×

Polynomial approach for design and robust analysis of lateral missile control. (English) Zbl 1099.93034

Summary: A polynomial approach is presented for the design and analysis of a sideslip velocity missile autopilot. The controller is designed using polynomial eigenstructure assignment (PEA). The missile model is described by linear parameter varying (LPV) matrices. The design renders to a closed-loop system independent of the choice of equilibria. Thus, if the operating points are in the vicinity of the equilibria, then only one linear model will describe closed-loop dynamics, regardless of the rate of change of the operating points. Parametric stability margins for uncertainty in the controller parameters and aerodynamic derivatives are analysed using a finite version of the Nyquist Theorem. The Finite Nyquist Theorem (FNT) exploits the polynomial framework to assess robustness for a parametric uncertain system with the Finite Inclusion Theorem (FIT). The design and analysis approach is applied to a single-input single-output (SISO) tail-controlled missile in the cruciform fin configuration. Simulations show good tracking of sideslip velocity with closed-loop system, fast responses and good parametric robustness against six uncertain parameters.

MSC:

93C95 Application models in control theory
93B35 Sensitivity (robustness)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ackermann J, Robust Control: Systems with Uncertain Physical Parameters (1993)
[2] DOI: 10.1109/TAES.1983.309373 · doi:10.1109/TAES.1983.309373
[3] Barmish BR, New Tools for Robustness of Linear Systems (1994) · Zbl 1094.93517
[4] Bhattacharyya SP, Robust Control, The Parametric Approach (1995)
[5] Bruyère, L, Tsourdos, A, \.Zbikowski, R and White, BA. 2002. Robust performance study for lateral autopilot of a quasi-linear parameter-varying missile. Proceedings of the American Control Conference. 2002. Vol. 1, pp.226–231.
[6] Bruyère, L, White, BA and Tsourdos, A. 2003. Dynamic inversion for missile lateral velocity control via polynomial eigenstructure assignment. AIAA Guidance, Navigation and Control Conference and Exhibit. 2003. pp.1–7. AIAA 2003-5792
[7] Bruyère L, 6th Portugese Conference on Automatic Control pp 1– (2004)
[8] Djaferis TE, Robust Control Design – A Polynomial Approach (1995) · doi:10.1007/978-1-4615-2293-5
[9] Fossard AJ, Nonlinear Systems 3 (1997)
[10] Horton, MP. 1992. ”A study of autopilots for the adaptive control of tactical guided missiles”. UK: University of Bath. Master’s thesis
[11] Isidori A, Nonlinear Control Systems (1985)
[12] Kailath T, Linear Systems (1980)
[13] Kaminsky, RD and Djaferis, TE. 1993. The finite inclusions theorem. Proceedings of the 32nd IEEE Conference on Decision and Control. 1993. Vol. 1, pp.508–518.
[14] DOI: 10.1109/9.286274 · Zbl 0807.93023 · doi:10.1109/9.286274
[15] DOI: 10.1109/9.376079 · Zbl 0821.93062 · doi:10.1109/9.376079
[16] DOI: 10.1080/00207179608921641 · Zbl 0937.93013 · doi:10.1080/00207179608921641
[17] Liu GP, Eigenstructure Assignment for Control System Design (1998)
[18] DOI: 10.1080/00207179408923068 · Zbl 0800.93380 · doi:10.1080/00207179408923068
[19] DOI: 10.2514/2.4711 · doi:10.2514/2.4711
[20] White BA, ImechE, Systems and Control Engineering 209 pp 1– (1995)
[21] White, BA. 1996. Flight control of a VSTOL aircraft using polynomial. IEEE UKACC, International Conference on Control 96. 1996. Vol. 1, pp.758–763.
[22] DOI: 10.1243/0959651971539678 · doi:10.1243/0959651971539678
[23] White, BA. 1998. Robust flight control of a VSTOL aircraft using polynomial matching. Proceedings of the American Control Conference. 1998. Vol. 2, pp.1133–1137.
[24] DOI: 10.2514/3.20618 · doi:10.2514/3.20618
[25] DOI: 10.2514/3.20918 · doi:10.2514/3.20918
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.