×

Predictive algorithm for detection of microcracks from macroscale observables. (English) Zbl 1383.74095

Summary: A probabilistic multiscale based computational scheme is developed to predict locations of microcracks and to estimate the associated macroscopic constitutive material properties for structural systems. The proposed scheme only requires a single realization of the macroscale response field (e.g., strain field, strain energy density field) that is often typically available in practice. Here, the macroscale is associated with structural systems of size of the order of 10–100 \(m\), while microcracks are used to refer to micron-scale cracks of size 10–100 \(\mu m\) (depending on materials) that have the potential to cause catastrophic failures when they coalesce and form larger cracks. The analysis of such microcracks, before a macrocrack visibly appears (say, at the size of a few \(cms\)), is beyond the scope of the classical fracture mechanics. The present work addresses this issue in a certain sense by incorporating the effects of microcracks into macroscopic constitutive material properties within a probabilistic formalism which is based on multiscale mechanics, random matrix theory, and the principles of minimum complementary energy and minimum potential energy. Distinct differences are observed in the probabilistic features (not deterministic features) of macrolevel response variables depending on the presence or absence of microcracks. Relying on this distinctive probabilistic features and using macroscale experimental measurements as available in practice, an optimization scheme, which is similar to cyclic seesaw optimization, is proposed (1) to identify the spatial locations of microcracks in macroscopic structural systems and (2) to estimate the weakened (due to the presence of microcracks) macroscopic material properties. In particular, the spatial field of weakened macroscopic constitutive elasticity matrix is estimated. The positive-definite feature of the constitutive elasticity matrix is exploited in this proposed optimization-based predictive analytics to achieve a better convergence rate and to improve the accuracy. This work will be useful in estimating remaining useful life of the structural systems.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65C50 Other computational problems in probability (MSC2010)
74Q20 Bounds on effective properties in solid mechanics
90C26 Nonconvex programming, global optimization
90C90 Applications of mathematical programming

Software:

minpack; CVX
PDFBibTeX XMLCite
Full Text: DOI

References:

[3] J. D. Achenbach, {\it Evaluation of Aging Aircraft in Structural Integrity of Aging Airplanes}, Springer Ser. Comput. Mech., Springer, Berlin, 1991.
[4] D. Adams, {\it Health Monitoring of Structural Materials and Components: Methods with Applications}, John Wiley & Sons, New York, 2007.
[5] S. Adhikari, {\it Matrix variate distributions for probabilistic structural dynamics}, AIAA J., 45 (2007), pp. 1748-1762.
[6] U. O. Akpan, T. Koko, B. Ayyub, and T. Dunbar, {\it Risk assessment of aging ship hull structures in the presence of corrosion and fatigue}, Marine Structures, 15 (2002), pp. 211-231.
[7] T. Anderson, {\it An Introduction to Multivariate Statistical Analysis}, John Wiley & Sons, New York, 2003. · Zbl 1039.62044
[8] R. Balian, {\it Random matrices and information theory}, IL Nuovo Cimento, B 57 (1968), pp. 183-193. · Zbl 0209.21903
[9] B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, {\it Digital volume correlation: Three-dimensional strain mapping using x-ray tomography}, Exp. Mech., 39 (1999), pp. 217-226.
[10] Z. P. Bažant and S.-D. Pang, {\it Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors}, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 9434-9439.
[11] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, {\it Asymptotic Analysis for Periodic Structures}, Vol. 374, AMS, Providence, RI, 2011. · Zbl 1229.35001
[12] A. I. Borisenko and I. E. Tarapov, {\it Vector and Tensor Analysis with Applications}, Dover, New York, 1979. · Zbl 0168.42203
[13] J. M. Brownjohn, {\it Structural health monitoring of civil infrastructure}, Philos. Trans. A, 365 (2007), pp. 589-622.
[14] N. J. Carino, {\it The impact-echo method: An overview}, in Proceedings of the 2001 Structures Congress & Exposition, 2001, pp. 21-23.
[15] A. Carpinteri and G. Lacidogna, {\it Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics}, CRC Press, Boca Raton, FL, 2008.
[16] S. Chakravarty, {\it PhD Dissertation: Multi-Scale Material Modeling Mechanics Using Variational Principles and Random Matrix Theory}, Ph.D. thesis, Department of Mechanical & Aerospace Engineering, University at Buffalo, 2016.
[17] P. C. Chang and S. C. Liu, {\it Recent research in nondestructive evaluation of civil infrastructures}, J. Mater. Civil Eng., 15 (2003), pp. 298-304.
[18] W. Chen and J. Fish, {\it A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales}, Internat. J. Numer. Methods Engrg., 67 (2006), pp. 253-271. · Zbl 1110.74814
[19] T. Chu, W. Ranson, and M. Sutton, {\it Applications of digital-image-correlation techniques to experimental mechanics}, Exp. Mech., 25 (1985), pp. 232-244.
[20] S. Das, {\it Model, Identification & Analysis of Complex Stochastic Systems: Applications in Stochastic Partial Differential Equations and Multiscale Mechanics}, Ph.D. thesis, Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, 2008; also available online from http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll127/id/79306.
[21] S. Das and R. Ghanem, {\it A bounded random matrix approach for stochastic upscaling}, Multiscale Model. Simul., 8 (2009), pp. 296-325. · Zbl 1423.74967
[22] S. Das and R. Ghanem, {\it Stochastic upscaling for inelastic material behavior from limited experimental data}, in Computational Methods for Microstructure-Property Relationships, S. Ghosh and D. Dimiduk, eds., Springer, Berlin, 2011, pp. 443-468.
[23] K. Deb, {\it Multi-Objective Optimization Using Evolutionary Algorithms}, Wiley Ser. Syst. Optim., John Wiley & Sons, New York, 2001. · Zbl 0970.90091
[24] L. Devroye, {\it Non-Uniform Random Variate Generation}, Springer, Berlin, 1986. · Zbl 0593.65005
[25] A. A. Diaz, S. Doctor, J. Hixon, and R. Mathews, {\it Assessment of Eddy Current Testing for the Detection of Cracks in Cast Stainless Steel Reactor Piping Components}, Technical report PNNL-16253, 2007.
[26] S. W. Doebling, C. R. Farrar, M. B. Prime, {\it A summary review of vibration-based damage identification methods}, Shock Vib. Dig., 30 (1998), pp. 91-105.
[27] S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. Shevitz, {\it Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review}, Technical repprt, Los Alamos National Laboratory, Los Alamos, NM, 1996.
[28] W. J. Drugan and J. R. Willis, {\it A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites}, J. Mech. Phys. Solids, 44 (1996), pp. 497-524. · Zbl 1054.74704
[29] F. Erdogan, {\it Fracture mechanics}, Internat. J. Solids Struct., 37 (2000), pp. 171-183. · Zbl 1075.74069
[30] A. Eringen and B. Kim, {\it Relation between non-local elasticity and lattice dynamics}, Crystal Lattice Defects, 7 (1977), pp. 51-57.
[31] C. R. Farrar and S. W. Doebling, {\it An overview of modal-based damage identification methods}, in Proceedings of the DAMAS Conference, Sheffield, UK, 1997, pp. 269-278.
[32] R. D. Finlayson, M. Friesel, M. Carlos, P. Cole, and J. Lenain, {\it Health monitoring of aerospace structures with acoustic emission and acousto-ultrasonics}, Insight, 43 (2001), pp. 155-158.
[33] R. Fletcher, {\it Function minimization without evaluating derivatives–A review}, Comput. J., 8 (1965), pp. 33-41. · Zbl 0139.10401
[34] D. Gazis, I. Tadjbakhsh, and R. Toupin, {\it The elastic tensor of given symmetry nearest to an anisotropic elastic tensor}, Acta Crystallogr., 16 (1963), pp. 917-922.
[35] R. Ghanem and S. Das, {\it Hybrid representations of coupled nonparametric and parametric models for dynamic systems}, AIAA J., 47 (2009), pp. 1035-1044.
[36] D. Goldberg, {\it Genetic Algorithms in Search, Optimization and Machine Learning}, 1st ed., Addison-Wesley Professional, Reading, MA, 1989. · Zbl 0721.68056
[37] M. Grant and S. Boyd, {\it CVX: Matlab Software for Disciplined Convex Programming, Version} 1.21, 2011.
[38] J. Guilleminot, A. Noshadravan, C. Soize, and R. Ghanem, {\it A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures}, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 1637-1648. · Zbl 1228.74019
[39] A. K. Gupta and D. K. Nagar, {\it Matrix Variate Distributions}, Monogr. Surv. Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 1999. · Zbl 0935.62064
[40] A. A. Gusev, {\it Representative volume element size for elastic composites: A numerical study}, J. Mech. Phys. Solids, 45 (1997), pp. 1449-1459. · Zbl 0977.74512
[41] A. R. Hadjesfandiari and G. F. Dargush, {\it Couple stress theory for solids}, Internat. J. Solids Struct., 48 (2011), pp. 2496-2510.
[42] D. J. Hagemaier, {\it Fundamentals of Eddy Current Testing}, American Society for Nondestructive Testing, Columbus, OH, 1990.
[43] K. Hattar, J. Han, M. Saif, and I. Robertson, {\it In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films}, J. Mater. Res., 20 (2005), pp. 1869-1877.
[44] S. Hazanov and C. Huet, {\it Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume}, J. Mech. Phys. Solids, 42 (1994), pp. 1995-2011. · Zbl 0821.73005
[45] W. R. Hendricks, {\it The Aloha Airlines Accident–A New Era for Aging Aircraft}, in Structural Integrity of Aging Airplanes, Springer, Berlin, 1991, pp. 153-165.
[46] R. Hill, {\it Elastic properties of reinforced solids: Some theoretical principles}, J. Mech. Phys. Solids, 11 (1963), pp. 357-372. · Zbl 0114.15804
[47] R. Hill, {\it On constitutive macro-variables for heterogeneous solids at finite strain}, Proc. Roy. Soc. Lond. A. Math. Phys. Sci., 326 (1972), pp. 131-147. · Zbl 0229.73004
[48] W. Hörmann, J. Leylod, and G. Derflinger, {\it Automatic Nonuniform Random Variate Generation}, Statist. Comput., Springer, Berlin, 2004. · Zbl 1038.65002
[49] R. Horn and C. Johnson, {\it Matrix Analysis}, Cambridge University Press, Cambridge, 2012.
[50] P. Huang, Z. Li, and J. Sun, {\it Shrinkage and splitting of microcracks under pressure simulated by the finite-element method}, Metal. Mater. Trans. A, 33 (2002), pp. 1117-1124.
[51] C. Huet, {\it Application of variational concepts to size effects in elastic heterogeneous bodies}, J. Mech. Phys. Solids, 38 (1990), pp. 813-841.
[52] C. Huet, {\it An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response}, Engrg. Fracture Mech., 58 (1997), pp. 459-556.
[53] D. Huston, {\it Structural Sensing, Health Monitoring, and Performance Evaluation}, CRC Press, Boca Raton, FL, 2010.
[54] L. Huyse, M. A. Maes, and B. H. Thacker, {\it Probabilistic multi-scale modeling of materials}, in Micromechanics and Nanoscale Effects: MEMS, Multi-Scale Materials and Micro-Flows, V. M. Harik and L.-S. Luo, eds., Kluwer, Dordrecht, The Netherlands, 2004, pp. 145-173.
[55] L. H. Ichinose, Y. Kohno, T. Kitada, and M. Matsumura, {\it Applications of eddy current test to fatigue crack inspection of steel bridges}, Mem. Faculty Eng. Osaka City Univ., 48 (2007), pp. 57-62.
[56] E. T. Jaynes, {\it Information theory and statistical mechanics}, Phys. Rev., 106 (1957), pp. 620-630. · Zbl 0084.43701
[57] E. T. Jaynes, {\it Probability Theory: The Logic of Science}, Cambridge University Press, Cambridge, 2003. · Zbl 1045.62001
[58] K. Jöchen, {\it Homogenization of the Linear and Mon-linear Mechanical Behavior of Polycrystals}, Ph.D. thesis, 2012.
[59] L. M. Kachanov, {\it Introduction to Continuum Damage Mechancis}, Martinus Nijhoff, Dordrecht, The Netherlands, 1986. · Zbl 0596.73091
[60] M. E. Kassner, S. Nemat-Nasser, Z. Suo, G. Bao, J. C. Barbour, L. C. Brinson, H. Espinosa, H. Gao, S. Granick, P. Gumbsch, et al., {\it New directions in mechanics}, Mech. Mater., 37 (2005), pp. 231-259.
[61] S. Kim and D. M. Frangopol, {\it Optimum inspection planning for minimizing fatigue damage detection delay of ship hull structures}, Internat. J. Fatigue, 33 (2011), pp. 448-459.
[62] U. F. Kocks, C. N. Tomé, and H.-R. Wenk, {\it Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties}, Cambridge University Press, Cambridge, 2000. · Zbl 0946.74002
[63] T. G. Kolda, R. M. Lewis, and V. Torczon, {\it Optimization by direct search: New perspectives on some classical and modern methods}, SIAM Rev., 45 (2003), pp. 385-482. · Zbl 1059.90146
[64] V. Kouznetsova, W. Brekelmans, and F. Baaijens, {\it An approach to micro-macro modeling of heterogeneous materials}, Comput. Mech., 27 (2001), pp. 37-48. · Zbl 1005.74018
[65] R. S. Langley and A. W. M. Brown, {\it Spectral statistics in elastodynamics}, J. Acoust. Soc. Amer., 85 (1989), pp. 1005-1013.
[66] R. S. Langley and A. W. M. Brown, {\it The ensemble statistics of the energy of a random system subjected to harmonic excitation}, J. Sound Vibration, 275 (2004), pp. 823-846.
[67] J. Lemaitre, {\it A Course on Damage Mechanics}, Springer, Berlin, 1996. · Zbl 0852.73003
[68] W. K. Liu, E. G. Karpov, and H. S. Park, {\it Nano Mechanics and Materials: Theory, Multiscale Methods and Applications}, John Wiley & Sons, New York, 2006.
[69] C. Luo, S. Mohanty, and A. Chattopadhyay, {\it Fatigue damage prediction of cruciform specimen under biaxial loading}, J. Intell. Mater. Syst. and Struct., 2012, http://dx.doi.org/10.1177/1045389X12455726.
[70] C. Luo, J. Wei, M. Parra-Garcia, A. Chattopadhyay, and P. Peralta, {\it Fatigue damage prediction in metallic materials based on multiscale modeling}, AIAA J., 47 (2009), pp. 2567-2576.
[71] A. Makas, J. Avallone, R. MacKinnon, I. Atodaria, and P. Peralta, {\it Variability on nucleation and growth of short fatigue cracks due to material anisotropy in aluminum} 2024-T351, J. Intell. Mater. Syst. Struct., 24 (2013), pp. 2148-2167.
[72] M. Mehta, {\it Random Matrices}, 3rd ed., Academic Press, New York, 2004. · Zbl 1107.15019
[73] J. E. Michaels, L. J. Jacobs, and M. Ruzzene, {\it A Multi-Scale Sructural Health Monitoring Approach for Damage Detection, Diagnosis and Prognosis in Aerospace Structures}, Technical report, DTIC document, 2012.
[74] R. D. Mindlin, {\it Micro-structure in linear elasticity}, Arch. Ration. Mech. Anal., 16 (1964), pp. 51-78. · Zbl 0119.40302
[75] M. Moakher and A. N. Norris, {\it The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry}, J. Elasticity, 85 (2006), pp. 215-263. · Zbl 1104.74014
[76] B. Moaveni, X. He, J. P. Conte, and J. I. Restrepo, {\it Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table}, Struct. Saf., 32 (2010), pp. 347-356.
[77] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, {\it Testing unconstrained optimization software}, ACM Trans. Math. Software, 7 (1981), pp. 17-41. · Zbl 0454.65049
[78] S. Murakami, {\it Progress of continuum damage mechanics}, Int. J. Bull. JSME, 30 (1987), pp. 701-710.
[79] R. Muirhead, {\it Aspects of Multivariate Statistical Theory}, John Wiley & Sons, New York, 1982. · Zbl 0556.62028
[80] S. Nemat-Nasser and M. Hori, {\it Micromechanics: Overall Properties of Heterogeneous Materials}, North Holland Ser. Appl. Math. Mech., Elsevier Science, Amsterdam, The Netherlands, 1993. · Zbl 0924.73006
[81] A. Norris, {\it The isotropic material closest to a given anisotropic material}, J. Mech. Mat. Struct., 1 (2006), pp. 223-238.
[82] M. Ortiz, {\it Microcrack coalescence and macroscopic crack growth initiation in brittle solids}, Internat. J. Solids Struct., 24 (1988), pp. 231-250.
[83] M. Ostoja-Starzewski, {\it Microstructural Randomness and Scaling in Mechanics of Materials}, CRC Press, Boca Raton, FL, 2007. · Zbl 1148.74002
[84] J. M. Papazian, E. L. Anagnostou, S. J. Engel, D. Hoitsma, J. Madsen, R. P. Silberstein, G. Welsh, and J. B. Whiteside, {\it A structural integrity prognosis system}, Eng. Fract. Mech., 76 (2009), pp. 620-632.
[85] S. Pitt and R. Jones, {\it Multiple-site and widespread fatigue damage in aging aircraft}, Eng. Fail. Anal., 4 (1997), pp. 237-257.
[86] G. Pluvinage and A. Sedmak, {\it Security and Reliability of Damaged Structures and Defective Materials}, Springer, Berlin, 2009.
[87] H. H. Rosenbrock, {\it An automatic method for finding the greatest or least value of a function}, Comput. J., 3 (1960), pp. 175-184.
[88] S. Sankaran and N. Zabaras, {\it Computing property variability of polycrystals induced by grain size and orientation uncertainties}, Acta Mater., 55 (2007), pp. 2279-2290.
[89] M. Sansalone, {\it Impact-echo: The complete story}, ACI Struct. J., 94 (1997), pp. 777-786.
[90] I. Shames and F. Cozzarelli, {\it Elastic and Inelastic Stress Analysis}, Prentice-Hall, Englewood Cliffs, NJ, 1992. · Zbl 0744.73003
[91] R. Smit, W. Brekelmans, and H. Meijer, {\it Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling}, Comput. Methods Appl. Mech. Engrg., 155 (1998), pp. 181-192. · Zbl 0967.74069
[92] C. G. Soares and Y. Garbatov, {\it Fatigue reliability of the ship hull girder accounting for inspection and repair}, Reliab. Eng. Syst. Saf., 51 (1996), pp. 341-351.
[93] C. Soize, {\it A nonparametric model of random uncertainties for reduced matrix models in structural dynamics}, Probab. Engrg. Mech., 15 (2000), pp. 277-294.
[94] C. Soize, {\it Maximum entropy approach for modeling random uncertainties in transient elastodynamics}, J. Acoust. Soc. Amer., 109 (2001), pp. 1979-1996.
[95] C. Soize, {\it Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size}, Probab. Engrg. Mech., 23 (2008), pp. 307-323.
[96] C. Soize, {\it Stochastic Models of Uncertainties in Computational Mechanics}, Lect. Notes Mech., American Society of Civil Engineers, Reston, VA, 2012. · Zbl 1309.74005
[97] J. C. Spall, {\it Cyclic seesaw process for optimization and identification}, J. Optim. Theory Appl., 154 (2012), pp. 187-208. · Zbl 06110387
[98] W. Staszewski, C. Boller, and G. R. Tomlinson, {\it Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing}, John Wiley & Sons, New York, 2004.
[99] T. Stepinski, T. Uhl, and W. Staszewski, {\it Advanced Structural Damage Detection: From Theory to Engineering Applications}, John Wiley & Sons, New York, 2013.
[100] S. Swaminathan, S. Ghosh, and N. Pagano, {\it Statistically equivalent representative volume elements for unidirectional composite microstructures: Part I–Without damage}, J. Composite Mater., 40 (2006), pp. 583-604.
[101] D. Taylor, J. Hazenberg, and T. Lee, {\it Living with cracks: Damage and repair in human bone}, Nature Mater., 6 (2007), pp. 263-268.
[102] S. Torquato, {\it Random heterogeneous materials: Microstructure and macroscopic properties}, Interdiscip. Appl. Math., Springer, Berlin, 2001. · Zbl 0988.74001
[103] L. N. Vicente and P. H. Calamai, {\it Bilevel and multilevel programming: A bibliography review}, J. Global Optim., 5 (1994), pp. 291-306. · Zbl 0822.90127
[104] R. Wanhill, {\it Milestone Case Histories in Aircraft Structural Integrity}, National Aerospace Laboratory, 2002.
[105] R. Weaver, {\it The unreasonable effectiveness of random matrix theory for the vibrations and acoustics of complex structures}, in New Directions in Linear Acoustics and Vibration, M. Wright and R. Weaver, eds., Cambridge University Press, Cambridge, 2010, pp. 42-58.
[106] J. Wishart, {\it The generalized product moment distribution in samples from a normal multivariate population}, Biometrika, 20A (1928), pp. 32-52. · JFM 54.0565.02
[107] H. T. Yolken, {\it Selecting a nondestructive testing method: Eddy current testing}, AMMTIAC Q., 1 (2007), pp. 7-11.
[108] D. Yoon, W. Weiss, and S. Shah, {\it Assessing damage in corroded reinforced concrete using acoustic emission}, J. Engrg. Mech., 126 (2000), pp. 273-283.
[109] Q. Zhang, {\it Statistical damage identification for bridges using ambient vibration data}, Comput. Struct., 85 (2007), pp. 476-485.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.