Hindry, Marc; Pacheco, Amílcar Erratum to: “An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic”. (English) Zbl 07551765 Mosc. Math. J. 22, No. 1, 169 (2022). MSC: 11G05 14K15 14G10 14G25 11G40 11G50 PDF BibTeX XML Cite \textit{M. Hindry} and \textit{A. Pacheco}, Mosc. Math. J. 22, No. 1, 169 (2022; Zbl 07551765) Full Text: Link OpenURL
Sadek, Mohammad; Yesin, Tuğba Divisibility by 2 on quartic models of elliptic curves and rational Diophantine \(D(q)\)-quintuples. (English) Zbl 07550937 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 139, 17 p. (2022). MSC: 11G05 11D09 PDF BibTeX XML Cite \textit{M. Sadek} and \textit{T. Yesin}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 139, 17 p. (2022; Zbl 07550937) Full Text: DOI OpenURL
Campagna, Francesco; Pengo, Riccardo Entanglement in the family of division fields of elliptic curves with complex multiplication. (English) Zbl 07547846 Pac. J. Math. 317, No. 1, 21-66 (2022). MSC: 11G05 11G15 14K22 11F80 11S15 PDF BibTeX XML Cite \textit{F. Campagna} and \textit{R. Pengo}, Pac. J. Math. 317, No. 1, 21--66 (2022; Zbl 07547846) Full Text: DOI OpenURL
Dvornicich, Roberto; Paladino, Laura On the division fields of an elliptic curve and an effective bound to the hypotheses of the local-global divisibility. (English) Zbl 07543087 Int. J. Number Theory 18, No. 7, 1567-1590 (2022). MSC: 11G05 11G07 PDF BibTeX XML Cite \textit{R. Dvornicich} and \textit{L. Paladino}, Int. J. Number Theory 18, No. 7, 1567--1590 (2022; Zbl 07543087) Full Text: DOI OpenURL
Li, Yangcheng; Zhang, Yong On an elliptic curve involving pairs of triangles and special quadrilaterals. (English) Zbl 07543085 Int. J. Number Theory 18, No. 7, 1517-1533 (2022). MSC: 51M25 11D25 11G05 11D72 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Zhang}, Int. J. Number Theory 18, No. 7, 1517--1533 (2022; Zbl 07543085) Full Text: DOI OpenURL
Doyon, Anthony; Lei, Antonio Congruences between Ramanujan’s tau function and elliptic curves, and Mazur-Tate elements at additive primes. (English) Zbl 07543023 Ramanujan J. 58, No. 2, 505-522 (2022). MSC: 11R23 11S40 11G05 PDF BibTeX XML Cite \textit{A. Doyon} and \textit{A. Lei}, Ramanujan J. 58, No. 2, 505--522 (2022; Zbl 07543023) Full Text: DOI OpenURL
Lim, Meng Fai On the cohomology of Kobayashi’s plus/minus norm groups and applications. (English) Zbl 07541502 Math. Proc. Camb. Philos. Soc. 173, No. 1, 1-24 (2022). MSC: 11R23 11G05 11S25 PDF BibTeX XML Cite \textit{M. F. Lim}, Math. Proc. Camb. Philos. Soc. 173, No. 1, 1--24 (2022; Zbl 07541502) Full Text: DOI OpenURL
Aka, Menny; Luethi, Manuel; Michel, Philippe; Wieser, Andreas Simultaneous supersingular reductions of CM elliptic curves. (English) Zbl 07538642 J. Reine Angew. Math. 786, 1-43 (2022). MSC: 11G05 11G15 37A17 PDF BibTeX XML Cite \textit{M. Aka} et al., J. Reine Angew. Math. 786, 1--43 (2022; Zbl 07538642) Full Text: DOI OpenURL
Pila, Jonathan; Tsimerman, Jacob Independence of CM points in elliptic curves. (English) Zbl 07533986 J. Eur. Math. Soc. (JEMS) 24, No. 9, 3161-3182 (2022). MSC: 11G18 11G05 03C64 14G35 PDF BibTeX XML Cite \textit{J. Pila} and \textit{J. Tsimerman}, J. Eur. Math. Soc. (JEMS) 24, No. 9, 3161--3182 (2022; Zbl 07533986) Full Text: DOI OpenURL
Xiao, Stanley Yao On monic abelian cubics. (English) Zbl 07532080 Compos. Math. 158, No. 3, 550-567 (2022). MSC: 11R32 11R45 11C08 11E76 11G05 PDF BibTeX XML Cite \textit{S. Y. Xiao}, Compos. Math. 158, No. 3, 550--567 (2022; Zbl 07532080) Full Text: DOI OpenURL
Rivero, Óscar Generalized Kato classes and exceptional zero conjectures. (English) Zbl 07525028 Indiana Univ. Math. J. 71, No. 2, 649-684 (2022). MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{Ó. Rivero}, Indiana Univ. Math. J. 71, No. 2, 649--684 (2022; Zbl 07525028) Full Text: DOI OpenURL
Juyal, Abhishek; Moody, Dustin Pairs of Heron and right triangles with a common area and a common perimeter. (English) Zbl 07523947 Publ. Math. 100, No. 3-4, 449-460 (2022). MSC: 11D25 11G05 PDF BibTeX XML Cite \textit{A. Juyal} and \textit{D. Moody}, Publ. Math. 100, No. 3--4, 449--460 (2022; Zbl 07523947) Full Text: DOI OpenURL
Dimabayao, Jerome Tomagan Concordant pairs in ratios with rank at least two and the distribution of \(\theta\)-congruent numbers. (English) Zbl 07522860 Proc. Japan Acad., Ser. A 98, No. 4, 25-27 (2022). MSC: 11G05 11D09 11D45 PDF BibTeX XML Cite \textit{J. T. Dimabayao}, Proc. Japan Acad., Ser. A 98, No. 4, 25--27 (2022; Zbl 07522860) Full Text: DOI OpenURL
Ieronymou, Evis Evaluation of Brauer elements over local fields. (English) Zbl 07522778 Math. Ann. 382, No. 1-2, 239-254 (2022). MSC: 11G05 14F22 14G12 14J28 PDF BibTeX XML Cite \textit{E. Ieronymou}, Math. Ann. 382, No. 1--2, 239--254 (2022; Zbl 07522778) Full Text: DOI OpenURL
Dobrescu, Bogdan A.; Fox, Patrick J. Diophantine equations with sum of cubes and cube of sum. (English) Zbl 07516335 Commun. Number Theory Phys. 16, No. 2, 401-434 (2022). MSC: 11D25 11D45 11D85 11G05 PDF BibTeX XML Cite \textit{B. A. Dobrescu} and \textit{P. J. Fox}, Commun. Number Theory Phys. 16, No. 2, 401--434 (2022; Zbl 07516335) Full Text: DOI OpenURL
Kondo, Satoshi; Watari, Taizan Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces. (English) Zbl 1485.11099 Commun. Number Theory Phys. 16, No. 2, 353-400 (2022). MSC: 11G05 11G15 11G40 81T30 81T40 PDF BibTeX XML Cite \textit{S. Kondo} and \textit{T. Watari}, Commun. Number Theory Phys. 16, No. 2, 353--400 (2022; Zbl 1485.11099) Full Text: DOI OpenURL
Castella, Francesc; Hsieh, Ming-Lun On the nonvanishing of generalised Kato classes for elliptic curves of rank 2. (English) Zbl 07514101 Forum Math. Sigma 10, Paper No. e12, 32 p. (2022). MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{F. Castella} and \textit{M.-L. Hsieh}, Forum Math. Sigma 10, Paper No. e12, 32 p. (2022; Zbl 07514101) Full Text: DOI OpenURL
Agwu, Anthony; Harris, Phillip; James, Kevin; Kannan, Siddarth; Li, Huixi Frobenius distributions of elliptic curves in short intervals on average. (English) Zbl 07510926 Ramanujan J. 58, No. 1, 75-120 (2022). MSC: 11G05 11N05 PDF BibTeX XML Cite \textit{A. Agwu} et al., Ramanujan J. 58, No. 1, 75--120 (2022; Zbl 07510926) Full Text: DOI OpenURL
Castella, Francesc; Wan, Xin The Iwasawa main conjectures for \(\operatorname{GL}_2\) and derivatives of \(p\)-adic \(L\)-functions. (English) Zbl 07507732 Adv. Math. 400, Article ID 108266, 45 p. (2022). MSC: 11R23 11G05 11G40 PDF BibTeX XML Cite \textit{F. Castella} and \textit{X. Wan}, Adv. Math. 400, Article ID 108266, 45 p. (2022; Zbl 07507732) Full Text: DOI OpenURL
Özman, Ekin; Siksek, Samir S-unit equations and the asymptotic Fermat conjecture over number fields. (English) Zbl 07505765 Kurşungöz, Kağan (ed.) et al., Number theory. Proceedings of the Journées Arithmétiques, 2019, XXXI, Istanbul University, Turkey, July 1–5, 2019. De Gruyter Proceedings in Mathematics. Berlin: De Gruyter. 83-103 (2022). MSC: 11D41 11G05 11D61 PDF BibTeX XML Cite \textit{E. Özman} and \textit{S. Siksek}, in: Number theory. Proceedings of the Journées Arithmétiques, 2019, XXXI, Istanbul University, Turkey, July 1--5, 2019. Berlin: De Gruyter. 83--103 (2022; Zbl 07505765) Full Text: DOI OpenURL
Leterrier, Gauthier On the Mordell-Weil lattice of \(y^2=x^3+bx+t^{3^n+1}\) in characteristic 3. (English) Zbl 07504607 Res. Number Theory 8, No. 2, Paper No. 23, 20 p. (2022). MSC: 11G05 11M38 11T24 11H31 PDF BibTeX XML Cite \textit{G. Leterrier}, Res. Number Theory 8, No. 2, Paper No. 23, 20 p. (2022; Zbl 07504607) Full Text: DOI OpenURL
Box, Josha Elliptic curves over totally real quartic fields not containing \(\sqrt{5}\) are modular. (English) Zbl 07502495 Trans. Am. Math. Soc. 375, No. 5, 3129-3172 (2022). MSC: 11F80 11G05 PDF BibTeX XML Cite \textit{J. Box}, Trans. Am. Math. Soc. 375, No. 5, 3129--3172 (2022; Zbl 07502495) Full Text: DOI OpenURL
Cremona, John E.; Freitas, Nuno Global methods for the symplectic type of congruences between elliptic curves. (English) Zbl 07498306 Rev. Mat. Iberoam. 38, No. 1, 1-32 (2022). MSC: 11G05 11F80 11F33 PDF BibTeX XML Cite \textit{J. E. Cremona} and \textit{N. Freitas}, Rev. Mat. Iberoam. 38, No. 1, 1--32 (2022; Zbl 07498306) Full Text: DOI OpenURL
Ray, Jishnu On the growth of \(\mu \)-invariant in Iwasawa theory of supersingular elliptic curves. (English) Zbl 07496909 Acta Arith. 202, No. 3, 241-251 (2022). MSC: 11R23 11G05 PDF BibTeX XML Cite \textit{J. Ray}, Acta Arith. 202, No. 3, 241--251 (2022; Zbl 07496909) Full Text: DOI OpenURL
Ouyang, Yi; Zhang, Shenxing Errata to: “On second 2-descent and non-congruent numbers”. (English) Zbl 1482.11082 Acta Arith. 202, No. 2, 203 (2022). MSC: 11G05 11D25 PDF BibTeX XML Cite \textit{Y. Ouyang} and \textit{S. Zhang}, Acta Arith. 202, No. 2, 203 (2022; Zbl 1482.11082) Full Text: DOI OpenURL
Phillips, Tristan Most elliptic curves over global function fields are torsion free. (English) Zbl 07496894 Acta Arith. 202, No. 1, 21-28 (2022). Reviewer: Noburo Ishii (Kyoto) MSC: 11G05 11F80 11N36 PDF BibTeX XML Cite \textit{T. Phillips}, Acta Arith. 202, No. 1, 21--28 (2022; Zbl 07496894) Full Text: DOI OpenURL
Liu, Yifeng; Tian, Yichao; Xiao, Liang; Zhang, Wei; Zhu, Xinwen On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives. (English) Zbl 07495375 Invent. Math. 228, No. 1, 107-375 (2022). Reviewer: Matteo Longo (Padova) MSC: 11G05 11G18 11G40 11R34 PDF BibTeX XML Cite \textit{Y. Liu} et al., Invent. Math. 228, No. 1, 107--375 (2022; Zbl 07495375) Full Text: DOI OpenURL
Kazalicki, Matija; Naskręcki, Bartosz Diophantine triples and K3 surfaces. (English) Zbl 07493015 J. Number Theory 236, 41-70 (2022). MSC: 14H52 14J28 11D09 11G05 PDF BibTeX XML Cite \textit{M. Kazalicki} and \textit{B. Naskręcki}, J. Number Theory 236, 41--70 (2022; Zbl 07493015) Full Text: DOI arXiv OpenURL
Lagheliel, Saida; Chillali, Abdelhakim; Mokhtar, Ahmed Ait New encryption scheme using \(k\)-Fibonacci-like sequence. (English) Zbl 1484.11227 Asian-Eur. J. Math. 15, No. 2, Article ID 2250037, 10 p. (2022). MSC: 11T71 11B39 94A60 11G05 PDF BibTeX XML Cite \textit{S. Lagheliel} et al., Asian-Eur. J. Math. 15, No. 2, Article ID 2250037, 10 p. (2022; Zbl 1484.11227) Full Text: DOI OpenURL
Ďuriš, Viliam; Šumný, Timotej Number of rational points of elliptic curves. (English) Zbl 07490779 Asian-Eur. J. Math. 15, No. 1, Article ID 2250017, 11 p. (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G05 14G05 11H06 PDF BibTeX XML Cite \textit{V. Ďuriš} and \textit{T. Šumný}, Asian-Eur. J. Math. 15, No. 1, Article ID 2250017, 11 p. (2022; Zbl 07490779) Full Text: DOI OpenURL
Amir, Malik; Hong, Letong On \(L\)-functions of modular elliptic curves and certain \(K3\) surfaces. (English) Zbl 07490457 Ramanujan J. 57, No. 3, 1001-1019 (2022). MSC: 11F11 11G05 11G40 11B39 PDF BibTeX XML Cite \textit{M. Amir} and \textit{L. Hong}, Ramanujan J. 57, No. 3, 1001--1019 (2022; Zbl 07490457) Full Text: DOI arXiv OpenURL
Hatley, Jeffrey; Lei, Antonio; Vigni, Stefano \(\Lambda\)-submodules of finite index of anticyclotomic plus and minus Selmer groups of elliptic curves. (English) Zbl 07489549 Manuscr. Math. 167, No. 3-4, 589-612 (2022). MSC: 11R23 11G05 11R20 PDF BibTeX XML Cite \textit{J. Hatley} et al., Manuscr. Math. 167, No. 3--4, 589--612 (2022; Zbl 07489549) Full Text: DOI arXiv OpenURL
Berg, Jennifer; Nakahara, Masahiro Rational points on conic bundles over elliptic curves. (English) Zbl 07489515 Math. Z. 300, No. 3, 2429-2449 (2022). MSC: 14G05 14F22 11G05 PDF BibTeX XML Cite \textit{J. Berg} and \textit{M. Nakahara}, Math. Z. 300, No. 3, 2429--2449 (2022; Zbl 07489515) Full Text: DOI arXiv OpenURL
Dujella, Andrej; Soydan, Gökhan On elliptic curves induced by rational Diophantine quadruples. (English) Zbl 07488520 Proc. Japan Acad., Ser. A 98, No. 1, 1-6 (2022). Reviewer: David McKinnon (Waterloo) MSC: 11G05 PDF BibTeX XML Cite \textit{A. Dujella} and \textit{G. Soydan}, Proc. Japan Acad., Ser. A 98, No. 1, 1--6 (2022; Zbl 07488520) Full Text: DOI arXiv Link OpenURL
Michaud-Rodgers, Philippe Quadratic points on non-split Cartan modular curves. (English) Zbl 07488463 Int. J. Number Theory 18, No. 2, 245-267 (2022). MSC: 11G05 11G18 14G05 PDF BibTeX XML Cite \textit{P. Michaud-Rodgers}, Int. J. Number Theory 18, No. 2, 245--267 (2022; Zbl 07488463) Full Text: DOI arXiv OpenURL
Yin, Hongbo On the 8 case of the Sylvester conjecture. (English) Zbl 07487607 Trans. Am. Math. Soc. 375, No. 4, 2705-2728 (2022). MSC: 11G05 PDF BibTeX XML Cite \textit{H. Yin}, Trans. Am. Math. Soc. 375, No. 4, 2705--2728 (2022; Zbl 07487607) Full Text: DOI arXiv OpenURL
Bertolini, Massimo; Darmon, Henri; Venerucci, Rodolfo Heegner points and Beilinson-Kato elements: a conjecture of Perrin-Riou. (English) Zbl 07483895 Adv. Math. 398, Article ID 108172, 50 p. (2022). MSC: 11F67 11G40 11G35 PDF BibTeX XML Cite \textit{M. Bertolini} et al., Adv. Math. 398, Article ID 108172, 50 p. (2022; Zbl 07483895) Full Text: DOI OpenURL
Kamel, Alwaleed; Saleem, Mohammed A.; Elshareef, Waleed K. Group generated by total sextactic points of a family of quartic curves. (English) Zbl 07482349 Commun. Algebra 50, No. 3, 1342-1362 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 14H45 PDF BibTeX XML Cite \textit{A. Kamel} et al., Commun. Algebra 50, No. 3, 1342--1362 (2022; Zbl 07482349) Full Text: DOI OpenURL
Kundu, Debanjana; Lei, Antonio; Ray, Anwesh Arithmetic statistics and noncommutative Iwasawa theory. (English) Zbl 07482152 Doc. Math. 27, 89-149 (2022). MSC: 11R23 11G05 PDF BibTeX XML Cite \textit{D. Kundu} et al., Doc. Math. 27, 89--149 (2022; Zbl 07482152) Full Text: DOI arXiv OpenURL
Dražić, Goran; Kazalicki, Matija Rational \(D(q)\)-quadruples. (English) Zbl 07478450 Indag. Math., New Ser. 33, No. 2, 440-449 (2022). MSC: 11D09 11G05 PDF BibTeX XML Cite \textit{G. Dražić} and \textit{M. Kazalicki}, Indag. Math., New Ser. 33, No. 2, 440--449 (2022; Zbl 07478450) Full Text: DOI arXiv OpenURL
Ahmadi, Mahnaz; Janfada, Ali S. On quartic Diophantine equations with trivial solutions in the Gaussian integer. (English) Zbl 07477347 Int. Electron. J. Algebra 31, 134-142 (2022). Reviewer: István Gaál (Debrecen) MSC: 11D25 11G05 11D45 PDF BibTeX XML Cite \textit{M. Ahmadi} and \textit{A. S. Janfada}, Int. Electron. J. Algebra 31, 134--142 (2022; Zbl 07477347) Full Text: DOI OpenURL
Slob, Robert Primitive divisors of sequences associated to elliptic curves over function fields. (English) Zbl 07474315 New York J. Math. 28, 230-249 (2022). MSC: 14H52 11G05 11B83 14H05 14J27 PDF BibTeX XML Cite \textit{R. Slob}, New York J. Math. 28, 230--249 (2022; Zbl 07474315) Full Text: arXiv Link OpenURL
Jones, Nathan; McMurdy, Ken Elliptic curves with non-abelian entanglements. (English) Zbl 07474314 New York J. Math. 28, 182-229 (2022). MSC: 11G05 11F80 PDF BibTeX XML Cite \textit{N. Jones} and \textit{K. McMurdy}, New York J. Math. 28, 182--229 (2022; Zbl 07474314) Full Text: arXiv Link OpenURL
Freitas, Nuno; Kraus, Alain; Siksek, Samir On asymptotic Fermat over the \(\mathbb{Z}_2\)-extension of \(\mathbb{Q}\). (Le théorème de Fermat asymptotique sur la \(\mathbb{Z}_2\)-extension de \(\mathbb{Q}\).) (English. French summary) Zbl 07472233 Ann. Math. Blaise Pascal 28, No. 1, 1-6 (2022). MSC: 11D41 11F80 11G05 PDF BibTeX XML Cite \textit{N. Freitas} et al., Ann. Math. Blaise Pascal 28, No. 1, 1--6 (2022; Zbl 07472233) Full Text: DOI arXiv OpenURL
Castella, Francesc; Grossi, Giada; Lee, Jaehoon; Skinner, Christopher On the anticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes. (English) Zbl 07470587 Invent. Math. 227, No. 2, 517-580 (2022). MSC: 11G40 11R23 11G05 11S40 PDF BibTeX XML Cite \textit{F. Castella} et al., Invent. Math. 227, No. 2, 517--580 (2022; Zbl 07470587) Full Text: DOI arXiv OpenURL
Sprung, Florian Ito Chromatic Selmer groups and arithmetic invariants of elliptic curves. (English. French summary) Zbl 07469027 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1103-1114 (2022). MSC: 11G40 11G40 11R23 14H52 PDF BibTeX XML Cite \textit{F. I. Sprung}, J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1103--1114 (2022; Zbl 07469027) Full Text: DOI OpenURL
Lei, Antonio; Lim, Meng Fai Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above \(p\). (English. French summary) Zbl 07469022 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 997-1019 (2022). MSC: 11G05 11R23 PDF BibTeX XML Cite \textit{A. Lei} and \textit{M. F. Lim}, J. Théor. Nombres Bordx. 33, No. 3, Part 2, 997--1019 (2022; Zbl 07469022) Full Text: DOI arXiv OpenURL
Kezuka, Yukako Tamagawa number divisibility of central \(L\)-values of twists of the Fermat elliptic curve. (English. French summary) Zbl 07469020 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 945-970 (2022). MSC: 11G05 14H52 11R23 PDF BibTeX XML Cite \textit{Y. Kezuka}, J. Théor. Nombres Bordx. 33, No. 3, Part 2, 945--970 (2022; Zbl 07469020) Full Text: DOI arXiv OpenURL
Hamidi, Parham; Ray, Jishnu Conjecture a and \(\mu\)-invariant for Selmer groups of supersingular elliptic curves. (English. French summary) Zbl 07469018 J. Théor. Nombres Bordx. 33, No. 3, Part 1, 853-886 (2022). MSC: 11G40 11R23 14H52 PDF BibTeX XML Cite \textit{P. Hamidi} and \textit{J. Ray}, J. Théor. Nombres Bordx. 33, No. 3, Part 1, 853--886 (2022; Zbl 07469018) Full Text: DOI arXiv OpenURL
Gatti, Francesca; Guitart, Xavier; Masdeu, Marc; Rotger, Victor Special values of triple-product \(p\)-adic L-functions and non-crystalline diagonal classes. (English. French summary) Zbl 07469016 J. Théor. Nombres Bordx. 33, No. 3, Part 1, 809-834 (2022). MSC: 11G40 11F85 PDF BibTeX XML Cite \textit{F. Gatti} et al., J. Théor. Nombres Bordx. 33, No. 3, Part 1, 809--834 (2022; Zbl 07469016) Full Text: DOI arXiv OpenURL
Agboola, Adebisi; Castella, Francesc On anticyclotomic variants of the \(p\)-adic Birch and Swinnerton-Dyer conjecture. (English. French summary) Zbl 07469011 J. Théor. Nombres Bordx. 33, No. 3, Part 1, 629-658 (2022). MSC: 11G05 11R23 11G40 11G16 PDF BibTeX XML Cite \textit{A. Agboola} and \textit{F. Castella}, J. Théor. Nombres Bordx. 33, No. 3, Part 1, 629--658 (2022; Zbl 07469011) Full Text: DOI arXiv OpenURL
He, Yang-Hui; Lee, Kyu-Hwan; Oliver, Thomas Machine-learning the Sato-Tate conjecture. (English) Zbl 1483.11133 J. Symb. Comput. 111, 61-72 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G40 11G30 11Y99 14G10 68T05 PDF BibTeX XML Cite \textit{Y.-H. He} et al., J. Symb. Comput. 111, 61--72 (2022; Zbl 1483.11133) Full Text: DOI arXiv OpenURL
Corvaja, Pietro; Demeio, Julian; Masser, David; Zannier, Umberto On the torsion values for sections of an elliptic scheme. (English) Zbl 1485.14085 J. Reine Angew. Math. 782, 1-41 (2022). Reviewer: Matthias Schütt (Hannover) MSC: 14K15 11G50 11J68 11G05 11J99 PDF BibTeX XML Cite \textit{P. Corvaja} et al., J. Reine Angew. Math. 782, 1--41 (2022; Zbl 1485.14085) Full Text: DOI arXiv OpenURL
Petit, Valentin Non-divisible point on a two-parameter family of elliptic curves. (English) Zbl 07456314 Res. Number Theory 8, No. 1, Paper No. 6, 16 p. (2022). Reviewer: Andrej Dujella (Zagreb) MSC: 11G05 11G50 PDF BibTeX XML Cite \textit{V. Petit}, Res. Number Theory 8, No. 1, Paper No. 6, 16 p. (2022; Zbl 07456314) Full Text: DOI arXiv OpenURL
Barrios, Alexander J. Minimal models of rational elliptic curves with non-trivial torsion. (English) Zbl 07456312 Res. Number Theory 8, No. 1, Paper No. 4, 39 p. (2022). Reviewer: José María Tornero (Sevilla) MSC: 11G05 11G07 PDF BibTeX XML Cite \textit{A. J. Barrios}, Res. Number Theory 8, No. 1, Paper No. 4, 39 p. (2022; Zbl 07456312) Full Text: DOI arXiv OpenURL
Pries, Rachel; Ulmer, Douglas Every \(BT_1\) group scheme appears in a Jacobian. (English) Zbl 1483.14054 Proc. Am. Math. Soc. 150, No. 2, 525-537 (2022). Reviewer: Noriko Yui (Kingston) MSC: 14H40 11G05 11D41 11G20 14F40 14K20 14L15 14K10 14K15 14L05 11G18 PDF BibTeX XML Cite \textit{R. Pries} and \textit{D. Ulmer}, Proc. Am. Math. Soc. 150, No. 2, 525--537 (2022; Zbl 1483.14054) Full Text: DOI arXiv OpenURL
Blum, Talia; Choi, Caroline; Hoey, Alexandra; Iskander, Jonas; Lakein, Kaya; Martinez, Thomas C. On class numbers, torsion subgroups, and quadratic twists of elliptic curves. (English) Zbl 07453321 Trans. Am. Math. Soc. 375, No. 1, 351-368 (2022). MSC: 11R29 11G05 PDF BibTeX XML Cite \textit{T. Blum} et al., Trans. Am. Math. Soc. 375, No. 1, 351--368 (2022; Zbl 07453321) Full Text: DOI arXiv OpenURL
Halbeisen, Lorenz; Hungerbühler, Norbert Pairing Pythagorean pairs. (English) Zbl 1484.11104 J. Number Theory 233, 467-480 (2022). MSC: 11D72 11G05 PDF BibTeX XML Cite \textit{L. Halbeisen} and \textit{N. Hungerbühler}, J. Number Theory 233, 467--480 (2022; Zbl 1484.11104) Full Text: DOI arXiv OpenURL
González, Josep On the \(p\)-th division polynomial. (English) Zbl 07452400 J. Number Theory 233, 285-300 (2022). MSC: 11G05 11G20 11D25 14H52 PDF BibTeX XML Cite \textit{J. González}, J. Number Theory 233, 285--300 (2022; Zbl 07452400) Full Text: DOI OpenURL
Roy, Manami Paramodular forms coming from elliptic curves. (English) Zbl 07452395 J. Number Theory 233, 126-157 (2022). MSC: 11F46 11F70 14H52 11G07 PDF BibTeX XML Cite \textit{M. Roy}, J. Number Theory 233, 126--157 (2022; Zbl 07452395) Full Text: DOI arXiv OpenURL
Jorgenson, Jay; Smajlović, Lejla; Then, Holger An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative. (English) Zbl 07446419 Math. Comput. 91, No. 333, 331-379 (2022). Reviewer: Balasubramanian Sury (Bangalore) MSC: 11R37 11R29 11G05 PDF BibTeX XML Cite \textit{J. Jorgenson} et al., Math. Comput. 91, No. 333, 331--379 (2022; Zbl 07446419) Full Text: DOI OpenURL
Nguyen Xuan Tho On a Diophantine equation. (English) Zbl 1478.11050 Vietnam J. Math. 50, No. 1, 183-194 (2022). MSC: 11D68 11G05 PDF BibTeX XML Cite \textit{Nguyen Xuan Tho}, Vietnam J. Math. 50, No. 1, 183--194 (2022; Zbl 1478.11050) Full Text: DOI OpenURL
Dražić, Goran Rational \(D(q)\)-quintuples. (English) Zbl 1483.11051 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 9, 18 p. (2022). MSC: 11D09 11G05 PDF BibTeX XML Cite \textit{G. Dražić}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 9, 18 p. (2022; Zbl 1483.11051) Full Text: DOI arXiv OpenURL
Byeon, Dongho; Kim, Jigu Class numbers of real quadratic fields. (English) Zbl 07419368 J. Number Theory 231, 1-47 (2022). MSC: 11R29 11G40 11G05 11R11 PDF BibTeX XML Cite \textit{D. Byeon} and \textit{J. Kim}, J. Number Theory 231, 1--47 (2022; Zbl 07419368) Full Text: DOI OpenURL
Burungale, Ashay; Tian, Ye The even parity Goldfeld conjecture: congruent number elliptic curves. (English) Zbl 1484.11131 J. Number Theory 230, 161-195 (2022). Reviewer: Riccardo Pengo (Lyon) MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{A. Burungale} and \textit{Y. Tian}, J. Number Theory 230, 161--195 (2022; Zbl 1484.11131) Full Text: DOI arXiv OpenURL
Katayama, Shin-ichi On polygonal square triangular numbers. II. (English) Zbl 07539886 J. Math., Tokushima Univ. 55, 1-10 (2021). MSC: 11D09 11G05 PDF BibTeX XML Cite \textit{S.-i. Katayama}, J. Math., Tokushima Univ. 55, 1--10 (2021; Zbl 07539886) OpenURL
Ghosh, Sohan; Jha, Somnath; Shekhar, Sudhanshu Twisting lemma for \(\Lambda\)-adic modules. (English) Zbl 07534382 Asian J. Math. 25, No. 4, 551-564 (2021). MSC: 11R23 11G05 14F99 PDF BibTeX XML Cite \textit{S. Ghosh} et al., Asian J. Math. 25, No. 4, 551--564 (2021; Zbl 07534382) Full Text: DOI OpenURL
Salami, Sajad; Shamsi Zargar, Arman Families of cubic elliptic curves containing sequences of consecutive powers. (English) Zbl 07524106 Rocky Mt. J. Math. 51, No. 5, 1833-1845 (2021). MSC: 11G05 PDF BibTeX XML Cite \textit{S. Salami} and \textit{A. Shamsi Zargar}, Rocky Mt. J. Math. 51, No. 5, 1833--1845 (2021; Zbl 07524106) Full Text: DOI Link OpenURL
Kim, Shin-Wook Ranks in some elliptic curves \(y^2 = x^3 \pm Apx\). (English) Zbl 07523033 JP J. Algebra Number Theory Appl. 51, No. 2, 223-248 (2021). MSC: 11A41 11G05 PDF BibTeX XML Cite \textit{S.-W. Kim}, JP J. Algebra Number Theory Appl. 51, No. 2, 223--248 (2021; Zbl 07523033) Full Text: DOI OpenURL
Djerassem, Laurent; Tieudjo, Daniel; Tonga, Marcel A congruence property of Fourier coefficients for modular forms. (English) Zbl 07523002 JP J. Algebra Number Theory Appl. 50, No. 1, 1-17 (2021). MSC: 14H52 11G05 11G07 PDF BibTeX XML Cite \textit{L. Djerassem} et al., JP J. Algebra Number Theory Appl. 50, No. 1, 1--17 (2021; Zbl 07523002) Full Text: DOI OpenURL
Kim, Shin-Wook At least rank 2 in several elliptic curves. (English) Zbl 07522998 JP J. Algebra Number Theory Appl. 49, No. 2, 139-155 (2021). MSC: 11A41 11G05 PDF BibTeX XML Cite \textit{S.-W. Kim}, JP J. Algebra Number Theory Appl. 49, No. 2, 139--155 (2021; Zbl 07522998) Full Text: DOI OpenURL
Ibrahim, Saleh; Abbas, Alaa M. Efficient key-dependent dynamic S-boxes based on permutated elliptic curves. (English) Zbl 07510170 Inf. Sci. 558, 246-264 (2021). MSC: 94A60 14G50 11G05 PDF BibTeX XML Cite \textit{S. Ibrahim} and \textit{A. M. Abbas}, Inf. Sci. 558, 246--264 (2021; Zbl 07510170) Full Text: DOI OpenURL
Jeong, Keunyoung; Kim, Jigu; Kim, Taekyung Distribution of root numbers of Hecke characters attached to some elliptic curves. (English) Zbl 1484.11132 Forum Math. 33, No. 3, 653-668 (2021). MSC: 11G05 11G15 11N69 PDF BibTeX XML Cite \textit{K. Jeong} et al., Forum Math. 33, No. 3, 653--668 (2021; Zbl 1484.11132) Full Text: DOI OpenURL
Lim, Meng Fai On the weak Leopoldt conjecture and coranks of Selmer groups of supersingular abelian varieties in \(p\)-adic Lie extensions. (English) Zbl 1483.11115 Tokyo J. Math. 44, No. 2, 477-494 (2021). MSC: 11G05 11R23 11S25 PDF BibTeX XML Cite \textit{M. F. Lim}, Tokyo J. Math. 44, No. 2, 477--494 (2021; Zbl 1483.11115) Full Text: DOI OpenURL
Nguyen Xuan Tho What positive integers \(n\) can be presented in the form \(n=(x+y+z)(1/x+1/y+1/z)\)? (English) Zbl 07493387 Ann. Math. Inform. 54, 141-146 (2021). MSC: 11D25 11G05 11D88 PDF BibTeX XML Cite \textit{Nguyen Xuan Tho}, Ann. Math. Inform. 54, 141--146 (2021; Zbl 07493387) Full Text: DOI OpenURL
Platonov, V. P.; Fedorov, G. V. On the classification problem for polynomials \(f\) with a periodic continued fraction expansion of \(\sqrt{f}\) in hyperelliptic fields. (English. Russian original) Zbl 1483.11123 Izv. Math. 85, No. 5, 972-1007 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 5, 152-189 (2021). MSC: 11G16 11G30 11J70 11R58 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{G. V. Fedorov}, Izv. Math. 85, No. 5, 972--1007 (2021; Zbl 1483.11123); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 5, 152--189 (2021) Full Text: DOI OpenURL
Cha, Byungchul; Fiorilli, Daniel; Jouve, Florent Erratum to: “Prime number races for elliptic curves over function fields”. (Erratum to: “Biais de Chebyshev pour les courbes elliptiques sur les corps de fonctions”.) (English. French summary) Zbl 1483.11213 Ann. Sci. Éc. Norm. Supér. (4) 54, No. 5, 1353-1362 (2021). MSC: 11N45 11G05 11G40 11N80 PDF BibTeX XML Cite \textit{B. Cha} et al., Ann. Sci. Éc. Norm. Supér. (4) 54, No. 5, 1353--1362 (2021; Zbl 1483.11213) Full Text: DOI OpenURL
Eskandari, Payman; Murty, V. Kumar On Ceresa cycles of Fermat curves. (English) Zbl 1481.11060 J. Ramanujan Math. Soc. 36, No. 4, 363-382 (2021). MSC: 11G05 14C15 14C25 11F67 14G05 11G40 14C30 14H40 14F35 PDF BibTeX XML Cite \textit{P. Eskandari} and \textit{V. K. Murty}, J. Ramanujan Math. Soc. 36, No. 4, 363--382 (2021; Zbl 1481.11060) Full Text: Link OpenURL
Rouse, Nicholas Arithmetic of the canonical component of the knot \(7_4\). (English) Zbl 07474333 New York J. Math. 27, 1494-1523 (2021). Reviewer: Joan Porti (Bellaterra) MSC: 57K32 57K10 11G05 11R52 PDF BibTeX XML Cite \textit{N. Rouse}, New York J. Math. 27, 1494--1523 (2021; Zbl 07474333) Full Text: arXiv Link OpenURL
Byeon, Dongho; Kim, Jigu Class number problem for a family of real quadratic fields. (English) Zbl 1483.11111 Acta Arith. 201, No. 2, 207-217 (2021). MSC: 11G05 11R11 11R29 PDF BibTeX XML Cite \textit{D. Byeon} and \textit{J. Kim}, Acta Arith. 201, No. 2, 207--217 (2021; Zbl 1483.11111) Full Text: DOI OpenURL
Matar, Ahmed Kolyvagin’s work and anticyclotomic tower fields: the supersingular case. (English) Zbl 1483.11116 Acta Arith. 201, No. 2, 131-147 (2021). MSC: 11G05 11R23 PDF BibTeX XML Cite \textit{A. Matar}, Acta Arith. 201, No. 2, 131--147 (2021; Zbl 1483.11116) Full Text: DOI OpenURL
Hajdu, G.; Hajdu, L. On the Liouville function on rational polynomial values. (English) Zbl 07474088 Acta Arith. 201, No. 2, 119-130 (2021). MSC: 11N32 11G05 11D09 11D25 PDF BibTeX XML Cite \textit{G. Hajdu} and \textit{L. Hajdu}, Acta Arith. 201, No. 2, 119--130 (2021; Zbl 07474088) Full Text: DOI OpenURL
Naccarato, Francesco Counting rational points on elliptic curves with a rational 2-torsion point. (English) Zbl 1483.11117 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 3, 499-509 (2021). MSC: 11G05 PDF BibTeX XML Cite \textit{F. Naccarato}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 3, 499--509 (2021; Zbl 1483.11117) Full Text: DOI arXiv OpenURL
Byeon, Dongho; Han, Gyeoul Elliptic curves with all quartic twists of the same root number. (English) Zbl 07473072 Proc. Japan Acad., Ser. A 97, No. 9, 73-75 (2021). Reviewer: Paul Voutier (London) MSC: 11G05 11G07 PDF BibTeX XML Cite \textit{D. Byeon} and \textit{G. Han}, Proc. Japan Acad., Ser. A 97, No. 9, 73--75 (2021; Zbl 07473072) Full Text: DOI OpenURL
Dąbrowski, Andrzej; Szymaszkiewicz, Lucjan Elliptic curves with exceptionally large analytic order of the Tate-Shafarevich groups. (English) Zbl 07472577 Colloq. Math. 166, No. 2, 217-225 (2021). MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{A. Dąbrowski} and \textit{L. Szymaszkiewicz}, Colloq. Math. 166, No. 2, 217--225 (2021; Zbl 07472577) Full Text: DOI arXiv OpenURL
Bruin, Peter; Derickx, Maarten; Stoll, Michael Elliptic curves with a point of order \(13\) defined over cyclic cubic fields. (English) Zbl 1484.14069 Funct. Approximatio, Comment. Math. 65, No. 2, 191-197 (2021). Reviewer: Sajad Salami (Rio de Janeiro) MSC: 14H52 11G05 14G05 14G25 PDF BibTeX XML Cite \textit{P. Bruin} et al., Funct. Approximatio, Comment. Math. 65, No. 2, 191--197 (2021; Zbl 1484.14069) Full Text: DOI arXiv OpenURL
Jalali, Azar; Janfada, Ali S.; Shabani-Solt, Hassan A conjecture on a symmetric diagonal Diophantine equation of degree six. (English) Zbl 07468701 J. Math. Ext. 15, No. 4, Paper No. 9, 11 p. (2021). MSC: 11D45 11G05 PDF BibTeX XML Cite \textit{A. Jalali} et al., J. Math. Ext. 15, No. 4, Paper No. 9, 11 p. (2021; Zbl 07468701) Full Text: DOI Link OpenURL
Weinzierl, Stefan Iterated integrals related to Feynman integrals associated to elliptic curves. (English) Zbl 1478.81015 Bluemlein, Johannes (ed.) et al., Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. Texts Monogr. Symb. Comput., 519-545 (2021). MSC: 81Q30 14H52 11G05 81T18 11F46 11G55 33E05 PDF BibTeX XML Cite \textit{S. Weinzierl}, in: Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. 519--545 (2021; Zbl 1478.81015) Full Text: DOI arXiv OpenURL
Lemke Oliver, Robert J.; Thorne, Frank Rank growth of elliptic curves in non-abelian extensions. (English) Zbl 07456792 Int. Math. Res. Not. 2021, No. 24, 18411-18441 (2021). Reviewer: Tanush Shaska (Vlorë) MSC: 11G05 11N45 PDF BibTeX XML Cite \textit{R. J. Lemke Oliver} and \textit{F. Thorne}, Int. Math. Res. Not. 2021, No. 24, 18411--18441 (2021; Zbl 07456792) Full Text: DOI arXiv OpenURL
Griffin, Michael; Ono, Ken; Tsai, Wei-Lun Tamagawa products of elliptic curves over \(\mathbb{Q}\). (English) Zbl 07456279 Q. J. Math. 72, No. 4, 1517-1543 (2021). MSC: 11G05 11G07 11M41 PDF BibTeX XML Cite \textit{M. Griffin} et al., Q. J. Math. 72, No. 4, 1517--1543 (2021; Zbl 07456279) Full Text: DOI arXiv OpenURL
Kim, Chan-Ho; Kurihara, Masato On the refined conjectures on Fitting ideals of Selmer groups of elliptic curves with supersingular reduction. (English) Zbl 07456029 Int. Math. Res. Not. 2021, No. 14, 10559-10599 (2021). MSC: 11R23 11G05 14H52 PDF BibTeX XML Cite \textit{C.-H. Kim} and \textit{M. Kurihara}, Int. Math. Res. Not. 2021, No. 14, 10559--10599 (2021; Zbl 07456029) Full Text: DOI arXiv OpenURL
Yu, Jing-Jun On the representation of integers as sums of a class of triangular numbers. (English) Zbl 1483.11066 Math. Notes 110, No. 5, 679-686 (2021). MSC: 11E25 11F11 11F03 11G05 PDF BibTeX XML Cite \textit{J.-J. Yu}, Math. Notes 110, No. 5, 679--686 (2021; Zbl 1483.11066) Full Text: DOI OpenURL
Gurney, Lance Frobenius lifts and elliptic curves with complex multiplication. (English) Zbl 07453408 Algebra Number Theory 15, No. 8, 1921-1942 (2021). MSC: 11G05 11G15 11R37 PDF BibTeX XML Cite \textit{L. Gurney}, Algebra Number Theory 15, No. 8, 1921--1942 (2021; Zbl 07453408) Full Text: DOI arXiv OpenURL
Gunnells, Paul E.; McConnell, Mark; Yasaki, Dan On the cohomology of congruence subgroups of \(\mathrm{GL}_3\) over the Eisenstein integers. (English) Zbl 1485.11096 Exp. Math. 30, No. 4, 499-512 (2021). Reviewer: Stefan Kühnlein (Karlsruhe) MSC: 11F75 11F67 11G05 11Y99 PDF BibTeX XML Cite \textit{P. E. Gunnells} et al., Exp. Math. 30, No. 4, 499--512 (2021; Zbl 1485.11096) Full Text: DOI arXiv OpenURL
Rout, Sudhansu Sekhar; Juyal, Abhishek The Mordell-Weil bases for the elliptic curve \(y^2=x^3-m^2x+m^2\). (English) Zbl 07442479 Czech. Math. J. 71, No. 4, 1133-1147 (2021). MSC: 11G05 11D59 PDF BibTeX XML Cite \textit{S. S. Rout} and \textit{A. Juyal}, Czech. Math. J. 71, No. 4, 1133--1147 (2021; Zbl 07442479) Full Text: DOI OpenURL
Cai, Tianxin; Zhang, Yong A variety of Euler’s sum of powers conjecture. (English) Zbl 07442476 Czech. Math. J. 71, No. 4, 1099-1113 (2021). MSC: 11D72 11D41 11G05 PDF BibTeX XML Cite \textit{T. Cai} and \textit{Y. Zhang}, Czech. Math. J. 71, No. 4, 1099--1113 (2021; Zbl 07442476) Full Text: DOI OpenURL
Gasbarri, Carlo Diophantine geometry on curves over function fields. (English) Zbl 1475.14048 Ji, LizhenTung (ed.) et al., Moduli spaces and locally symmetric spaces. Based on two workshops, Morningside Center of Mathematics, Beijing, China, February 2017 and March 2019. Somerville, MA: International Press; Beijing: Higher Education Press. Surv. Mod. Math. 16, 1-38 (2021). MSC: 14G05 14G25 14H25 11G50 11G05 11G30 11R58 11-01 14-01 PDF BibTeX XML Cite \textit{C. Gasbarri}, Surv. Mod. Math. 16, 1--38 (2021; Zbl 1475.14048) OpenURL
Burdges, Jeffrey; De Feo, Luca Delay encryption. (English) Zbl 1479.94139 Canteaut, Anne (ed.) et al., Advances in cryptology – EUROCRYPT 2021. 40th annual international conference on the theory and applications of cryptographic techniques, Zagreb, Croatia, October 17–21, 2021. Proceedings. Part I. Cham: Springer. Lect. Notes Comput. Sci. 12696, 302-326 (2021). MSC: 94A60 11G05 PDF BibTeX XML Cite \textit{J. Burdges} and \textit{L. De Feo}, Lect. Notes Comput. Sci. 12696, 302--326 (2021; Zbl 1479.94139) Full Text: DOI OpenURL
Costello, Craig; Meyer, Michael; Naehrig, Michael Sieving for twin smooth integers with solutions to the Prouhet-Tarry-Escott problem. (English) Zbl 1483.94040 Canteaut, Anne (ed.) et al., Advances in cryptology – EUROCRYPT 2021. 40th annual international conference on the theory and applications of cryptographic techniques, Zagreb, Croatia, October 17–21, 2021. Proceedings. Part I. Cham: Springer. Lect. Notes Comput. Sci. 12696, 272-301 (2021). MSC: 94A60 11N25 81P94 11D72 11G05 PDF BibTeX XML Cite \textit{C. Costello} et al., Lect. Notes Comput. Sci. 12696, 272--301 (2021; Zbl 1483.94040) Full Text: DOI OpenURL
Schempp, Walter J. Applications of metaplectic cohomology and global-local contact holonomy. (English) Zbl 07435161 J. Appl. Math. Comput. 65, No. 1-2, 1-66 (2021). MSC: 81S10 70G65 70G45 57R17 53C80 53C38 53C27 53C22 53C12 22E25 14H81 11E08 11G07 11R11 PDF BibTeX XML Cite \textit{W. J. Schempp}, J. Appl. Math. Comput. 65, No. 1--2, 1--66 (2021; Zbl 07435161) Full Text: DOI OpenURL