×

Generalized vector calculus on convex domain. (English) Zbl 1353.26004

Summary: In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green’s and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

MSC:

26A33 Fractional derivatives and integrals
26B20 Integral formulas of real functions of several variables (Stokes, Gauss, Green, etc.)
49K10 Optimality conditions for free problems in two or more independent variables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys Rev E, 53, 1890-1899 (1996)
[2] Riewe, F., Mechanics with fractional derivatives, Phys Rev E, 55, 3581-3592 (1997)
[3] Klimek, M., Fractional sequential mechanics models with symmetric fractional derivative, Czech J Phys, 51, 1348-1354 (2001) · Zbl 1064.70507
[4] Klimek, M., Lagrangian and Hamiltonian fractional sequential mechanics, Czech J Phys, 52, 1247-1253 (2002) · Zbl 1064.70013
[5] Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, J Math Anal Appl, 272, 368-379 (2002) · Zbl 1070.49013
[6] Agrawal, O. P., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn, 38, 323-337 (2004) · Zbl 1121.70019
[7] Muslih, S. I.; Baleanu, D., Formulation of Hamiltonian equations for fractional variational problems, Czech J Phys, 55, 633-642 (2005) · Zbl 1181.70017
[8] Agrawal, O. P., Fractional variational calculus and the transversality conditions, J Phys A Math Gen, 39, 10375 (2006) · Zbl 1097.49021
[9] Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J Phys A Math Gen, 40, 6287 (2007) · Zbl 1125.26007
[10] Atanackovic, T. M.; Konjik, S.; Pilipovic, S., Variational problems with fractional derivatives: Euler-Lagrange equations, J Phys A Math Theor, 41, 095201 (2008) · Zbl 1175.49020
[11] Agrawal, O. P., A general finite element formulation for fractional variational problems, J Math Anal Appl, 337, 1-12 (2008) · Zbl 1123.65059
[12] El-Nabulsi, A. R., The fractional calculus of variations from extended Erdelyi-Kober operator, Int J Mod Phys B, 23, 3349-3361 (2009)
[13] Ricardo, A.; Torres, D. F.M., Calculus of variations with fractional derivatives and fractional integrals, Appl Math Lett, 22, 1816-1820 (2009) · Zbl 1183.26005
[14] Agrawal, O. P., Generalized variational problems and Euler-Lagrange equations, Comput Math Appl, 59, 1852-1864 (2010) · Zbl 1189.49029
[15] Ricardo, A.; Torres, D. F.M., Fractional variational calculus for nondifferentiable functions, Comput Math Appl, 61, 3097-3104 (2011) · Zbl 1222.49026
[16] Agrawal, O. P.; Muslih, S. I.; Baleanu, D., Generalized variational calculus in terms of multi-parameters fractional derivatives, Commun Nonlinear Sci Numer Simul, 16, 4756-4767 (2011) · Zbl 1236.49030
[17] Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D., Fractional calculus with applications in mechanics: vibrations and diffusion processes (2014), John Wiley & Sons: John Wiley & Sons Hoboken · Zbl 1291.74001
[18] Bahraini, S.; Eghtesad, M.; Farid, M.; Ghavanloo, E., Large deflection of viscoelastic beams using fractional derivative model, J Mech Sci Tech, 27, 1063-1070 (2013)
[19] Laskin, N., Fractional quantum mechanics, Phys Rev E, 62, 3135 (2000)
[20] Agrawal, O. P., Generalized multi-parameter fractional variational calculus, Int J Diff Equ, 2012, 521750 (2012) · Zbl 1268.26008
[21] Agrawal, O. P., Some generalized fractional calculus operators and their applications in integral equations, Fract Calc Appl Anal, 15, 700-711 (2012) · Zbl 1312.26010
[22] Klimek, M.; Lupa, M., Reflection symmetry properties of generalized fractional derivatives, Sci Res Inst Math Comput Sci, 3, 71-80 (2012)
[23] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F.M., Generalized fractional calculus with applications to the calculus of variations, Comput Math Appl, 64, 3351-3366 (2012) · Zbl 1268.26012
[24] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F.M., Green’s theorem for generalized fractional derivatives, Fract Calc Appl Anal, 16, 64-75 (2013) · Zbl 1312.26018
[25] Yousefi, S. A.; Dehghan, M.; Lotfi, A., Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions, Comput Math Appl, 62, 987-995 (2011) · Zbl 1228.49016
[26] Xu, Y.; Agrawal, O. P., Models and numerical schemes for generalized van der Pol equations, Commun Nonlinear Sci Numer Simul, 18, 3575-3589 (2013) · Zbl 1344.65062
[27] Xu, Y.; Agrawal, O. P.; Pathak, N., Solutions of generalized diffusion-wave equation on a bounded domain, J Appl Nonlinear Dyn, 3, 159-171 (2014) · Zbl 1337.35120
[28] Xu, Y.; Agrawal, O. P., Models and numerical solutions of generalized oscillator equations, J Vibra Acoust, 136, 050903-050903-7 (2014)
[29] Tarasov, V. E., Fractional generalization of gradient systems, Lett Math Phys, 73, 49-58 (2005) · Zbl 1101.26010
[30] Tarasov, V. E., Fractional generalization of gradient and Hamiltonian systems, J Phys A, 38, 5929-5943 (2005) · Zbl 1074.70012
[31] Tarasov, V. E., Fractional vector calculus and fractional Maxwell’s equations, Ann Phys, 323, 2756-2778 (2008) · Zbl 1180.78003
[32] Tarasov, V. E., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (2011), Springer: Springer Berlin
[33] Meerschaert, M. M.; Mortensen, J.; Wheatcraft, S. W., Fractional vector calculus for fractional advection-dispersion, Phys A Stat Mech Appl, 367, 181-190 (2006)
[34] D’Ovidio, M.; Garra, R., Multidimensional fractional advection-dispersion equations and related stochastic processes, Electron J Prob, 19, 1-31 (2014) · Zbl 1339.60086
[35] Samko, S.; Kilbas, A. A.; Marichev, O., Fractional integrals and derivatives (1993), Taylor & Francis · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.