×

A phenomenological study of pore-size dependent thermal conductivity of porous silicon. (English) Zbl 1254.74037

Summary: A phonon-hydrodynamics approach is used to analyze the influence of porosity and of pore size on the reduction of the thermal conductivity in porous silicon. Different geometrical arrangements of the pores have been considered. For any given value of the porosity, the theoretical results show that for increasing Knudsen number (i.e., decreasing pore size) the effective thermal conductivity decreases whatever the geometrical arrangement of the pores is.

MSC:

74F05 Thermal effects in solid mechanics
76S05 Flows in porous media; filtration; seepage
35Q74 PDEs in connection with mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009) (5 pages)
[2] Alvarez, F.X., Jou, D., Sellitto, A.: Pore-size dependence of the thermal conductivity of porous silicon: a phonon hydrodynamic approach. Appl. Phys. Lett. 97, 033103 (2010) (3 pages) · doi:10.1063/1.3462936
[3] Alvarez, F.X., Jou, D., Sellitto, A.: Phonon boundary effects and thermal conductivity of rough concentric nanowires. J. Heat Transf. 133, 022402 (2011) (7 pages) · doi:10.1115/1.4002439
[4] Aroutiounian, V.M., Ghulinyan, M.Z.: Electrical conductivity mechanisms in porous silicon. Phys. Status Solidi A 197, 462–466 (2003) · doi:10.1002/pssa.200306545
[5] Bailey, C.L., Barber, R.W., Emerson, D.R., Lockerby, D.A., Reese, J.M.: A critical review of the drag force on a sphere in the transition flow regime. AIP Conf. Proc. 762, 743–748 (2005) · doi:10.1063/1.1941624
[6] Benedetto, G., Boarino, L., Spagnolo, R.: Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method. Appl. Phys. A, Mater. Sci. Process. 64, 155–159 (1997) · doi:10.1007/s003390050457
[7] Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1947) · Zbl 0041.54204 · doi:10.1007/BF02120313
[8] Canham, L.T.: Silicon quantum wire fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990) · doi:10.1063/1.103561
[9] Chen, G.: Nanoscale Energy Transport and Conversion. Oxford University Press, Oxford (2005)
[10] Chung, J.D., Kaviany, M.: Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat Mass Transf. 43, 521–538 (2000) · Zbl 1052.74570 · doi:10.1016/S0017-9310(99)00165-9
[11] Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009) · Zbl 1195.80001 · doi:10.1515/JNETDY.2009.016
[12] Cimmelli, V.A., Frischmuth, K.: Nonlinear effects in thermal wave propagation near zero absolute temperature. Physica B 355, 147–157 (2005) · doi:10.1016/j.physb.2004.10.034
[13] Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (2010) (9 pages) · Zbl 1213.80011 · doi:10.1103/PhysRevB.81.054301
[14] Cunningham, E.: On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A 83, 357–365 (1910) · JFM 41.0843.05 · doi:10.1098/rspa.1910.0024
[15] Fung, Y.C.: Biomechanics: Circulation, 2nd edn. Springer, New York (1997) · Zbl 0868.92004
[16] Gesele, G., Linsmeier, J., Drach, V., Fricke, J., Arens-Fischer, R.: Temperature-dependent thermal conductivity of porous silicon. J. Phys. D, Appl. Phys. 20, 2911–2916 (1997) · doi:10.1088/0022-3727/30/21/001
[17] Guo, Z.Y., Hou, Q.W.: Thermal wave based on the thermomass model. J. Heat Transf. 132, 072403 (2010) (6 pages)
[18] Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966) · doi:10.1103/PhysRev.148.766
[19] Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966) · doi:10.1103/PhysRev.148.778
[20] Hill, R.J., Koch, D.L., Ladd, A.J.C.: Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243–278 (2001) · Zbl 0997.76068
[21] Imai, K.: A new dielectric isolation method using porous silicon. Solid-State Electron. 24, 159–164 (1981) · doi:10.1016/0038-1101(81)90012-5
[22] Jou, D., Casas-Vázquez, J.: Nonequilibrium absolute temperature, thermal waves and phonon hydrodynamics. Physica A 163, 47–58 (1990) · doi:10.1016/0378-4371(90)90314-I
[23] Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010) · Zbl 1185.74002
[24] Kim, J.Y., Yoon, B.J.: The effective conductivities of composites with cubic arrays of spheroids and cubes. J. Compos. Mater. 33, 1344–1362 (1999) · doi:10.1177/002199839903301404
[25] Kushch, V.I.: Conductivity of a periodic particle composite with transversely isotropic phases. Proc. R. Soc. A 453, 65–76 (1997) · Zbl 0888.73037 · doi:10.1098/rspa.1997.0004
[26] Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107, 094308 (2010) (7 pages)
[27] Lee, J.H., Grossman, J.C., Reed, J., Galli, G.: Lattice thermal conductivity of nanoporous Si: Molecular dynamics study. Appl. Phys. Lett. 91, 223110 (2007) (3 pages)
[28] Liboff, R.L.: Kinetic Theory (Classical, Quantum and Relativistic Description). Prentice Hall, Englewood Cliffs (1990)
[29] Looyenga, H.: Dielectric constants of heterogeneous mixtures. Physica 31, 401–406 (1965) · doi:10.1016/0031-8914(65)90045-5
[30] Millikan, R.A.: The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev. 22, 1–23 (1923) · doi:10.1103/PhysRev.22.1
[31] Russell, H.W.: Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 18, 1–5 (1935) · doi:10.1111/j.1151-2916.1935.tb19340.x
[32] Sangani, A.S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8, 343–360 (1982) · Zbl 0541.76041 · doi:10.1016/0301-9322(82)90047-7
[33] Sangani, A.S., Acrivos, A.: Creeping flow through cubic arrays of spherical bubbles. Int. J. Multiph. Flow 9, 181–185 (1983) · Zbl 0569.76100 · doi:10.1016/0301-9322(83)90052-6
[34] Sangani, A.S., Acrivos, A.: The effective conductivity of a periodic array of spheres. Proc. R. Soc. A 386, 263–275 (1983) · Zbl 0569.76100 · doi:10.1098/rspa.1983.0036
[35] Sellitto, A., Alvarez, F.X., Jou, D.: Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (2010) (7 pages)
[36] Sellitto, A., Alvarez, F.X., Jou, D.: Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107, 114312 (2010) (7 pages)
[37] Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–690 (2004) · doi:10.1063/1.1642753
[38] Sturm, J., Grosse, P., Theiss, W.: Effective dielectric functions of alkali halide composites and their spectral representation. Z. Phys. B, Condens. Matter 83, 361–365 (1991) · doi:10.1007/BF01313406
[39] Tzou, D.Y.: Macro to Micro-Scale Heat Transfer. The Lagging Behaviour. Taylor & Francis, New York (1997)
[40] Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010) · doi:10.1016/j.ijthermalsci.2010.01.022
[41] Uhlir, A.: Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 35, 333–347 (1956) · doi:10.1002/j.1538-7305.1956.tb02385.x
[42] Vasko, F.T., Raichev, O.E.: Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons. Springer, New York (2005) · Zbl 1125.82002
[43] Watanabe, Y., Arita, Y., Yokoyama, T., Igarashi, Y.: Formation and properties of porous silicon and its applications. J. Electrochem. Soc. 122, 1351–1355 (1975) · doi:10.1149/1.2134015
[44] Wang, M., Cao, B.Y., Guo, Z.Y.: General heat conduction equations based on the thermomass theory. Front. Heat Mass Transf. 1, 013004 (2010) (8 pages)
[45] Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.