Li, Jing; Wang, Yan; Hou, Bo; Gao, Weidong; Gao, Suogang Non-bipartite distance-regular graphs with diameters 5, 6 and a smallest eigenvalue. (English) Zbl 07493896 Graphs Comb. 38, No. 3, Paper No. 55, 14 p. (2022). Reviewer: Mirko Lepović (Kragujevac) MSC: 05C12 05C50 05C75 05E30 PDF BibTeX XML Cite \textit{J. Li} et al., Graphs Comb. 38, No. 3, Paper No. 55, 14 p. (2022; Zbl 07493896) Full Text: DOI OpenURL
Jazaeri, Mojtaba Distance-regular graphs admitting a perfect 1-code. (English) Zbl 07488418 Discrete Math. 345, No. 5, Article ID 112787, 11 p. (2022). MSC: 05E30 05C12 94B25 PDF BibTeX XML Cite \textit{M. Jazaeri}, Discrete Math. 345, No. 5, Article ID 112787, 11 p. (2022; Zbl 07488418) Full Text: DOI OpenURL
Ghorbani, Ebrahim; Koohestani, Masoumeh Spectral classes of strongly-regular and distance-regular graphs. (English) Zbl 07485759 Linear Algebra Appl. 641, 182-199 (2022). MSC: 05E30 05C50 05C75 PDF BibTeX XML Cite \textit{E. Ghorbani} and \textit{M. Koohestani}, Linear Algebra Appl. 641, 182--199 (2022; Zbl 07485759) Full Text: DOI OpenURL
Neumaier, Arnold; Penjić, Safet A unified view of inequalities for distance-regular graphs. I. (English) Zbl 1483.05204 J. Comb. Theory, Ser. B 154, 392-439 (2022). MSC: 05E30 05C75 05C12 05C25 05-02 PDF BibTeX XML Cite \textit{A. Neumaier} and \textit{S. Penjić}, J. Comb. Theory, Ser. B 154, 392--439 (2022; Zbl 1483.05204) Full Text: DOI OpenURL
Howlader, Aditi; Panigrahi, Pratima On the distance spectrum of minimal cages and associated distance biregular graphs. (English) Zbl 1480.05044 Linear Algebra Appl. 636, 115-133 (2022). MSC: 05C12 05C50 PDF BibTeX XML Cite \textit{A. Howlader} and \textit{P. Panigrahi}, Linear Algebra Appl. 636, 115--133 (2022; Zbl 1480.05044) Full Text: DOI arXiv OpenURL
Zhang, Yuanjiang; Liang, Xiaoye; Koolen, Jack H. The 2-partially distance-regular graphs such that their second largest local eigenvalues are at most one. (English) Zbl 1480.05049 Discrete Math. 345, No. 3, Article ID 112749, 12 p. (2022). MSC: 05C12 05C50 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Discrete Math. 345, No. 3, Article ID 112749, 12 p. (2022; Zbl 1480.05049) Full Text: DOI OpenURL
Tsiovkina, Ludmila Yu. On a class of edge-transitive distance-regular antipodal covers of complete graphs. (English) Zbl 07504268 Ural Math. J. 7, No. 2, 136-158 (2021). MSC: 05E18 05C12 05C25 20B25 PDF BibTeX XML Cite \textit{L. Yu. Tsiovkina}, Ural Math. J. 7, No. 2, 136--158 (2021; Zbl 07504268) Full Text: DOI MNR OpenURL
Makhnev, Alexander A.; Belousov, Ivan N. Shilla graphs with \(b = 5\) and \(b = 6\). (English) Zbl 07504262 Ural Math. J. 7, No. 2, 51-58 (2021). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{I. N. Belousov}, Ural Math. J. 7, No. 2, 51--58 (2021; Zbl 07504262) Full Text: DOI MNR OpenURL
Koohestani, Masoumeh; Obata, Nobuaki; Tanaka, Hajime Scaling limits for the Gibbs states on distance-regular graphs with classical parameters. (English) Zbl 07453208 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 104, 22 p. (2021). MSC: 46L53 60F05 05E30 PDF BibTeX XML Cite \textit{M. Koohestani} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 104, 22 p. (2021; Zbl 07453208) Full Text: DOI arXiv OpenURL
Makhnev, Alexandr A.; Nirova, Marina S. On distance-regular graphs with \(c_2 = 2\). (English. Russian original) Zbl 07452432 Discrete Math. Appl. 31, No. 6, 397-401 (2021); translation from Diskretn. Mat. 32, No. 1, 74-80 (2020). MSC: 05C12 68-XX PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. S. Nirova}, Discrete Math. Appl. 31, No. 6, 397--401 (2021; Zbl 07452432); translation from Diskretn. Mat. 32, No. 1, 74--80 (2020) Full Text: DOI OpenURL
Morales, John Vincent S.; Palma, Tessie M. On quantum adjacency algebras of Doob graphs and their irreducible modules. (English) Zbl 1479.05369 J. Algebr. Comb. 54, No. 4, 979-998 (2021). MSC: 05E30 05C50 81S25 15A04 PDF BibTeX XML Cite \textit{J. V. S. Morales} and \textit{T. M. Palma}, J. Algebr. Comb. 54, No. 4, 979--998 (2021; Zbl 1479.05369) Full Text: DOI OpenURL
Makhnev, Aleksandr Alekseevich; Nirova, Marina Sefovna Distance-regular Terwilliger graphs with intersection arrays \(\{50,42,1;1,2,50\}\) and \(\{50,42,9;1,2,42\}\) do not exist. (Russian. English summary) Zbl 1475.05054 Sib. Èlektron. Mat. Izv. 18, 1075-1082 (2021). MSC: 05C12 05E30 05C75 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. S. Nirova}, Sib. Èlektron. Mat. Izv. 18, 1075--1082 (2021; Zbl 1475.05054) Full Text: DOI OpenURL
Shi, Minjia; Rioul, Olivier; Solé, Patrick Designs in finite metric spaces: a probabilistic approach. (English) Zbl 1479.05371 Graphs Comb. 37, No. 5, 1653-1667 (2021). MSC: 05E30 05C10 05B30 05E18 42C05 PDF BibTeX XML Cite \textit{M. Shi} et al., Graphs Comb. 37, No. 5, 1653--1667 (2021; Zbl 1479.05371) Full Text: DOI arXiv OpenURL
Makhnev, A. A.; Belousov, I. N.; Golubyatnikov, M. P.; Nirova, M. S. Three infinite families of Shilla graphs do not exist. (English. Russian original) Zbl 1477.05065 Dokl. Math. 103, No. 3, 133-138 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 45-50 (2021). MSC: 05C12 05C50 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Dokl. Math. 103, No. 3, 133--138 (2021; Zbl 1477.05065); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 45--50 (2021) Full Text: DOI OpenURL
Akbari, Saieed; Haemers, Willem H.; Hosseinzadeh, Mohammad Ali; Kabanov, Vladislav V.; Konstantinova, Elena V.; Shalaginov, Leonid Spectra of strongly Deza graphs. (English) Zbl 1479.05188 Discrete Math. 344, No. 12, Article ID 112622, 11 p. (2021). Reviewer: Sebastian Cioaba (Newark) MSC: 05C50 05E30 05C51 PDF BibTeX XML Cite \textit{S. Akbari} et al., Discrete Math. 344, No. 12, Article ID 112622, 11 p. (2021; Zbl 1479.05188) Full Text: DOI arXiv OpenURL
Kivva, Bohdan A characterization of Johnson and Hamming graphs and proof of Babai’s conjecture. (English) Zbl 1473.05325 J. Comb. Theory, Ser. B 151, 339-374 (2021). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{B. Kivva}, J. Comb. Theory, Ser. B 151, 339--374 (2021; Zbl 1473.05325) Full Text: DOI arXiv OpenURL
Tsiovkina, Ludmila Yur’evna On a class of vertex-transitive distance-regular covers of complete graphs. (Russian. English summary) Zbl 1468.05024 Sib. Èlektron. Mat. Izv. 18, 758-781 (2021). MSC: 05B25 05E18 PDF BibTeX XML Cite \textit{L. Y. Tsiovkina}, Sib. Èlektron. Mat. Izv. 18, 758--781 (2021; Zbl 1468.05024) Full Text: DOI OpenURL
Belousov, I. N.; Makhnev, A. A. Inverse problems in the theory of distance-regular graphs: dual 2-designs. (English. Russian original) Zbl 1469.05050 Proc. Steklov Inst. Math. 313, Suppl. 1, S14-S20 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 25, No. 4, 44-51 (2019). MSC: 05C12 05E30 05B30 PDF BibTeX XML Cite \textit{I. N. Belousov} and \textit{A. A. Makhnev}, Proc. Steklov Inst. Math. 313, S14--S20 (2021; Zbl 1469.05050); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 25, No. 4, 44--51 (2019) Full Text: DOI OpenURL
Ganie, Hilal A.; Pirzada, S.; Rather, Bilal A.; Shaban, Rezwan Ul On Laplacian eigenvalues of graphs and Brouwer’s conjecture. (English) Zbl 1469.05103 J. Ramanujan Math. Soc. 36, No. 1, 13-21 (2021). MSC: 05C50 05C30 05E30 PDF BibTeX XML Cite \textit{H. A. Ganie} et al., J. Ramanujan Math. Soc. 36, No. 1, 13--21 (2021; Zbl 1469.05103) Full Text: Link OpenURL
Koolen, Jack H.; Cao, Meng-Yue; Yang, Qianqian Recent progress on graphs with fixed smallest adjacency eigenvalue: a survey. (English) Zbl 1469.05106 Graphs Comb. 37, No. 4, 1139-1178 (2021). MSC: 05C50 05C22 05C75 05E30 05D99 11H06 PDF BibTeX XML Cite \textit{J. H. Koolen} et al., Graphs Comb. 37, No. 4, 1139--1178 (2021; Zbl 1469.05106) Full Text: DOI arXiv OpenURL
Makhnev, A. A. Automorphisms of a distance regular graph with intersection array \(\{21,18,12,4;1,1,6,21\}\). (English. Russian original) Zbl 07369698 Math. Notes 109, No. 2, 247-255 (2021); translation from Mat. Zametki 109, No. 2, 247-256 (2021). MSC: 20Dxx 05-XX 05Cxx 20Dxx 52-XX PDF BibTeX XML Cite \textit{A. A. Makhnev}, Math. Notes 109, No. 2, 247--255 (2021; Zbl 07369698); translation from Mat. Zametki 109, No. 2, 247--256 (2021) Full Text: DOI OpenURL
Tian, Yi; Hou, Lihang; Hou, Bo; Gao, Suogang \(D\)-magic labelings of the folded \(n\)-cube. (English) Zbl 1469.05152 Discrete Math. 344, No. 9, Article ID 112520, 7 p. (2021). Reviewer: P. Jeyanthi (Tiruchendur) MSC: 05C78 05C12 PDF BibTeX XML Cite \textit{Y. Tian} et al., Discrete Math. 344, No. 9, Article ID 112520, 7 p. (2021; Zbl 1469.05152) Full Text: DOI OpenURL
Kivva, Bohdan On the spectral gap and the automorphism group of distance-regular graphs. (English) Zbl 07360921 J. Comb. Theory, Ser. B 149, 161-197 (2021). MSC: 20Bxx 20Dxx 05Bxx PDF BibTeX XML Cite \textit{B. Kivva}, J. Comb. Theory, Ser. B 149, 161--197 (2021; Zbl 07360921) Full Text: DOI arXiv OpenURL
MacLean, Mark S.; Penjić, Safet A combinatorial basis for Terwilliger algebra modules of a bipartite distance-regular graph. (English) Zbl 1466.05226 Discrete Math. 344, No. 7, Article ID 112393, 17 p. (2021). MSC: 05E30 05C12 33C80 PDF BibTeX XML Cite \textit{M. S. MacLean} and \textit{S. Penjić}, Discrete Math. 344, No. 7, Article ID 112393, 17 p. (2021; Zbl 1466.05226) Full Text: DOI OpenURL
Azimi, A.; Bapat, R. B.; Farrokhi D. G., M. Resistance distance of blowups of trees. (English) Zbl 1466.05032 Discrete Math. 344, No. 7, Article ID 112387, 11 p. (2021). MSC: 05C05 05C12 15A09 PDF BibTeX XML Cite \textit{A. Azimi} et al., Discrete Math. 344, No. 7, Article ID 112387, 11 p. (2021; Zbl 1466.05032) Full Text: DOI OpenURL
Huang, Jia Norton algebras of the Hamming graphs via linear characters. (English) Zbl 1465.05078 Electron. J. Comb. 28, No. 2, Research Paper P2.30, 36 p. (2021). MSC: 05C25 05A15 05E30 17D99 05C12 PDF BibTeX XML Cite \textit{J. Huang}, Electron. J. Comb. 28, No. 2, Research Paper P2.30, 36 p. (2021; Zbl 1465.05078) Full Text: DOI arXiv OpenURL
Renteln, Paul On the paper “Some constraints on the missing Moore graph”. (English) Zbl 07352025 Australas. J. Comb. 79, Part 1, 193-194 (2021). MSC: 00Bxx 05C50 05B20 PDF BibTeX XML Cite \textit{P. Renteln}, Australas. J. Comb. 79, Part 1, 193--194 (2021; Zbl 07352025) Full Text: Link OpenURL
Terwilliger, Paul Tridiagonal pairs of \(q\)-Racah-type and the \(q\)-tetrahedron algebra. (English) Zbl 1481.17025 J. Pure Appl. Algebra 225, No. 8, Article ID 106632, 33 p. (2021). MSC: 17B37 15A21 PDF BibTeX XML Cite \textit{P. Terwilliger}, J. Pure Appl. Algebra 225, No. 8, Article ID 106632, 33 p. (2021; Zbl 1481.17025) Full Text: DOI arXiv OpenURL
Martin, William J. Scaffolds: a graph-theoretic tool for tensor computations related to Bose-Mesner algebras. (English) Zbl 1462.05362 Linear Algebra Appl. 619, 50-106 (2021). MSC: 05E30 15A72 16S50 05C83 05C90 PDF BibTeX XML Cite \textit{W. J. Martin}, Linear Algebra Appl. 619, 50--106 (2021; Zbl 1462.05362) Full Text: DOI OpenURL
Hanson, Edward How to recognize a Leonard pair. (English) Zbl 1468.15008 Linear Multilinear Algebra 69, No. 1, 177-192 (2021). Reviewer: Tin Yau Tam (Reno) MSC: 15A21 15A04 15A20 PDF BibTeX XML Cite \textit{E. Hanson}, Linear Multilinear Algebra 69, No. 1, 177--192 (2021; Zbl 1468.15008) Full Text: DOI arXiv OpenURL
Taniguchi, Hiroaki Distance regular graphs arising from dimensional dual hyperovals. (English) Zbl 1479.51009 Finite Fields Appl. 69, Article ID 101776, 15 p. (2021). Reviewer: Daniele Bartoli (Perugia) MSC: 51E20 11T71 20B25 05E18 05E30 PDF BibTeX XML Cite \textit{H. Taniguchi}, Finite Fields Appl. 69, Article ID 101776, 15 p. (2021; Zbl 1479.51009) Full Text: DOI OpenURL
Makhnev, A. A.; Belousov, I. N.; Paduchikh, D. V. Inverse problems of graph theory: graphs without triangles. (Russian. English summary) Zbl 1453.05029 Sib. Èlektron. Mat. Izv. 18, 27-42 (2021). MSC: 05C12 05E30 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Sib. Èlektron. Mat. Izv. 18, 27--42 (2021; Zbl 1453.05029) Full Text: DOI OpenURL
Cioabă, S. M.; Koolen, J. H.; Terwilliger, P. Connectivity concerning the last two subconstituents of a \(Q\)-polynomial distance-regular graph. (English) Zbl 1448.05061 J. Comb. Theory, Ser. A 177, Article ID 105325, 6 p. (2021). MSC: 05C12 05C40 05E30 PDF BibTeX XML Cite \textit{S. M. Cioabă} et al., J. Comb. Theory, Ser. A 177, Article ID 105325, 6 p. (2021; Zbl 1448.05061) Full Text: DOI arXiv OpenURL
Nomura, Kazumasa; Terwilliger, Paul Leonard pairs, spin models, and distance-regular graphs. (English) Zbl 1448.05064 J. Comb. Theory, Ser. A 177, Article ID 105312, 59 p. (2021). MSC: 05C12 46L80 PDF BibTeX XML Cite \textit{K. Nomura} and \textit{P. Terwilliger}, J. Comb. Theory, Ser. A 177, Article ID 105312, 59 p. (2021; Zbl 1448.05064) Full Text: DOI arXiv OpenURL
Lu, Pengli; Liu, Wenzhi The distance Laplacian and distance signless Laplacian spectrum of some graphs. (English) Zbl 07478552 Ars Comb. 152, 121-128 (2020). MSC: 05C50 PDF BibTeX XML Cite \textit{P. Lu} and \textit{W. Liu}, Ars Comb. 152, 121--128 (2020; Zbl 07478552) OpenURL
Makhnev, A. A. Antipodal Krein graphs and distance-regular graphs close to them. (English. Russian original) Zbl 1477.05064 Dokl. Math. 101, No. 3, 218-220 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 492, 54-57 (2020). MSC: 05C12 05C75 PDF BibTeX XML Cite \textit{A. A. Makhnev}, Dokl. Math. 101, No. 3, 218--220 (2020; Zbl 1477.05064); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 492, 54--57 (2020) Full Text: DOI OpenURL
Ustimenko, V. On small world non-Sunada twins and cellular Voronoi diagrams. (English) Zbl 1473.05191 Algebra Discrete Math. 30, No. 1, 118-142 (2020). MSC: 05C50 05C82 51E24 PDF BibTeX XML Cite \textit{V. Ustimenko}, Algebra Discrete Math. 30, No. 1, 118--142 (2020; Zbl 1473.05191) Full Text: DOI OpenURL
Fiol, Miquel Àngel; Penjic, Safet On a version of the spectral excess theorem. (English) Zbl 1468.05149 Electron. J. Graph Theory Appl. 8, No. 2, 391-400 (2020). MSC: 05C50 05E30 PDF BibTeX XML Cite \textit{M. À. Fiol} and \textit{S. Penjic}, Electron. J. Graph Theory Appl. 8, No. 2, 391--400 (2020; Zbl 1468.05149) Full Text: DOI arXiv OpenURL
Simanjuntak, Rinovia; Anuwiksa, Palton \(D\)-magic strongly regular graphs. (English) Zbl 1468.05064 AKCE Int. J. Graphs Comb. 17, No. 3, 995-999 (2020). MSC: 05C12 05C78 PDF BibTeX XML Cite \textit{R. Simanjuntak} and \textit{P. Anuwiksa}, AKCE Int. J. Graphs Comb. 17, No. 3, 995--999 (2020; Zbl 1468.05064) Full Text: DOI arXiv OpenURL
Svob, Andrea Transitive distance-regular graphs from linear groups \(L(3,q), q = 2,3,4,5\). (English) Zbl 1474.05389 Trans. Comb. 9, No. 1, 49-60 (2020). MSC: 05E30 05E18 94B05 PDF BibTeX XML Cite \textit{A. Svob}, Trans. Comb. 9, No. 1, 49--60 (2020; Zbl 1474.05389) Full Text: DOI OpenURL
Maclean, Mark S.; Miklavič, Štefko On a certain class of 1-thin distance-regular graphs. (English) Zbl 1464.05360 Ars Math. Contemp. 18, No. 2, 187-210 (2020). MSC: 05E30 PDF BibTeX XML Cite \textit{M. S. Maclean} and \textit{Š. Miklavič}, Ars Math. Contemp. 18, No. 2, 187--210 (2020; Zbl 1464.05360) Full Text: DOI OpenURL
Efimov, Konstantin S.; Makhnev, Alexander A. Distance-regular graph with intersection array \(\{27, 20, 7; 1, 4, 21\}\) does not exist. (English) Zbl 1462.05119 Ural Math. J. 6, No. 2, 63-67 (2020). MSC: 05C12 05E30 05C50 PDF BibTeX XML Cite \textit{K. S. Efimov} and \textit{A. A. Makhnev}, Ural Math. J. 6, No. 2, 63--67 (2020; Zbl 1462.05119) Full Text: DOI MNR OpenURL
Houm, Lihang; Liu, Wen A class of bipartite and antipodal graphs and their uniform posets. (English) Zbl 1461.05241 J. Comb. Math. Comb. Comput. 113, 109-118 (2020). MSC: 05E30 06A07 05C12 PDF BibTeX XML Cite \textit{L. Houm} and \textit{W. Liu}, J. Comb. Math. Comb. Comput. 113, 109--118 (2020; Zbl 1461.05241) OpenURL
Makhnev, Aleksandr Alekseevich; Bitkina, Viktoriya Vasil’evna; Gutnova, Alina Kazbekovna Automorphisms of a distance regular graph with intersection array \(\{48,35,9;1,7,40\}\). (Russian. English summary) Zbl 1463.05542 Vladikavkaz. Mat. Zh. 22, No. 2, 24-33 (2020). MSC: 05E30 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Vladikavkaz. Mat. Zh. 22, No. 2, 24--33 (2020; Zbl 1463.05542) Full Text: DOI MNR OpenURL
Makhnev, A. A.; Golubyatnikov, M. P. Automorphisms of a graph with intersection array \(\{nm - 1, nm - n + m - 1, n - m + 1;1, 1, nm - n + m - 1\}\). (English. Russian original) Zbl 07291182 Algebra Logic 59, No. 5, 385-394 (2020); translation from Algebra Logika 59, No. 5, 567-581 (2020). MSC: 05E30 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. P. Golubyatnikov}, Algebra Logic 59, No. 5, 385--394 (2020; Zbl 07291182); translation from Algebra Logika 59, No. 5, 567--581 (2020) Full Text: DOI OpenURL
Makhnev, A. A.; Paduchikh, D. V. The largest Moore graph and a distance-regular graph with intersection array \(\{55, 54, 2; 1, 1, 54\}\). (English. Russian original) Zbl 1458.05056 Algebra Logic 59, No. 4, 322-327 (2020); translation from Algebra Logika 59, No. 4, 471-479 (2020). MSC: 05C12 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{D. V. Paduchikh}, Algebra Logic 59, No. 4, 322--327 (2020; Zbl 1458.05056); translation from Algebra Logika 59, No. 4, 471--479 (2020) Full Text: DOI OpenURL
Miklavič, Štefko; Šparl, Primož On minimal distance-regular Cayley graphs of generalized dihedral groups. (English) Zbl 1453.05046 Electron. J. Comb. 27, No. 4, Research Paper P4.33, 16 p. (2020). MSC: 05C25 05C12 05E18 05E30 PDF BibTeX XML Cite \textit{Š. Miklavič} and \textit{P. Šparl}, Electron. J. Comb. 27, No. 4, Research Paper P4.33, 16 p. (2020; Zbl 1453.05046) Full Text: DOI OpenURL
Diego, Victor; Fàbrega, Josep; Fiol, Miquel Àngel Equivalent characterizations of the spectra of graphs and applications to measures of distance-regularity. (English) Zbl 1448.05127 Electron. J. Linear Algebra 36, 629-644 (2020). MSC: 05C50 05C12 05E30 PDF BibTeX XML Cite \textit{V. Diego} et al., Electron. J. Linear Algebra 36, 629--644 (2020; Zbl 1448.05127) Full Text: arXiv Link OpenURL
Makhnev, A. A.; Isakova, M. M.; Tokbaeva, A. A. The nonexistence small \(Q\)-polynomial graphs of type (III). (Russian. English summary) Zbl 1443.05093 Sib. Èlektron. Mat. Izv. 17, 1270-1279 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Sib. Èlektron. Mat. Izv. 17, 1270--1279 (2020; Zbl 1443.05093) Full Text: DOI OpenURL
Renteln, Paul Some constraints on the missing Moore graph. (English) Zbl 1444.05093 Australas. J. Comb. 77, Part 3, 373-382 (2020). MSC: 05C50 05B20 PDF BibTeX XML Cite \textit{P. Renteln}, Australas. J. Comb. 77, Part 3, 373--382 (2020; Zbl 1444.05093) Full Text: Link OpenURL
Gyürki, Štefan; Klin, Mikhail; Ziv-Av, Matan The Paulus-Rozenfeld-Thompson graph on 26 vertices revisited and related combinatorial structures. (English) Zbl 1442.05248 Jones, Gareth A. (ed.) et al., Isomorphisms, symmetry and computations in algebraic graph theory. Selected papers based on the presentations at the workshop on algebraic graph theory, Pilsen, Czech Republic, October 3–7, 2016. Cham: Springer. Springer Proc. Math. Stat. 305, 73-154 (2020). MSC: 05E30 05B05 62K10 PDF BibTeX XML Cite \textit{Š. Gyürki} et al., Springer Proc. Math. Stat. 305, 73--154 (2020; Zbl 1442.05248) Full Text: DOI OpenURL
Crnković, Dean; Rukavina, Sanja; Švob, Andrea On some distance-regular graphs with many vertices. (English) Zbl 1441.05246 J. Algebr. Comb. 51, No. 4, 641-652 (2020). MSC: 05E30 05E18 05C12 PDF BibTeX XML Cite \textit{D. Crnković} et al., J. Algebr. Comb. 51, No. 4, 641--652 (2020; Zbl 1441.05246) Full Text: DOI arXiv OpenURL
Tsiovkina, Lyudmila Yur’evna Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter 3 in affine case. (Russian. English summary) Zbl 1435.20006 Sib. Èlektron. Mat. Izv. 17, 445-495 (2020). MSC: 20B25 05E18 PDF BibTeX XML Cite \textit{L. Y. Tsiovkina}, Sib. Èlektron. Mat. Izv. 17, 445--495 (2020; Zbl 1435.20006) OpenURL
Qiao, Zhi; Koolen, Jack H.; Markowsky, Greg On the Cheeger constant for distance-regular graphs. (English) Zbl 1435.05134 J. Comb. Theory, Ser. A 173, Article ID 105227, 20 p. (2020). MSC: 05C50 05C12 05E30 PDF BibTeX XML Cite \textit{Z. Qiao} et al., J. Comb. Theory, Ser. A 173, Article ID 105227, 20 p. (2020; Zbl 1435.05134) Full Text: DOI arXiv OpenURL
Makhnev, Aleksandr Alekseevich; Tokbaeva, Al’bina Aniuarovna On a distance-regular graph with an intersection array \(\{35,28,6;1,2,30\}\). (Russian. English summary) Zbl 1474.05116 Vladikavkaz. Mat. Zh. 21, No. 2, 27-37 (2019). MSC: 05C12 05C51 05C10 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{A. A. Tokbaeva}, Vladikavkaz. Mat. Zh. 21, No. 2, 27--37 (2019; Zbl 1474.05116) Full Text: DOI MNR OpenURL
Makhnev, A. A.; Paduchikh, D. V. Inverse problems in the theory of distance-regular graphs. (English. Russian original) Zbl 1441.05247 Proc. Steklov Inst. Math. 307, Suppl. 1, S88-S98 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 3, 133-144 (2018). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{D. V. Paduchikh}, Proc. Steklov Inst. Math. 307, S88--S98 (2019; Zbl 1441.05247); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 3, 133--144 (2018) Full Text: DOI OpenURL
Belousov, I. N. Shilla distance-regular graphs with \(b_2 = sc_2\). (English. Russian original) Zbl 1478.05036 Proc. Steklov Inst. Math. 307, Suppl. 1, S23-S33 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 3, 16-26 (2018). MSC: 05C12 05C60 PDF BibTeX XML Cite \textit{I. N. Belousov}, Proc. Steklov Inst. Math. 307, S23--S33 (2019; Zbl 1478.05036); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 3, 16--26 (2018) Full Text: DOI OpenURL
Makhnev, A. A.; Golubyatnikov, M. P. A Shilla graph with intersection array \(\{12, 10, 2; 1, 2, 8\}\) does not exist. (English. Russian original) Zbl 1439.05070 Math. Notes 106, No. 5, 849-853 (2019); translation from Mat. Zametki 106, No. 5, 797-800 (2019). MSC: 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. P. Golubyatnikov}, Math. Notes 106, No. 5, 849--853 (2019; Zbl 1439.05070); translation from Mat. Zametki 106, No. 5, 797--800 (2019) Full Text: DOI OpenURL
Van Dam, Edwin R.; Jazaeri, Mojtaba Distance-regular Cayley graphs with small valency. (English) Zbl 1439.05233 Ars Math. Contemp. 17, No. 1, 203-222 (2019). Reviewer: Mikhail Kabenyuk (Kemerovo) MSC: 05E30 05C25 05C12 20B25 PDF BibTeX XML Cite \textit{E. R. Van Dam} and \textit{M. Jazaeri}, Ars Math. Contemp. 17, No. 1, 203--222 (2019; Zbl 1439.05233) Full Text: DOI arXiv OpenURL
Sumalroj, Supalak A diagram associated with the subconstituent algebra of a distance-regular graph. (English) Zbl 1433.05338 Ars Math. Contemp. 17, No. 1, 185-202 (2019). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{S. Sumalroj}, Ars Math. Contemp. 17, No. 1, 185--202 (2019; Zbl 1433.05338) Full Text: DOI arXiv OpenURL
Bang, Sejeong Geometric antipodal distance-regular graphs with a given smallest eigenvalue. (English) Zbl 1431.05049 Graphs Comb. 35, No. 6, 1387-1399 (2019). MSC: 05C12 05C50 05C62 05E30 PDF BibTeX XML Cite \textit{S. Bang}, Graphs Comb. 35, No. 6, 1387--1399 (2019; Zbl 1431.05049) Full Text: DOI OpenURL
Yoshie, Yusuke Periodicities of Grover walks on distance-regular graphs. (English) Zbl 1431.05138 Graphs Comb. 35, No. 6, 1305-1321 (2019). MSC: 05C81 05C50 05E30 58J50 81Q35 81S25 PDF BibTeX XML Cite \textit{Y. Yoshie}, Graphs Comb. 35, No. 6, 1305--1321 (2019; Zbl 1431.05138) Full Text: DOI arXiv OpenURL
Makhnev, A. A.; Paduchikh, D. V. Automorphisms of a distance-regular graph with intersection array \(\{176, 135, 32, 1; 1, 16, 135, 176\}\). (English. Russian original) Zbl 1430.05138 Proc. Steklov Inst. Math. 305, Suppl. 1, S102-S113 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 2, 173-184 (2018). MSC: 05E30 05C25 05C12 20B05 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{D. V. Paduchikh}, Proc. Steklov Inst. Math. 305, S102--S113 (2019; Zbl 1430.05138); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 2, 173--184 (2018) Full Text: DOI OpenURL
Belousov, I. N. Codes in Shilla distance-regular graphs. (English. Russian original) Zbl 1432.05034 Proc. Steklov Inst. Math. 305, Suppl. 1, S4-S9 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 2, 34-39 (2018). MSC: 05C12 05C50 94B99 PDF BibTeX XML Cite \textit{I. N. Belousov}, Proc. Steklov Inst. Math. 305, S4--S9 (2019; Zbl 1432.05034); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 2, 34--39 (2018) Full Text: DOI OpenURL
Švob, Andrea Transitive distance-regular graphs from the unitary groups \(U(3,4)\), \(U(4,3)\) and \(U(5,2)\). (English) Zbl 1427.05232 Bull. Inst. Comb. Appl. 87, 103-113 (2019). MSC: 05E30 05E18 05C12 PDF BibTeX XML Cite \textit{A. Švob}, Bull. Inst. Comb. Appl. 87, 103--113 (2019; Zbl 1427.05232) OpenURL
Knox, Fiachra; Mohar, Bojan Fractional decompositions and the smallest-eigenvalue separation. (English) Zbl 1428.05196 Electron. J. Comb. 26, No. 4, Research Paper P4.41, 6 p. (2019). MSC: 05C50 05C12 05C31 PDF BibTeX XML Cite \textit{F. Knox} and \textit{B. Mohar}, Electron. J. Comb. 26, No. 4, Research Paper P4.41, 6 p. (2019; Zbl 1428.05196) Full Text: arXiv Link OpenURL
Cioabă, Sebastian M.; Koolen, Jack H.; Nozaki, Hiroshi A spectral version of the Moore problem for bipartite regular graphs. (English) Zbl 1428.05187 Algebr. Comb. 2, No. 6, 1219-1238 (2019). MSC: 05C50 05C40 05C12 05C35 05E30 42C05 90C05 94B65 PDF BibTeX XML Cite \textit{S. M. Cioabă} et al., Algebr. Comb. 2, No. 6, 1219--1238 (2019; Zbl 1428.05187) Full Text: DOI arXiv OpenURL
Mamart, Siwaporn; Worawannotai, Chalermpong Merging the first and third classes in bipartite distance-regular graphs. (English) Zbl 1427.05074 Asian-Eur. J. Math. 12, No. 7, Article ID 2050009, 8 p. (2019). MSC: 05C12 05C40 05E30 PDF BibTeX XML Cite \textit{S. Mamart} and \textit{C. Worawannotai}, Asian-Eur. J. Math. 12, No. 7, Article ID 2050009, 8 p. (2019; Zbl 1427.05074) Full Text: DOI OpenURL
Makhnev, A. A. Automorphisms of distance-regular graph with intersection array \(\{24,18,9;1,1,16\}\). (Russian. English summary) Zbl 1426.05066 Sib. Èlektron. Mat. Izv. 16, 1547-1552 (2019). MSC: 05C25 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev}, Sib. Èlektron. Mat. Izv. 16, 1547--1552 (2019; Zbl 1426.05066) Full Text: DOI OpenURL
Belousov, Ivan Nikolaevich; Makhnev, Aleksandr Alekseevich; Nirova, Marina Sefovna On \(Q\)-polynomial distance-regular graphs \(\Gamma\) with strongly regular graphs \(\Gamma_2\) and \(\Gamma_3\). (Russian. English summary) Zbl 1426.05061 Sib. Èlektron. Mat. Izv. 16, 1385-1392 (2019). MSC: 05C25 05C12 05E30 PDF BibTeX XML Cite \textit{I. N. Belousov} et al., Sib. Èlektron. Mat. Izv. 16, 1385--1392 (2019; Zbl 1426.05061) Full Text: DOI OpenURL
Dalfó, Cristina; Fiol, M. A.; Koolen, J. The spectral excess theorem for graphs with few eigenvalues whose distance-2 or distance-1-or-2 graph is strongly regular. (English) Zbl 1425.05091 Linear Multilinear Algebra 67, No. 12, 2373-2381 (2019). MSC: 05C50 05E30 05C12 PDF BibTeX XML Cite \textit{C. Dalfó} et al., Linear Multilinear Algebra 67, No. 12, 2373--2381 (2019; Zbl 1425.05091) Full Text: DOI arXiv Link OpenURL
Makhnev, Aleksandr Alekseevich; Isakova, Mariana Malilovna; Nirova, Marina Sefovna Distance-regular graphs with intersection array \(\{69,56,10;1,14,60\}\), \(\{74,54,15;1,9,60\}\) and \(\{119,100,15;1,20,105\}\) do not exist. (Russian. English summary) Zbl 1425.05072 Sib. Èlektron. Mat. Izv. 16, 1254-1259 (2019). MSC: 05C25 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Sib. Èlektron. Mat. Izv. 16, 1254--1259 (2019; Zbl 1425.05072) Full Text: DOI OpenURL
Golubyatnikov, Mikhaĭl Petrovich Automorphisms of small graphs with intersection array \(\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}\). (Russian. English summary) Zbl 1425.05070 Sib. Èlektron. Mat. Izv. 16, 1245-1253 (2019). MSC: 05C25 05C12 PDF BibTeX XML Cite \textit{M. P. Golubyatnikov}, Sib. Èlektron. Mat. Izv. 16, 1245--1253 (2019; Zbl 1425.05070) Full Text: DOI OpenURL
Makhnev, Aleksandr Alekseevich; Bitkina, Viktoriya Vasil’evna On automorphisms of a distance-regular graph with intersection array \(\{44,30,5;1,3,40\}\). (Russian) Zbl 1420.05076 Sib. Èlektron. Mat. Izv. 16, 777-785 (2019). MSC: 05C25 20D60 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{V. V. Bitkina}, Sib. Èlektron. Mat. Izv. 16, 777--785 (2019; Zbl 1420.05076) Full Text: DOI OpenURL
De Boeck, Maarten; Rodgers, Morgan; Storme, Leo; Švob, Andrea Cameron-Liebler sets of generators in finite classical polar spaces. (English) Zbl 1437.51009 J. Comb. Theory, Ser. A 167, 340-388 (2019). Reviewer: Vito Napolitano (Napoli) MSC: 51E26 51A50 PDF BibTeX XML Cite \textit{M. De Boeck} et al., J. Comb. Theory, Ser. A 167, 340--388 (2019; Zbl 1437.51009) Full Text: DOI arXiv OpenURL
Abiad, A.; Coutinho, G.; Fiol, M. A. On the \(k\)-independence number of graphs. (English) Zbl 1417.05148 Discrete Math. 342, No. 10, 2875-2885 (2019). MSC: 05C69 05C50 05C12 PDF BibTeX XML Cite \textit{A. Abiad} et al., Discrete Math. 342, No. 10, 2875--2885 (2019; Zbl 1417.05148) Full Text: DOI arXiv OpenURL
Efimov, K. S. Automorphisms of an \(AT4(4, 4, 2)\)-graph and of the corresponding strongly regular graphs. (English. Russian original) Zbl 1417.05248 Proc. Steklov Inst. Math. 304, Suppl. 1, S59-S67 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 23, No. 4, 119-127 (2017). MSC: 05E30 05C12 05C25 PDF BibTeX XML Cite \textit{K. S. Efimov}, Proc. Steklov Inst. Math. 304, S59--S67 (2019; Zbl 1417.05248); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 23, No. 4, 119--127 (2017) Full Text: DOI OpenURL
MacLean, Mark S.; Miklavič, Štefko Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents. (English) Zbl 1417.05250 Algebr. Comb. 2, No. 4, 499-520 (2019). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{M. S. MacLean} and \textit{Š. Miklavič}, Algebr. Comb. 2, No. 4, 499--520 (2019; Zbl 1417.05250) Full Text: DOI OpenURL
Tsiovkina, L. Yu. On the automorphism group of an antipodal tight graph of diameter 4 with parameters \((5, 7, r)\). (English. Russian original) Zbl 1415.05075 Math. Notes 105, No. 1, 104-114 (2019); translation from Mat. Zametki 105, No. 1, 123-135 (2019). MSC: 05C25 05C12 20B25 PDF BibTeX XML Cite \textit{L. Yu. Tsiovkina}, Math. Notes 105, No. 1, 104--114 (2019; Zbl 1415.05075); translation from Mat. Zametki 105, No. 1, 123--135 (2019) Full Text: DOI OpenURL
Makhnev, Aleksandr Alekseevich; Khamgokova, Madina Mukhadinovna On automorphisms of a distance-regular graph with intersection array \(\{39,36,22;1,2,18\}\). (Russian. English summary) Zbl 1416.05140 Sib. Èlektron. Mat. Izv. 16, 638-647 (2019). MSC: 05C25 05C12 20B25 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. M. Khamgokova}, Sib. Èlektron. Mat. Izv. 16, 638--647 (2019; Zbl 1416.05140) Full Text: DOI OpenURL
Alfuraidan, Monther R.; Sarumi, Ibrahim O.; Shpectorov, Sergey On the non-existence of \(\mathrm{srg}(76,21,2,7)\). (English) Zbl 1416.05303 Graphs Comb. 35, No. 4, 847-854 (2019). MSC: 05E30 05C30 05C12 PDF BibTeX XML Cite \textit{M. R. Alfuraidan} et al., Graphs Comb. 35, No. 4, 847--854 (2019; Zbl 1416.05303) Full Text: DOI arXiv OpenURL
Makhnev, A. A.; Golubyatnikov, M. P.; Guo, Wenbin Inverse problems in graph theory: nets. (English) Zbl 1414.05142 Commun. Math. Stat. 7, No. 1, 69-83 (2019). MSC: 05C25 05E30 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Commun. Math. Stat. 7, No. 1, 69--83 (2019; Zbl 1414.05142) Full Text: DOI OpenURL
Dalfó, C. A survey on the missing Moore graph. (English) Zbl 1411.05155 Linear Algebra Appl. 569, 1-14 (2019). MSC: 05C50 05C25 05C12 20B25 20C15 PDF BibTeX XML Cite \textit{C. Dalfó}, Linear Algebra Appl. 569, 1--14 (2019; Zbl 1411.05155) Full Text: DOI Link OpenURL
Sotnikova, Evgeniya Vadimovna Minimum supports of eigenfunctions in bilinear forms graphs. (English) Zbl 1416.05181 Sib. Èlektron. Mat. Izv. 16, 501-515 (2019). Reviewer: Thomas Britz (Sydney) MSC: 05C50 05C12 15A18 15A42 PDF BibTeX XML Cite \textit{E. V. Sotnikova}, Sib. Èlektron. Mat. Izv. 16, 501--515 (2019; Zbl 1416.05181) Full Text: DOI OpenURL
Makhnev, Aleksandr Alekseevich; Belousova, Veronika Igor’evna Automorphisms of distance regular graph with intersection array \(\{30,27,24;1,2,10\}\). (Russian. English summary) Zbl 1410.05228 Sib. Èlektron. Mat. Izv. 16, 493-500 (2019). MSC: 05E30 05C12 05C60 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{V. I. Belousova}, Sib. Èlektron. Mat. Izv. 16, 493--500 (2019; Zbl 1410.05228) Full Text: DOI OpenURL
Belousov, Ivan Nikolaevich; Makhnev, Aleksandr Alekseevich Distance-regular graph with intersection array \(\{105,72,24;1,12,70\}\) does not exist. (Russian. English summary) Zbl 1410.05031 Sib. Èlektron. Mat. Izv. 16, 206-216 (2019). MSC: 05C12 05C25 PDF BibTeX XML Cite \textit{I. N. Belousov} and \textit{A. A. Makhnev}, Sib. Èlektron. Mat. Izv. 16, 206--216 (2019; Zbl 1410.05031) Full Text: DOI OpenURL
Efimov, Konstantin S.; Makhnev, Alexander A. Automorphisms of a distance-regular graph with intersection array \(\{39,36,4;1,1,36\}\). (English) Zbl 1448.05232 Ural Math. J. 4, No. 2, 69-78 (2018). MSC: 05E30 05C12 PDF BibTeX XML Cite \textit{K. S. Efimov} and \textit{A. A. Makhnev}, Ural Math. J. 4, No. 2, 69--78 (2018; Zbl 1448.05232) Full Text: DOI MNR OpenURL
Nirova, Marina Sefovna On distance-regular graph \(\Gamma\) with strongly regular graphs \(\Gamma_2\) and \(\Gamma_3\). (Russian. English summary) Zbl 1430.05029 Sib. Èlektron. Mat. Izv. 15, 175-185 (2018). MSC: 05C12 05E30 PDF BibTeX XML Cite \textit{M. S. Nirova}, Sib. Èlektron. Mat. Izv. 15, 175--185 (2018; Zbl 1430.05029) Full Text: DOI OpenURL
Azimi, A.; Bapat, R. B. Moore-Penrose inverse of the incidence matrix of a distance regular graph. (English) Zbl 1418.05067 Linear Algebra Appl. 551, 92-103 (2018). MSC: 05C20 05C50 15A09 PDF BibTeX XML Cite \textit{A. Azimi} and \textit{R. B. Bapat}, Linear Algebra Appl. 551, 92--103 (2018; Zbl 1418.05067) Full Text: DOI OpenURL
Makhnev, A. A.; Nirova, M. S. On automorphisms of a distance-regular graph with intersection array \(\{69, 56, 10; 1, 14, 60\}\). (English. Russian original) Zbl 1414.05315 Proc. Steklov Inst. Math. 303, Suppl. 1, S166-S174 (2018); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 23, No. 3, 182-190 (2017). MSC: 05E30 05C12 05C60 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{M. S. Nirova}, Proc. Steklov Inst. Math. 303, S166--S174 (2018; Zbl 1414.05315); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 23, No. 3, 182--190 (2017) Full Text: DOI OpenURL
Belousov, Ivan Nikolaevich; Makhnev, Aleksandr Alekseevich Distance-regular graphs with intersection arrays \(\{42,30,12;1,6,28\}\) and \(\{60,45,8;1,12,50\}\) do not exist. (Russian. English summary) Zbl 1411.05071 Sib. Èlektron. Mat. Izv. 15, 1506-1512 (2018). MSC: 05C12 PDF BibTeX XML Cite \textit{I. N. Belousov} and \textit{A. A. Makhnev}, Sib. Èlektron. Mat. Izv. 15, 1506--1512 (2018; Zbl 1411.05071) Full Text: DOI OpenURL
Sumalroj, Supalak A characterization of \(Q\)-polynomial distance-regular graphs using the intersection numbers. (English) Zbl 1402.05057 Graphs Comb. 34, No. 5, 863-877 (2018). MSC: 05C12 05E30 PDF BibTeX XML Cite \textit{S. Sumalroj}, Graphs Comb. 34, No. 5, 863--877 (2018; Zbl 1402.05057) Full Text: DOI arXiv OpenURL
Vetchý, Vladimír Metrically regular square of metrically regular bipartite graphs of diameter \(D=7\). (English) Zbl 1463.05361 Arch. Math., Brno 54, No. 4, 227-237 (2018). MSC: 05C50 05C12 05E30 PDF BibTeX XML Cite \textit{V. Vetchý}, Arch. Math., Brno 54, No. 4, 227--237 (2018; Zbl 1463.05361) Full Text: DOI OpenURL
MacLean, Mark S.; Miklavič, Štefko; Penjić, Safet An \(A\)-invariant subspace for bipartite distance-regular graphs with exactly two irreducible \(T\)-modules with endpoint 2, both thin. (English) Zbl 1404.05042 J. Algebr. Comb. 48, No. 3, 511-548 (2018). MSC: 05C12 PDF BibTeX XML Cite \textit{M. S. MacLean} et al., J. Algebr. Comb. 48, No. 3, 511--548 (2018; Zbl 1404.05042) Full Text: DOI OpenURL
Suzuki, Hiroshi Distance-regular graphs of large diameter that are completely regular clique graphs. (English) Zbl 1401.05319 J. Algebr. Comb. 48, No. 3, 369-404 (2018). MSC: 05E30 05C12 05C40 PDF BibTeX XML Cite \textit{H. Suzuki}, J. Algebr. Comb. 48, No. 3, 369--404 (2018; Zbl 1401.05319) Full Text: DOI OpenURL
Makhnev, A. A.; Paduchikh, D. V.; Tsiovkina, L. Yu. Edge-symmetric distance-regular coverings of complete graphs: the almost simple case. (English. Russian original) Zbl 1434.05159 Algebra Logic 57, No. 2, 141-152 (2018); translation from Algebra Logika 57, No. 2, 214-231 (2018). Reviewer: Akira Saito (Tokyo) MSC: 05E30 05C70 05C12 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Algebra Logic 57, No. 2, 141--152 (2018; Zbl 1434.05159); translation from Algebra Logika 57, No. 2, 214--231 (2018) Full Text: DOI OpenURL
Brouwer, Andries E.; Cioabă, Sebastian M.; Ihringer, Ferdinand; McGinnis, Matt The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters. (English) Zbl 1397.05098 J. Comb. Theory, Ser. B 133, 88-121 (2018). MSC: 05C50 05C12 PDF BibTeX XML Cite \textit{A. E. Brouwer} et al., J. Comb. Theory, Ser. B 133, 88--121 (2018; Zbl 1397.05098) Full Text: DOI arXiv Link OpenURL
Bishnoi, A.; De Bruyn, B. The \(\mathrm {L}_3(4)\) near octagon. (English) Zbl 1396.05120 J. Algebr. Comb. 48, No. 1, 157-178 (2018). MSC: 05E18 51E12 51E25 PDF BibTeX XML Cite \textit{A. Bishnoi} and \textit{B. De Bruyn}, J. Algebr. Comb. 48, No. 1, 157--178 (2018; Zbl 1396.05120) Full Text: DOI arXiv OpenURL
Tomiyama, Masato The Terwilliger algebra of the incidence graph of the Hamming graph. (English) Zbl 1396.05050 J. Algebr. Comb. 48, No. 1, 77-118 (2018). MSC: 05C25 05C12 05E30 PDF BibTeX XML Cite \textit{M. Tomiyama}, J. Algebr. Comb. 48, No. 1, 77--118 (2018; Zbl 1396.05050) Full Text: DOI OpenURL
Mamart, Siwaporn A group commutator involving the last distance matrix and dual distance matrix of a \(Q\)-polynomial distance-regular graph: the Hamming graph case. (English) Zbl 1395.05195 Graphs Comb. 34, No. 4, 803-817 (2018). MSC: 05E30 PDF BibTeX XML Cite \textit{S. Mamart}, Graphs Comb. 34, No. 4, 803--817 (2018; Zbl 1395.05195) Full Text: DOI OpenURL