×

Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach. (English) Zbl 1309.92071

Summary: In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components, age cohorts and dominant species, and to assess the significance of differences between the mixture distributions and the kernel density estimates. The data consisted of plots from the Świętokrzyska National Park (Central Poland) and areas close to and including the North Carolina section of the Great Smoky Mountains National Park (USA; southern Appalachians). The fit of the mixture Weibull model to empirical DBH distributions had a precision similar to that of the mixture gamma model, slightly less accurate estimate was obtained with the kernel density estimator. Generally, in the two-cohort, two-storied, multi-species stands in the southern Appalachians, the two-component DBH structure was associated with age cohort and dominant species. The 1st DBH component of the mixture model was associated with the 1st dominant species \(sp1\) occurred in young age cohort (e.g., sweetgum, eastern hemlock); and to a lesser degree, the 2nd DBH component was associated with the 2nd dominant species \(sp2\) occurred in old age cohort (e.g., loblolly pine, red maple). In two-cohort, partly multilayered, stands in the Świętokrzyska National Park, the DBH structure was usually associated with only age cohorts (two dominant species often occurred in both young and old age cohorts). When empirical DBH distributions representing stands of complex structure are approximated using mixture models, the convergence of the estimation process is often significantly dependent on the starting strategies. Depending on the number of DBHs measured, three methods for choosing the initial values are recommended: \(\min.k/\max.k, 0.5/1.5/\)mean, and multistart. For large samples (number of DBHs measured \(\geqslant 80\)) the multistage method is proposed – for the two-component mixture Weibull or gamma model select initial values using the \(\min.{k}/\max.{k}\) (for \(k=1,5,10\)) and 0.5/1.5/mean methods, run the numerical procedure for each method, and when no two solutions are the same, apply the multistart method also.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
62E17 Approximations to statistical distributions (nonasymptotic)
62G30 Order statistics; empirical distribution functions
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

mixdist; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrams, M. D.; Orwig, D. A.; Demeo, T. E., Dendroecological analysis of successional dynamics for a presettlement-origin white-pine mixed-oak forest in the southern Appalachians, J. Ecol., 84, 328 (1996)
[2] Albrecht, M. A.; McCarthy, B. C., Effects of prescribed fire and thinning on tree recruitment patterns in central hardwood forests, For. Ecol. Manage., 226, 88 (2006)
[3] Alessandrini, A.; Biondi, F.; Di Filippo, A.; Ziaco, E.; Piovesan, G., Tree size distribution at increasing spatial scales converges to the rotated sigmoid curve in two old-growth beech stands of the Italian Apennines, For. Ecol. Manage., 262, 1950 (2011)
[4] Bailey, R. L.; Dell, T. R., Quantifying diameter distributions with the Weibull function, For. Sci., 19, 97 (1973)
[5] Botkin, D. B.; Janak, J. K.; Wallis, J. R., Rationale, limitations, and assumptions of a northeastern forest simulator, IBM J. Res. Dev., 16, 106 (1972)
[6] Böhning, D., Computer-assisted Analysis of Mixtures and Applications Meta-analysis, Disease Mapping and Others (2000), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 0951.62088
[7] Bučar, T.; Nagode, M.; Fajdiga, M., Reliability approximation using finite Weibull mixture distributions, Reliab. Eng. Syst. Safety, 84, 241 (2004)
[8] Denslow, J. S.; Ellison, A. M.; Sanford, R. E., Treefall gap size effects on above- and below-ground processes in a tropical wet forest, J. Ecol., 86, 597 (1998)
[9] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. R. Stat. Soc. B, 39, 1 (1977) · Zbl 0364.62022
[11] Emborg, J.; Christensen, M.; Heilmann-Clausen, J., The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark, For. Ecol. Manage., 126, 173 (2000)
[12] Everitt, B. S.; Hand, D. J., Finite Mixture Distributions (1981), Chapman & Hall/CRC: Chapman & Hall/CRC London · Zbl 0466.62018
[13] Fan, Y. Q., Testing the goodness of fit of a parametric density function by kernel method, Econ. Theory, 10, 316 (1994)
[14] Finch, S.; Mendell, N.; Thode, H., Probabilistic measures of adequacy of a numerical search for a global maximum, J. Am. Stat. Assoc., 84, 1020 (1989)
[16] Goebel, P. C.; Hix, D. M., Development of mixed-oak forests in southeastern Ohio: a comparison of second-growth and old-growth forests, For. Ecol. Manage., 84, 1 (1996)
[17] Gove, J. H.; Ducey, M. J.; Leak, W. B.; Zhang, L., Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr type III distribution, Forestry, 81, 161 (2008)
[18] Gratzer, G.; Canham, C. D.; Dieckmann, U.; Fischer, A.; Iwasa, Y.; Law, R.; Lexer, M. J.; Spies, T.; Splechtna, B.; Szwagrzyk, J., Spatio-temporal development of forests - current trends in field methods and models, Oikos, 107, 3 (2004)
[19] Gronewold, C. A.; D’Amatom, A. W.; Palik, B. J., The influence of cutting cycle and stocking level on the structure and composition of managed old-growth northern hardwoods, For. Ecol. Manage., 259, 1151 (2010)
[20] Hafley, W. L.; Schreuder, H. T., Statistical distributions for fitting diameter and height data in even-aged stands, Can. J. For. Res., 7, 481 (1977)
[21] Hubbard, R. M.; Vose, J. M.; Clinton, B. D.; Elliott, K. J.; Knoepp, J. D., Stand restoration burning in oak-pine forests in the southern Appalachians: effects on aboveground biomass and carbon and nitrogen cycling, For. Ecol. Manage., 190, 311 (2004)
[22] Janowiak, M. K.; Nagel, L. M.; Webster, C. R., Spatial scale and stand structure in northern hardwood forests: implications for quantifying diameter distributions, For. Sci., 54, 497 (2008)
[23] Jaworski, A.; Podlaski, R., Structure and dynamics of selected stands of primeval character in the Pieniny National Park, Dendrobiology, 58, 25 (2007)
[24] Jaworski, A.; Podlaski, R., Modelling irregular and multimodal tree diameter distributions by finite mixture models: an approach to stand structure characterisation, J. For. Res., 17, 79 (2012)
[25] Král, K.; Vrška, T.; Hort, L.; Adam, D.; Šamonil, P., Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method, Eur. J. For. Res., 129, 339 (2010)
[26] Lertzman, K. P.; Dorner, B.; Fall, J., Three kinds of heterogeneity in fire regimes: at the crossroads of fire history and landscape ecology, Northwest Sci., 72, 4 (1998)
[27] Li, Q.; Racine, J. S., Nonparametric Econometrics: Theory and Practice (2007), Princeton University Press: Princeton University Press Princeton · Zbl 1183.62200
[28] Li, Y.; Singh, R. S.; Sun, Y., Goodness-of-fit tests of a parametric density functions: Monte Carlo simulation studies, J. Stat. Res., 39, 103 (2005)
[29] Liu, C.; Zhang, L.; Davis, C. J.; Solomon, D. S.; Gove, J. H., A finite mixture model for characterizing the diameter distribution of mixed species forest stands, For. Sci., 48, 653 (2002)
[31] Macdonald, P. D.M.; Pitcher, T. J., Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures, J. Fish. Res. Board Can., 36, 987 (1979)
[32] Maltamo, M.; Puumalainen, J.; Paivinen, R., Comparison of beta and Weibull functions for modeling basal area diameter distribution in stands of Pinus sylvestris and Picea abies, Scand. J. For. Res., 10, 284 (1995)
[33] Matuszkiewicz, J. M., Zespoły leśne Polski (2008), PWN: PWN Warszawa
[34] Mehtätalo, L.; Comas, C.; Pukkala, T.; Palahi, M., Combining a predicted diameter distribution with an estimate based on a small sample of diameters, Can. J. For. Res., 41, 750 (2011)
[35] McLachlan, G. J.; Peel, D., Finite Mixture Models (2000), Wiley: Wiley New York · Zbl 0963.62061
[36] McLachlan, G. J.; Krishnan, T., The EM Algorithm and Extensions (2008), Wiley: Wiley Hoboken · Zbl 1165.62019
[37] Nagel, T. A.; Diaci, J., Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia, Can. J. For. Res., 36, 629 (2006)
[39] Olano, J. M.; Palmer, M. W., Stand dynamics of an Appalachian old-growth forest during a severe drought episode, For. Ecol. Manage., 174, 139 (2003)
[40] Pagan, A.; Ullah, A., Nonparametric Econometrics (1999), Cambridge University Press: Cambridge University Press New York
[41] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065 (1962) · Zbl 0116.11302
[42] Piovesan, G.; Di Filippo, A.; Alessandrini, A.; Biondi, F.; Schirone, B., Structure, dynamics and dendroecology of an Apennine old-growth beech forest, J. Veg. Sci., 16, 13 (2005)
[43] Podlaski, R., Accuracy assessment of a small-area method for estimating the spatial distribution of the degree of tree damage, Environ. Monit. Assess., 135, 339 (2007)
[44] Podlaski, R., Dynamics in central European near-natural Abies-Fagus forests: Does the mosaic-cycle approach provide an appropriate model?, J. Veg. Sci., 19, 173 (2008)
[45] Podlaski, R., Diversity of patch structure in central European forests: Are tree diameter distributions in near-natural multilayered Abies-Fagus stands heterogeneous?, Ecol. Res., 25, 599 (2010)
[46] Podlaski, R., Modelowanie rozkładów pierśnic drzew z wykorzystaniem rozkładów mieszanych. I. Definicja, charakterystyka i estymacja parametrów rozkładów mieszanych, Sylwan, 155, 4, 244 (2011)
[47] Podlaski, R., Modelowanie rozkładów pierśnic drzew z wykorzystaniem rozkładów mieszanych II. Aproksymacja rozkładów pierśnic w lasach wielopiętrowych, Sylwan, 155, 5, 293 (2011)
[49] Rentch, J. S.; Schuler, T. M.; Nowacki, G. J.; Beane, N. R.; Ford, W. M., Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia, For. Ecol. Manage., 260, 1921 (2010)
[50] Reynolds, M. R.; Burk, T.; Huang, W. H., Goodness-of-fit tests and model selection procedures for diameter distribution models, For. Sci., 34, 373 (1988)
[51] Rosenblatt, M., Remarks on some nonparametric estimates of a density functions, Ann. Math. Stat., 27, 832 (1956) · Zbl 0073.14602
[52] Runkle, J. R., Disturbance regimes in temperate forests, (Pickett, S. T.A.; White, P., The Ecology of Natural Disturbance and Patch Dynamics (1985), Academic Press: Academic Press Orlando), 17-33
[53] Seidel, W.; Mosler, K.; Alker, M., A cautionary note on likelihood ratio tests in mixture models, Ann. Inst. Stat. Math., 52, 481 (2000) · Zbl 0960.62025
[55] Shamilov, A.; Asma, S., Finite mixtures of MaxEnt distributions, Appl. Math. Comput., 206, 530 (2008) · Zbl 1220.62034
[56] Shiver, B. D., Sample sizes and estimation methods for the Weibull distribution for unthinned slash pine plantation diameter distributions, For. Sci., 34, 809 (1988)
[57] Signell, S. A.; Abrams, M. D.; Hovis, J. C.; Henry, S. W., Impact of multiple fires on stand structure and tree regeneration in central Appalachian oak forests, For. Ecol. Manage., 218, 146 (2005)
[58] Smith, T. M.; Urban, D. L., Scale and resolution of forest structural pattern, Vegetatio, 74, 143 (1988)
[59] Splechtna, B. E.; Gratzer, G., Natural disturbances in Central European forests: approaches and preliminary results from Rothwald, Austria, For. Snow Landscape Res., 79, 57 (2005)
[60] Titterington, D.; Smith, A.; Makov, U., Statistical Analysis of Finite Mixture Distributions (1985), Wiley: Wiley New York · Zbl 0646.62013
[62] Veblen, T. T.; Kulakowski, D.; Eisenhart, K. S.; Baker, W. L., Subalpine forest damage from a severe windstorm in northern Colorado, Can. J. For. Res., 31, 2089 (2001)
[63] Westphal, C.; Tremer, N.; von Oheimb, G.; Hansen, J.; von Gadow, K.; Härdtle, W., Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests?, For. Ecol. Manage., 223, 75 (2006)
[64] White, P. S.; Cogbill, C. V., Spruce-fir forests of eastern North America, (Eagar, C.; Adams, M. B., Ecology and Decline of Red Spruce in the Eastern United States (1992), Springer-Verlag: Springer-Verlag New York), 3-39
[65] White, P. S.; Mackenzie, M. D.; Busing, R. T., Natural disturbance and gap phase dynamics in southern Appalachian spruce-fir forests, Can. J. For. Res., 15, 233 (1985)
[66] White, P. S.; Buckner, R. R.; Pittillo, J. D.; Cogbill, C. V., High-elevation forests: spruce-fir forests, northern hardwood forests, and associated communities, (Martin, W. H.; Boyce, S. G.; Echternacht, J. P., Biodiversity of the Southeastern United States: Upland Terrestrial Communities (1993), Wiley: Wiley New York), 305-338
[67] Woods, K. D., Intermediate disturbance in a late-successional hemlock - northern hardwood forest, J. Ecol., 92, 464 (2004)
[69] Zasada, M., Możliwość zastosowania rozkładów mieszanych do modelowania rozkładów pierśnic drzew w naturalnych klasach biosocjalnych, Sylwan, 147, 9, 27 (2003)
[70] Zasada, M., Evaluation of the double normal distribution for tree diameter distribution modeling, Silva Fenn., 47, 2 (2013), Article id 956
[71] Zasada, M.; Cieszewski, C. J., A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland, For. Ecol. Manage., 204, 145 (2005)
[72] Zhang, L.; Liu, C., Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models, J. For. Res., 11, 369 (2006)
[73] Zhang, L.; Gove, J. H.; Liu, C.; Leak, W. B., A finite mixture distribution for modeling the diameter distribution of rotated-sigmoid, uneven-aged stands, Can. J. For. Res., 31, 1654 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.