×

Model adaptivity on effective elastic properties coupled with adaptive FEM. (English) Zbl 1439.74428

Summary: The research field of model adaptivity is well established, aiming at adaptive selection of mathematical models from a well defined class of models (model hierarchy) to achieve a preset level of accuracy. The present work addresses its application to a class of linear elastic composite problems. We will show that the classical bounding theories can provide a model hierarchy in a natural and theoretically consistent manner, without combination of different methods using a priori knowledge. To arrive at computable higher order bounds, the classical singular approximation is made. As a new finding, this may, under certain circumstances, give rise to an overlap effect. To overcome this, a correction is proposed. Additionally, the model adaptivity is coupled to the well established adaptive finite element method (FEM), such that both macro model and macro discretization errors are controlled. The proposed adaptive procedure is driven by a goal-oriented a posteriori error estimator based on duality techniques. For efficient computation of the dual solution, a patch-based recovery technique is proposed and compared to existing methods. For illustration, numerical examples are presented.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity

Software:

VCFEM-HOMO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fish, J., Practical Multiscaling (2013), John Wiley & Sons, The Atrium
[2] Zohdi, T. I.; Wriggers, P., Introduction To Computational Micromechanics (2008), Springer: Springer Berlin · Zbl 1143.74002
[3] Qu, J.; Cherkaoui, M., Fundamentals of Micromechanics of Solids (2006), Wiley: Wiley Hoboken, New Jersey
[4] Hornung, U., Homogenization and Porous Media (1996), Springer: Springer New York · Zbl 0861.92025
[5] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 241, 376-396 (1957) · Zbl 0079.39606
[6] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571-574 (1973)
[7] Du, D. X.; Zheng, Q. S., A further exploration on the effective self-consistent scheme and IDD estimate for the effective properties of multiphase composites which accounts for inclusion distribution, Acta Mech. (2002) · Zbl 1205.74147
[8] Kröner, E., Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys., 151, 504-518 (1958)
[9] Lagoudas, D. C.; Gavazzi, A. C.; Nigam, H., Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme, Comput. Mech., 8, 193-203 (1991) · Zbl 0739.73015
[10] Berveiller, M.; Zaoui, A., An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids, 26, 325-344 (1978) · Zbl 0395.73033
[11] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech., 34, 171-302 (1998) · Zbl 0889.73049
[12] Dederichs, P. H.; Zeller, R., Variational treatment of the elastic constants of disordered materials, Z. Phys., 259, 2, 103-116 (1973)
[13] Kröner, E., Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25, 137-155 (1977) · Zbl 0359.73020
[14] Ponte-Castañeda, P., A finite-strain constitutive theory for electro-active polymer composites via homogenization, Int. J. Non-Linear Mech., 47, 2, 293-306 (2012)
[15] Lahellec, N.; Suquet, P., On the effective behavior of nonlinear inelastic, composites: I. Incremental variational principles, J. Mech. Phys. Solids, 55, 1932-1963 (2007) · Zbl 1170.74044
[16] Lahellec, N.; Suquet, P., On the effective behavior of nonlinear inelastic, composites: II. A second-order procedure, J. Mech. Phys. Solids, 55, 1964-1992 (2007) · Zbl 1170.74045
[17] Ghosh, S.; Lee, K.; Moorthy, S., Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model, Comput. Methods Appl. Mech. Engrg., 132, 63-116 (1996) · Zbl 0892.73061
[18] Miehe, C.; Schröder, J.; Schotte, J., Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 171, 387-418 (1999) · Zbl 0982.74068
[19] Dvorak, G. J.; Benveniste, Y., On transformation strains and uniform fields in multiphase elastic media, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 437, 291-310 (1992) · Zbl 0748.73003
[20] Michel, J.; Suquet, P., Nonuniform transformation field analysis, International Journal for Solids and Structures, 40, 6937-6955 (2003) · Zbl 1057.74031
[21] Yvonnet, J.; He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 341-368 (2007) · Zbl 1163.74048
[22] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numer., 4, 150-158 (1995) · Zbl 0829.65122
[23] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), Wiley-Teubner: Wiley-Teubner Stuttgart · Zbl 0853.65108
[24] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite analysis, (Pure and Applied Mathematics (2000), John Wiley & Sons: John Wiley & Sons New York) · Zbl 1008.65076
[25] Ladevèze, P.; Pelle, J., Mastering calculations in linear and non linear mechanics, (Mechanical Engineering Series (2005), Springer: Springer New York) · Zbl 1077.74001
[26] Babuska, I.; Whiteman, J.; Strouboulis, T., Finite Elements: An Introduction to the Methods and Error Estimation (2011), Oxford University Press: Oxford University Press New York · Zbl 1206.65246
[27] Stein (Ed.), E., Error-Controlled Adaptive Finite Elements in Solid Mechanics (2003), Wiley: Wiley Chichester
[28] Becker, R.; Rannacher, R., A Feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Math., 4, 4, 237-264 (1996) · Zbl 0868.65076
[29] Paraschivoiu, M.; Peraire, J.; Patera, A., A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 150, 1, 289-312 (1997) · Zbl 0907.65102
[30] Cirak, F.; Ramm, E., A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Comput. Methods Appl. Mech. Engrg., 156, 351-362 (1998) · Zbl 0947.74062
[31] Prudhomme, S.; Oden, J. T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Engrg., 176, 1-4, 313-331 (1999) · Zbl 0945.65123
[32] Mahnken, R., Goal-oriented adaptive refinement for phase field modeling with finite elements, Internat. J. Numer. Methods Engrg., 94, 4, 418-440 (2013) · Zbl 1352.80010
[33] Ju, X.; Mahnken, R., Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis, Internat. J. Numer. Methods Engrg. (2017)
[34] Zohdi, T. I.; Oden, J. T.; Rodin, G. J., Hierarchical modeling of heterogeneous bodies, Comput. Methods Appl. Mech. Engrg., 138, 273-298 (1996) · Zbl 0921.73080
[35] Oden, J. T.; Vemaganti, K. S., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials; Part I: Error estimates and adaptive algorithms, J. Comput. Phys., 164, 22-47 (2000) · Zbl 0992.74072
[36] Vemaganti, K. S.; Oden, J. T., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials; Part II: a computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190, 6089-6124 (2001) · Zbl 1030.74051
[37] Stein, E.; Ohnimus, S.; Rüter, M., Hierarchical model-and discretization-error estimation of elasto-plastic structures, (Mechanics for a New Mellennium (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Netherlands), 373-388
[38] Oden, J. T.; Prudhomme, S., Estimation of modeling error in computational mechanics, J. Comput. Phys., 182, 496-515 (2002) · Zbl 1053.74049
[39] Oden, J. T.; Prudhomme, S.; Hammerand, D.; Kuczma, M., Modeling error and adaptivity in nonlinear continuum mechanics, Comput. Methods Appl. Mech. Engrg., 190, 6663-6684 (2001) · Zbl 1012.74081
[40] Oden, J. T.; Prudhomme, S.; Romkes, A.; Bauman, P., Multiscale modelling of physical phenomena: adaptive control of models, SAIM J. Sci. Comput., 28, 2359-2389 (2006) · Zbl 1126.74006
[41] Braack, M.; Ern, A., A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul., 1, 2, 221-238 (2003) · Zbl 1050.65100
[42] Larsson, F.; Runesson, K., Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling, Comput. Methods Appl. Mech. Engrg., 193, 5283-5300 (2004) · Zbl 1112.74525
[43] Larsson, F.; Runesson, K., Adaptive computational meso-macro-scale modeling of elastic composites, Comput. Methods Appl. Mech. Engrg., 195, 324-338 (2006) · Zbl 1193.74151
[44] Maier, M., Duality-Based Adaptivity of Model and Discretization in Multiscale Finite-Element Methods (Ph.D. thesis) (2015), Heidelberg, Univ., Diss., Ruprecht Karl University of Heidelberg · Zbl 1318.65073
[45] Larsson, F.; Runesson, K., RVE computation with error control and adaptivity: the power of duality, Comput. Methods, 39, 647-661 (2007) · Zbl 1161.74046
[46] Ju, X.; Mahnken, R., An NTFA-based homogenization framework considering softening effects, Mech. Mater., 96, 106-125 (2016)
[47] Ju, X.; Mahnken, R., Two accuracy improvements on nonuniform transformation field analysis for plasticity coupled to softening, Proc. Appl. Math. Mech., 16, 527-528 (2016)
[48] Fokin, A. G., Solution of statistical problems in elasticity theory in the singular approximation, J. Appl. Mech. Tech. Phys., 13, 85-89 (1972)
[49] Fokin, A. G., Singular approximation for the calculation of the elastic properties of reinforced systems, Mech. Compos. Mater., 9, 3, 445-449 (1973)
[50] Jöchen, K., Homogenization of the Linear and Non-Linear Mechanical Behavior of Polycrystals (Ph.D. thesis) (2013), KIT Scientific Publishing, Karlsruher Institut für Technologie
[51] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[52] Mura, T., Micromechanics of Defects in Solids (1987), Martinus Nijhoff Publishers: Martinus Nijhoff Publishers The Hague
[53] Zeller, R.; Dederichs, P., Elastic constants of polycrystals, Phys. Status Solidi b, 55, 831-842 (1973)
[54] Müller, V.; Kabel, M.; Andrä, H.; Böhlke, T., Homogenization of linear elastic properties of short-fiber reinforced composites-A comparison of mean field and voxel-based methods, Int. J. Solids Struct., 67, 56-70 (2015)
[55] Kröner, E., Statistical Continuum Mechanics (1972), Springer, Wien
[56] Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65, 5, 349 (1952)
[57] Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 3, 185-202 (1977) · Zbl 0363.73014
[58] Beran, M.; McCoy, J., Mean field variations in a statistical sample of heterogeneous linearly elastic solids, Int. J. Solids Struct., 6, 8, 1035-1054 (1970) · Zbl 0217.23501
[59] Böhlke, T.; Jöchen, K.; Langhoff, T. A., Homogenization of linear elastic properties of silicon nitride, Proc. Appl. Math. Mech., 8, 10535-10536 (2008) · Zbl 1393.74159
[60] Kabel, M.; Andrä, H., Fast numerical computation of precise bounds of effective elastic moduli, Report of the Fraunhofer ITWM 224 (2013)
[61] Rüter, M., Error-Controlled Adaptive Finite Element Methods in Large Strain Hyperelasticity and Fracture Mechanics (Ph.D. thesis) (2003), University of Hannover: University of Hannover Hannover
[62] Widany, K.-U.; Mahnken, R., Dual-based adaptive FEM for inelastic problems with standard FE implementations, Internat. J. Numer. Methods Engrg., 107, 127-154 (2016) · Zbl 1352.74447
[63] Schmich, M.; Vexler, B., Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., 30, 1, 369-393 (2008) · Zbl 1169.65098
[64] Larsson, F.; Hansbo, P.; Runesson, K., Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity, Internat. J. Numer. Methods Engrg., 55, 879-894 (2002) · Zbl 1024.74041
[65] Widany, K.-U.; Mahnken, R., Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements, Comput. Methods Appl. Mech. Engrg., 245-246, 117-131 (2012) · Zbl 1354.74308
[66] Zienkiewicz, O.; Zhu, J., Superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, Internat. J. Numer. Methods Engrg., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.