×

Finite element network approximation of conductivity in particle composites. (English) Zbl 1329.74284

Summary: A new finite element method computes conductivity in some unstructured particle-reinforced composite material. The 2-phase material under consideration is composed of a poorly conducting matrix material filled by highly conducting circular inclusions which are randomly dispersed. The mathematical model is a Poisson-type problem with discontinuous coefficients. The discontinuities are huge in contrast and quantity. The proposed method generalizes classical continuous piecewise affine finite elements to special computational meshes which encode the particles in a network structure. Important geometric parameters such as the volume fraction are preserved exactly. The computational complexity of the method is (almost) proportional to the number of inclusions. This is minimal in the sense that the representation of the underlying geometry via the positions and radii of the inclusions is of the same complexity. The discretization error is proportional to the distance of neighboring inclusions and independent of the conductivity contrast in the medium.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74Q20 Bounds on effective properties in solid mechanics

Software:

CSparse; symrcm
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472-1494 (2007) · Zbl 1152.65042
[2] Börm, S.: Approximation of solution operators of elliptic partial differential equations by \[{\cal{H}} \]- and \[{\cal{H}}^2\]-matrices. Numer. Math. 115(2), 165-193 (2010) · Zbl 1191.65148
[3] Berlyand, L., Kolpakov, A.: Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite. Arch. Ration. Mech. Anal. 159(3), 179-227 (2001) · Zbl 1138.74382
[4] Berlyand, L., Novikov, A.: Error of the network approximation for densely packed composites with irregular geometry. SIAM J. Math. Anal. 34(2), 385-408 (2002) (electronic) · Zbl 1055.74033
[5] Borcea, L., Papanicolaou, G.C.: Network approximation for transport properties of high contrast materials. SIAM J. Appl. Math 58, 501-539 (1998) · Zbl 0917.35137
[6] Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, 3rd edn, vol. 15. Springer, New York (2008) · Zbl 1135.65042
[7] Chu, C.-C., Graham, I.G., Hou, T.Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79, 1915-1955 (2010) · Zbl 1202.65154
[8] Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) · Zbl 0383.65058
[9] Davis, T.A.: Direct methods for sparse linear systems. In: Fundamentals of Algorithms, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006) · Zbl 1119.65021
[10] Delaunay, B.: Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793-800 (1934) · Zbl 0010.41101
[11] Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87-132 (2003) · Zbl 1093.35012
[12] Eigel, M., Peterseim, D.: Network FEM for Composite Materials with A Posteriori Control DFG Research Center Matheon Berlin, Preprint Series, vol. 985 (2012) · Zbl 1309.74069
[13] Fortune, S.: A sweepline algorithm for Voronoĭ diagrams. Algorithmica 2(2), 153-174 (1987) · Zbl 0642.68079
[14] Gavrilova, M., Rokne, J.: Swap conditions for dynamic Voronoi diagrams for circles and line segments. Comput. Aided Geom. Design 16(2), 89-106 (1999) · Zbl 0909.68186
[15] George, A., Liu, J.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981) · Zbl 0516.65010
[16] Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169-189 (1997) · Zbl 0880.73065
[17] Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1-2), 3-24 (1998) · Zbl 1017.65525
[18] Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set. I. Topology. Comput. Aided Geom. Design 18(6), 541-562 (2001) · Zbl 0969.68161
[19] Kolpakov, A.A., Kolpakov, A.G.: Capacity and transport in contrast composite structures. CRC Press, Boca Raton (2010) · Zbl 1192.78038
[20] Larson, M.G., Målqvist, A.: Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196(21-24), 2313-2324 (2007) · Zbl 1173.74431
[21] Målqvist, A., Peterseim, D.: Localization of Elliptic Multiscale Problems. ArXiv e-prints, 1110.0692 (2011) · Zbl 1301.65123
[22] Mao, S., Nicaise, S., Shi, Z.-C.: On the interpolation error estimates for \[Q_1\] quadrilateral finite elements. SIAM J. Numer. Anal. 47(1), 467-486 (2008) · Zbl 1187.65123
[23] Peterseim, D.: Generalized Delaunay partitions and composite material modeling. DFG Research Center Matheon Berlin, Preprint Series, vol. 690 (2010) · Zbl 0969.68161
[24] Peterseim, D.: Triangulating a system of disks. In: Proceedings of the EuroCG 2010. Dortmund, Germany (2010) · Zbl 1191.65148
[25] Peterseim, D.: Robustness of Finite Element Simulations in Densely Packed Random Particle Composites. Netw. Heterog Media 7(1), 113-126 (2012) · Zbl 1262.35010
[26] Stein, E.M.: Singular Integrals and Differentiablity Properties of Function. Priceton Univ. Press, New York (1970) · JFM 60.0946.06
[27] Voronoi, G.F.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133, 97-178 (1907) · JFM 38.0261.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.