Sankaran, Parameswaran Chaotic group actions on the rationals. (English) Zbl 1191.57024 Indian J. Pure Appl. Math. 40, No. 3, 221-228 (2009). Reviewer: Dieter Erle (Dortmund) MSC: 57S25 37B05 37C85 57M60 54H15 PDF BibTeX XML Cite \textit{P. Sankaran}, Indian J. Pure Appl. Math. 40, No. 3, 221--228 (2009; Zbl 1191.57024)
Isaev, A. V. Characterization of the unit ball in \(\mathbb{C}^n\) among complex manifolds of dimension \(n\). (English) Zbl 1065.32013 J. Geom. Anal. 14, No. 4, 697-700 (2004). Reviewer: Bruce Gilligan (Regina) MSC: 32M05 32Q57 PDF BibTeX XML Cite \textit{A. V. Isaev}, J. Geom. Anal. 14, No. 4, 697--700 (2004; Zbl 1065.32013) Full Text: DOI
Littelmann, Peter Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras. (English) Zbl 0915.20022 J. Am. Math. Soc. 11, No. 3, 551-567 (1998). Reviewer: V.Lakshmibai (Boston) MSC: 20G05 17B37 17B67 14M15 14L30 PDF BibTeX XML Cite \textit{P. Littelmann}, J. Am. Math. Soc. 11, No. 3, 551--567 (1998; Zbl 0915.20022) Full Text: DOI
Repovš, Dušan; Ščepin, Evgenij A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. (English) Zbl 0879.57025 Math. Ann. 308, No. 2, 361-364 (1997). Reviewer: D.Repovš (Ljubljana) MSC: 57S25 54F65 26A24 PDF BibTeX XML Cite \textit{D. Repovš} and \textit{E. Ščepin}, Math. Ann. 308, No. 2, 361--364 (1997; Zbl 0879.57025) Full Text: DOI
Dovermann, Karl Heinz; Masuda, Mikiya Exotic cyclic actions on homotopy complex projective spaces. (English) Zbl 0722.57020 J. Fac. Sci., Univ. Tokyo, Sect. I A 37, No. 2, 335-376 (1990). Reviewer: K.Pawałowski (Poznań) MSC: 57S25 57S17 PDF BibTeX XML Cite \textit{K. H. Dovermann} and \textit{M. Masuda}, J. Fac. Sci., Univ. Tokyo, Sect. I A 37, No. 2, 335--376 (1990; Zbl 0722.57020)
McCullough, Darryl Minimal genus of abelian actions on Klein surfaces with boundary. (English) Zbl 0755.57005 Math. Z. 205, No. 3, 421-436 (1990). Reviewer: J.Hempel (Houston) MSC: 57M60 57N05 57M20 PDF BibTeX XML Cite \textit{D. McCullough}, Math. Z. 205, No. 3, 421--436 (1990; Zbl 0755.57005) Full Text: DOI EuDML
McCullough, Darryl; Miller, Andy; Zimmermann, Bruno Group actions on handlebodies. (English) Zbl 0638.57017 Proc. Lond. Math. Soc., III. Ser. 59, No. 2, 373-416 (1989). Reviewer: D.McCullough MSC: 57S25 57S17 57N10 30F40 PDF BibTeX XML Cite \textit{D. McCullough} et al., Proc. Lond. Math. Soc. (3) 59, No. 2, 373--416 (1989; Zbl 0638.57017) Full Text: DOI
Khosrovyan, O. M. Transitive actions of semisimple Lie groups on punctured affine space. (English) Zbl 0631.57028 Sov. Math. 31, No. 6, 83-92 (1987). MSC: 57S20 22E46 53C30 57S25 22E10 PDF BibTeX XML Cite \textit{O. M. Khosrovyan}, Sov. Math. 31, No. 6, 83--92 (1987; Zbl 0631.57028)
Gorbatsevich, V. V. Lie groups transitive on compact space forms of reductive Lie groups. (English) Zbl 0628.57023 Sov. Math. 31, No. 6, 36-44 (1987). MSC: 57S25 57S20 53C30 22E46 22E40 PDF BibTeX XML Cite \textit{V. V. Gorbatsevich}, Sov. Math. 31, No. 6, 36--44 (1987; Zbl 0628.57023)
Khosrovyan, O. M. Transitive actions of semisimple Lie groups on a punctured affine space. (Russian) Zbl 0624.57033 Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 6(301), 65-72 (1987). Reviewer: D.Motreanu MSC: 57S20 22E46 53C30 57S25 22E10 PDF BibTeX XML Cite \textit{O. M. Khosrovyan}, Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 6(301), 65--72 (1987; Zbl 0624.57033)
Gorbatsevich, V. V. On Lie groups which are transitive on compact spatial forms of reductive Lie groups. (English) Zbl 0621.57020 Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 6(301), 32-37 (1987). Reviewer: Ioan Pop (Iaşi) MSC: 57S25 57S20 53C30 22E46 22E40 PDF BibTeX XML Cite \textit{V. V. Gorbatsevich}, Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 6(301), 32--37 (1987; Zbl 0621.57020)
Ku, Hsu-Tung; Ku, Mei-Chin; Mann, L. N. Newman’s theorem and the Hilbert-Smith conjecture. (English) Zbl 0563.57017 Group actions on manifolds, Proc. AMS-IMS-SIAM Joint Summer Res. Conf., Boulder/Colo. 1983, Contemp. Math. 36, 489-497 (1985). Reviewer: K.Komiya MSC: 57S10 57S15 PDF BibTeX XML
Saito, Kazuo; Watabe, Tsuyoshi Semisimple degree of symmetry of manifold with the homotopy type of product \((S^ 1)^ r\times (S^ 2)^ s\times (S^ 3)^ t\). (English) Zbl 0568.57023 Osaka J. Math. 21, 493-506 (1984). Reviewer: K.Komiya MSC: 57S10 57S25 55T10 PDF BibTeX XML Cite \textit{K. Saito} and \textit{T. Watabe}, Osaka J. Math. 21, 493--506 (1984; Zbl 0568.57023)
Watabe, Tsuyoshi Semisimple degree of symmetry and maps of non-zero degree into a product of 1-spheres and 2-spheres. (English) Zbl 0568.57022 Tôhoku Math. J., II. Ser. 37, 33-42 (1984). Reviewer: K.Komiya MSC: 57S10 57S25 PDF BibTeX XML Cite \textit{T. Watabe}, Tohoku Math. J. (2) 37, 33--42 (1984; Zbl 0568.57022) Full Text: DOI