37K40 37K50 35Q51 PDF BibTeX XML Cite \textit{Y. Long} et al., Int. J. Comput. Math. 88, No. 5, 957--968 (2011; Zbl 1237.37051) Full Text: DOI OpenURL
Craig, Walter; Guyenne, Philippe; Sulem, Catherine A Hamiltonian approach to nonlinear modulation of surface water waves. (English) Zbl 1231.76028 Wave Motion 47, No. 8, 552-563 (2010). MSC: 76B15 35Q55 35L71 37K05 37N10 PDF BibTeX XML Cite \textit{W. Craig} et al., Wave Motion 47, No. 8, 552--563 (2010; Zbl 1231.76028) Full Text: DOI OpenURL
Leach, J. A.; Shaw, S. An initial-boundary value problem for the Korteweg-de Vries equation on the negative quarter-plane. (English) Zbl 1231.35207 Wave Motion 47, No. 2, 85-102 (2010). MSC: 35Q53 37K45 35B40 PDF BibTeX XML Cite \textit{J. A. Leach} and \textit{S. Shaw}, Wave Motion 47, No. 2, 85--102 (2010; Zbl 1231.35207) Full Text: DOI OpenURL
Bao, Zhihua; Sirendaoerji; Bao, Laiyou General multilinear variable separation solutions for \((2+1)\)-dimensional dispersive long-wave equations. (Chinese. English summary) Zbl 1240.35431 J. Inn. Mong. Norm. Univ., Nat. Sci. 39, No. 1, 18-21 (2010). MSC: 35Q51 35C05 37K40 PDF BibTeX XML Cite \textit{Z. Bao} et al., J. Inn. Mong. Norm. Univ., Nat. Sci. 39, No. 1, 18--21 (2010; Zbl 1240.35431) OpenURL
Scimiterna, Christian; Levi, Decio \(C\)-integrability test for discrete equations via multiple scale expansions. (English) Zbl 1219.39002 SIGMA, Symmetry Integrability Geom. Methods Appl. 6, Paper 070, 17 p. (2010). MSC: 39A12 39A10 34K99 34E13 37J30 37K10 PDF BibTeX XML Cite \textit{C. Scimiterna} and \textit{D. Levi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 6, Paper 070, 17 p. (2010; Zbl 1219.39002) Full Text: DOI arXiv EuDML OpenURL
Zhong, Sijia Global existence of solutions to Schrödinger equations on compact Riemannian manifolds below \(H^1\). (Existence globale de solutions des équations de Schrödinger sur les variétés riemanniennes compactes en régularité plus faible que \(H^1\).) (English. French summary) Zbl 1236.35002 Bull. Soc. Math. Fr. 138, No. 4, 583-613 (2010). Reviewer: Sudhir R. Jain (Mumbai) MSC: 35A01 35Q55 37K05 37L50 81Q20 58J60 PDF BibTeX XML Cite \textit{S. Zhong}, Bull. Soc. Math. Fr. 138, No. 4, 583--613 (2010; Zbl 1236.35002) Full Text: DOI Link OpenURL