×

Dynamic crack propagation in a magneto-electro-elastic solid subjected to mixed loads: transient mode-III problem. (English) Zbl 1183.74095

Summary: The transient response of a Mode-III crack propagating in a magneto-electro-elastic solid subjected to mixed loads is investigated through solving the corresponding boundary-initial-value problem in both the cracked solid region and the interior fluid region with treatment of electro-magnetically permeable and impermeable crack face conditions in a unified way. The closed-form results for the dynamic field intensity factors are used to evaluate the dynamic energy release rate through the crack-tip dynamic contour integral. The permeability of the interior fluid region relative to the cracked solid region significantly affects the magneto-electro-mechanical coupling coefficient in the Bleustein-Gulyaev wave function and, consequently, the horizontal shear surface wave speed, the dynamic field intensity factors and the dynamic energy release rate. It is revealed from dynamic fracture mechanics analysis that the dynamic energy release rate thus obtained has an odd dependence on the dynamic electric displacement intensity factor and the dynamic magnetic induction intensity factor. It is also found that the horizontal shear surface wave speed provides the limiting velocity for the propagation of a Mode-III crack in a magneto-electro-elastic solid when there is only applied traction loading.

MSC:

74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74J15 Surface waves in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alshits, V. I.: On the role of anisotropy in crystalloacoustics, Surface waves in anistropic and laminated bodies and defects detection, 3-68 (2002) · Zbl 1103.74041
[2] Chen, X.: Crack driving force and energy – momentum tensor in electroelastodynamic fracture, Journal of the mechanics and physics of solids 57, 1-9 (2009) · Zbl 1296.74100
[3] Chen, X.: Energy release rate and path-independent integral in dynamic fracture of magneto-electro-thermo-elastic solids, International journal of solids and structures 46, 2706-2711 (2009) · Zbl 1167.74544 · doi:10.1016/j.ijsolstr.2009.03.001
[4] Chen, X.: Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials, Journal of applied mechanics 76, 041016 (2009)
[5] Chen, Y. -H.; Lu, T. J.: Recent developments and applications of invariant integrals, Applied mechanics reviews 56, 515-552 (2003)
[6] Chen, Z. -T.; Yu, S. W.: A semi-infinite crack under anti-plane mechanical impact in piezoelectric materials, International journal of fracture 88, L53-L56 (1998)
[7] Chen, X. -H.; Ing, Y. -S.; Ma, C. -C.: Transient analysis of dynamic crack propagation in piezoelectric materials, Journal of the chinese institute of engineers 30, 491-502 (2007)
[8] Chen, X. -H.; Ma, C. -C.; Ing, Y. -S.; Tsai, C. -H.: Dynamic interfacial crack propagation in elastic – piezoelectric bi-materials subjected to uniformly distributed loading, International journal of solids and structures 45, 959-997 (2008) · Zbl 1167.74543 · doi:10.1016/j.ijsolstr.2007.09.014
[9] Dascalu, C.; Maugin, G. A.: On the dynamic fracture of piezoelectric materials, The quarterly journal of mechanics & applied mathematics 48, 237-254 (1995) · Zbl 0832.73062 · doi:10.1093/qjmam/48.2.237
[10] Feng, W. J.; Su, R. K. L.: Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip, International journal of solids and structures 43, 5196-5216 (2006) · Zbl 1120.74751 · doi:10.1016/j.ijsolstr.2005.07.050
[11] Feng, W. J.; Pan, E.; Wang, X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer, International journal of solids and structures 44, 7955-7974 (2007) · Zbl 1167.74548 · doi:10.1016/j.ijsolstr.2007.05.020
[12] Freund, L. B.: Crack propagation in an elastic solid subjected to general loading. I: constant rate of extension, Journal of the mechanics and physics of solids 20, 120-140 (1972) · Zbl 0237.73099 · doi:10.1016/0022-5096(72)90006-3
[13] Freund, L. B.: Dynamic fracture mechanics, (1990) · Zbl 0712.73072
[14] Fulton, C. C.; Gao, H.: Effect of local polarization switching on piezoelectric fracture, Journal of the mechanics and physics of solids 49, 927-952 (2001) · Zbl 1024.74019 · doi:10.1016/S0022-5096(00)00049-1
[15] Gao, H.; Zhang, T. -Y.; Tong, P.: Local and global energy release rate for an electrically yielded crack in a piezoelectric ceramic, Journal of the mechanics and physics of solids 45, 491-510 (1997)
[16] Gao, C. -F.; Tong, P.; Zhang, T. -Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid, International journal of solids and structures 41, 6613-6629 (2004) · Zbl 1179.74117 · doi:10.1016/j.ijsolstr.2004.06.015
[17] Gao, C. -F.; Mai, Y. -W.; Wang, B. -L.: Effects of magnetic fields on cracks in a soft ferromagnetic material, Engineering fracture mechanics 75, 4863-4875 (2008)
[18] Haug, A.; Mcmeeking, R.: Cracks with surface charge in poled ferroelectrics, European journal of mechanics A/solids 25, 24-41 (2006) · Zbl 1084.74042 · doi:10.1016/j.euromechsol.2005.07.004
[19] Ing, Y. -S.; Wang, M. -J.: Explicit transient solutions for a mode-III crack subjected to dynamic concentrated loading in a piezoelectric material, International journal of solids and structures 41, 3849-3864 (2004) · Zbl 1079.74612 · doi:10.1016/j.ijsolstr.2004.02.038
[20] Ing, Y. -S.; Wang, M. -J.: Transient analysis of a mode-III crack propagating in a piezoelectric medium, International journal of solids and structures 41, 6197-6214 (2004) · Zbl 1077.74041 · doi:10.1016/j.ijsolstr.2004.05.019
[21] Kwon, S. M.; Lee, K. Y.: Transient response of a rectangular pizeoelectric medium with a center crack, European journal of mechanics A/solids 20, 457-468 (2001) · Zbl 0988.74026 · doi:10.1016/S0997-7538(01)01137-8
[22] Li, S.: On global energy release rate of a permeable crack in a piezoelectric ceramic, Journal of applied mechanics 70, 246-252 (2003) · Zbl 1110.74554 · doi:10.1115/1.1544539
[23] Li, X. -F.: Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts, International journal of solids and structures 42, 3185-3205 (2005) · Zbl 1142.74014 · doi:10.1016/j.ijsolstr.2004.10.020
[24] Li, S.; Mataga, P. A.: Dynamic crack propagation in piezoelectric materials-part I, Electrode solution. Journal of the mechanics and physics of solids 44, 1799-1830 (1996) · Zbl 1054.74715 · doi:10.1016/0022-5096(96)00055-5
[25] Li, S.; Mataga, P. A.: Dynamic crack propagation in piezoelectric materials-part II vacuum solution, Journal of the mechanics and physics of solids 44, 1831-1866 (1996) · Zbl 1055.74556 · doi:10.1016/0022-5096(96)00056-7
[26] Li, X. -F.; Yang, J.: Electromagnetoelastic behavior induced by a crack under antiplane mechanical and inplane electric impacts, International journal of fracture 132, 49-64 (2005) · Zbl 1196.74201 · doi:10.1007/s10704-004-7645-2
[27] Li, W.; Mcmeeking, R.; Landis, C. M.: On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determinining energy release rates, European journal of mechanics A/solids 27, 285-301 (2008) · Zbl 1154.74378 · doi:10.1016/j.euromechsol.2007.08.007
[28] Ma, C. -C.; Chen, S. -K.: Investigation on the stress intensity factor field for unstable dynamic crack growth, International journal of fracture 58, 345-359 (1992)
[29] Maugin, G. A.: On the J-integral and energy-release rates in dynamic fracture, Acta mechanica 105, 33-47 (1994) · Zbl 0811.73049 · doi:10.1007/BF01183940
[30] Mcmeeking, R. M.: Electrostrictive forces near crack like flaws, Journal of applied mathematics and physics (ZAMP) 40, 615-627 (1989) · Zbl 0685.73050
[31] Mcmeeking, R. M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials, International journal of fracture 108, 25-41 (2001)
[32] Mcmeeking, R. M.: The energy release rate for a griffith crack in a piezoelectric material, Engineering fracture mechanics 71, 1149-1163 (2004)
[33] Melkumyan, A.: Comments on ”dynamic crack propagation in piezoelectric materials — part I. Electrode solution” by shaofan Li, peter A. Mataga [J. Mech. phys. Solids 44 (1996) 1799 – 1830], Journal of the mechanics and physics of solids 53, 1918-1925 (2005) · Zbl 1121.74454 · doi:10.1016/j.jmps.2005.04.003
[34] Narita, F.; Shindo, Y.: Dynamic anti-plane shear of a cracked piezoelectric ceramic, Theoretical and applied fracture mechanics 29, 169-180 (1998)
[35] Pak, Y. E.: Crack extension force in a piezoelectric material, Journal of applied mechanics 57, 647-653 (1990) · Zbl 0724.73191 · doi:10.1115/1.2897071
[36] Pak, Y. E.; Hermann, G.: Conservation laws and the material momentum tensor for the elastic dielectric, International journal of engineering science 24, 1365-1372 (1986) · Zbl 0594.73105 · doi:10.1016/0020-7225(86)90065-0
[37] Park, S. B.; Sun, C. T.: Effect of electric field on fracture of piezoelectric ceramics, International journal of fracture 70, 203-216 (1995)
[38] Park, S. B.; Sun, C. T.: Fracture criteria for piezoelectric ceramics, Journal of American ceramic society 78, 1475-1480 (1995)
[39] Shindo, Y.; Katsura, H.; Yan, W.: Dynamic stress intensity factor of a cracked dielectric medium in a uniform electric field, Acta mechanica 117, 1-10 (1996) · Zbl 0864.73059 · doi:10.1007/BF01181032
[40] Sih, G.C., Chen, E.P., 1977. Cracks moving at constant velocity and acceleration. In: Sih Noordhoff, G.C. (Ed.), Mechanics of Fracture 4: Elastodynamic Crack Problems, Amsterdam, pp. 59 – 117.
[41] Wang, B. L.; Mai, Y. -W.: Fracture of piezoelectromagnetic materials, Mechanics research communication 31, 65-73 (2004) · Zbl 1045.74586 · doi:10.1016/j.mechrescom.2003.08.002
[42] Wang, B. L.; Mai, Y. -W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, International journal of solids and structures 44, 387-398 (2007) · Zbl 1178.74145 · doi:10.1016/j.ijsolstr.2006.04.028
[43] Wang, X.; Yu, S.: Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impacts: mode-III problem, International journal of solids and structures 37, 5795-5808 (2000) · Zbl 0981.74050 · doi:10.1016/S0020-7683(99)00268-1
[44] Wang, B. L.; Mai, Y. -W.; Niraula, O. P.: Horizontal shear surface wave in magnetoelectroelastic materials, Philosophical magazine letters 87, 53-58 (2007)
[45] Yang, J.: Effects of electromagnetic coupling on a moving crack in polarized ceramics, International journal of fracture 126, L83-L88 (2004) · Zbl 1187.74209 · doi:10.1023/B:FRAC.0000031189.26034.a6
[46] Zhang, T. Y.; Gao, C. F.: Fracture behaviors of piezoelectric materials, Theoretical and applied fracture mechanics 41, 339-379 (2004)
[47] Zhang, T. -Y.; Tong, P.: Fracture mechanics for a mode III crack in a piezoelectric material, International journal of solids and structures 33, 343-359 (1996) · Zbl 0919.73225 · doi:10.1016/0020-7683(95)00046-D
[48] Zhang, T. -Y.; Zhao, M. H.; Tong, P.: Fracture of piezoelectric ceramics, Advances in applied mechanics 38, 147-289 (2002)
[49] Zhang, T. -Y.; Zhao, M. H.; Gao, C. F.: The strip dielectric breakdown model, International journal of fracture 132, 311-327 (2005) · Zbl 1196.74235 · doi:10.1007/s10704-005-2054-8
[50] Zhao, M. -H.; Fan, C. -Y.: Strip electric-magnetic breakdown model in magnetoelectroelastic medium, Journal of the mechanics and physics of solids 56, 3441-3458 (2008) · Zbl 1171.74421 · doi:10.1016/j.jmps.2008.09.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.