Hu, Shi-Ke; Yuan, Rong Asymptotic profiles of a nonlocal dispersal SIS epidemic model with Neumann boundary condition. (English) Zbl 07762447 J. Math. Anal. Appl. 530, No. 2, Article ID 127710, 33 p. (2024). MSC: 92Dxx 35Kxx 35Bxx PDF BibTeX XML Cite \textit{S.-K. Hu} and \textit{R. Yuan}, J. Math. Anal. Appl. 530, No. 2, Article ID 127710, 33 p. (2024; Zbl 07762447) Full Text: DOI
Mahajan, Shveta; Kumar, Deepak; Verma, Atul Kumar; Sharma, Natasha Dynamic analysis of modified SEIR epidemic model with time delay in geographical networks. (English) Zbl 07757279 Physica A 629, Article ID 129191, 10 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{S. Mahajan} et al., Physica A 629, Article ID 129191, 10 p. (2023; Zbl 07757279) Full Text: DOI
Mukherjee, Manisha; Mondal, Biswajit Dynamics of a SIR epidemic model with variable recruitment and quadratic treatment. (English) Zbl 1519.92289 Int. J. Biomath. 16, No. 7, Article ID 2250129, 29 p. (2023). MSC: 92D30 34D23 34C23 PDF BibTeX XML Cite \textit{M. Mukherjee} and \textit{B. Mondal}, Int. J. Biomath. 16, No. 7, Article ID 2250129, 29 p. (2023; Zbl 1519.92289) Full Text: DOI
Naresh, Ram; Sundar, Shyam; Verma, Sandhya Rani; Shukla, Jang Bahadur A mathematical model to study the spread of COVID-19 and its control in India. (English) Zbl 1518.92154 Comput. Math. Biophys. 11, No. 1, Article ID 20220149, 14 p. (2023). MSC: 92D30 34A34 34D20 PDF BibTeX XML Cite \textit{R. Naresh} et al., Comput. Math. Biophys. 11, No. 1, Article ID 20220149, 14 p. (2023; Zbl 1518.92154) Full Text: DOI
Deng, Keng; Wu, Yixiang Corrigendum to: “Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model”. (English) Zbl 1512.92100 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 2, 718-720 (2023). MSC: 92D30 35K57 35B35 PDF BibTeX XML Cite \textit{K. Deng} and \textit{Y. Wu}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 2, 718--720 (2023; Zbl 1512.92100) Full Text: DOI
Liu, Chuanxin; Cui, Renhao Analysis on a diffusive SIRS epidemic model with logistic source and saturated incidence rate. (English) Zbl 1512.35378 Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 2960-2980 (2023). MSC: 35K57 35B40 35J57 35K51 92D25 PDF BibTeX XML Cite \textit{C. Liu} and \textit{R. Cui}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 2960--2980 (2023; Zbl 1512.35378) Full Text: DOI
Li, Jianquan; Chen, Yuming; Zhang, Peijun; Liu, Xiaogang A novel approach to determine negative (semi-)definiteness in applying Lyapunov direct method. (English) Zbl 07639195 Appl. Math. Lett. 138, Article ID 108516, 8 p. (2023). MSC: 34D20 34D23 92D30 34C60 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Lett. 138, Article ID 108516, 8 p. (2023; Zbl 07639195) Full Text: DOI
Yang, Huizi; Yang, Zhanwen; Liu, Shengqiang Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models. (English) Zbl 1502.65079 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 70-92 (2023). MSC: 65M06 65M12 65P40 92D30 92C60 92-08 35Q92 PDF BibTeX XML Cite \textit{H. Yang} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 70--92 (2023; Zbl 1502.65079) Full Text: DOI
Ndiaye, Serigne Modou Vector epidemic model of malaria with nonconstant-size population. (English) Zbl 07762505 Petrosyan, Leon A. (ed.) et al., Contributions to game theory and management. Volume XV. Collected papers presented at the 15th international conference on game theory and management, GTM 2021, Saint Petersburg, Russia, June 23–25, 2021. St. Petersburg: St. Petersburg State University. 200-217 (2022). MSC: 92D30 PDF BibTeX XML Cite \textit{S. M. Ndiaye}, in: Contributions to game theory and management. Volume XV. Collected papers presented at the 15th international conference on game theory and management, GTM 2021, Saint Petersburg, Russia, June 23--25, 2021. St. Petersburg: St. Petersburg State University. 200--217 (2022; Zbl 07762505) Full Text: DOI
Bica, Ion; Zhai, Zhichun; Hu, Rui A modified susceptible-infected-recovered epidemiological model. (English) Zbl 07674999 An. Univ. Craiova, Ser. Mat. Inf. 49, No. 2, 291-308 (2022). MSC: 34C60 34D23 92D30 34C05 34D20 34D05 PDF BibTeX XML Cite \textit{I. Bica} et al., An. Univ. Craiova, Ser. Mat. Inf. 49, No. 2, 291--308 (2022; Zbl 07674999) Full Text: DOI
Guo, Yutong; Wang, Jinliang; Ji, Desheng Asymptotic profiles of a diffusive SIS epidemic model with vector-mediated infection and logistic source. (English) Zbl 1504.35066 Z. Angew. Math. Phys. 73, No. 6, Paper No. 255, 23 p. (2022). MSC: 35B40 35K51 35K57 35J57 92D25 PDF BibTeX XML Cite \textit{Y. Guo} et al., Z. Angew. Math. Phys. 73, No. 6, Paper No. 255, 23 p. (2022; Zbl 1504.35066) Full Text: DOI
Wang, Hao; Wang, Kai; Kim, Yong-Jung Spatial segregation in reaction-diffusion epidemic models. (English) Zbl 1501.35245 SIAM J. Appl. Math. 82, No. 5, 1680-1709 (2022). MSC: 35K57 35K51 37N25 91D25 92D30 PDF BibTeX XML Cite \textit{H. Wang} et al., SIAM J. Appl. Math. 82, No. 5, 1680--1709 (2022; Zbl 1501.35245) Full Text: DOI
Su, Ruyan; Yang, Wensheng Global stability of a diffusive HCV infections epidemic model with nonlinear incidence. (English) Zbl 1500.92120 J. Appl. Math. Comput. 68, No. 4, 2685-2697 (2022). MSC: 92D30 34D23 35Q92 PDF BibTeX XML Cite \textit{R. Su} and \textit{W. Yang}, J. Appl. Math. Comput. 68, No. 4, 2685--2697 (2022; Zbl 1500.92120) Full Text: DOI
Rao, Xu; Zhang, Guohong; Wang, Xiaoli A reaction-diffusion-advection SIS epidemic model with linear external source and open advective environments. (English) Zbl 1498.35327 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6655-6677 (2022). MSC: 35K51 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{X. Rao} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6655--6677 (2022; Zbl 1498.35327) Full Text: DOI
Huo, Xin; Cui, Renhao A reaction-diffusion SIS epidemic model with saturated incidence rate and logistic source. (English) Zbl 1496.35082 Appl. Anal. 101, No. 13, 4492-4511 (2022). MSC: 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Huo} and \textit{R. Cui}, Appl. Anal. 101, No. 13, 4492--4511 (2022; Zbl 1496.35082) Full Text: DOI
Gao, Daozhou; Munganga, Justin M. W.; van den Driessche, P.; Zhang, Lei Effects of asymptomatic infections on the spatial spread of infectious diseases. (English) Zbl 1493.92067 SIAM J. Appl. Math. 82, No. 3, 899-923 (2022). Reviewer: Yilun Shang (Newcastle) MSC: 92D30 34D05 PDF BibTeX XML Cite \textit{D. Gao} et al., SIAM J. Appl. Math. 82, No. 3, 899--923 (2022; Zbl 1493.92067) Full Text: DOI
Lei, Chengxia; Zhou, Xinhui Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. (English) Zbl 1490.35031 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3077-3100 (2022). MSC: 35B32 35K51 35K57 92D30 PDF BibTeX XML Cite \textit{C. Lei} and \textit{X. Zhou}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3077--3100 (2022; Zbl 1490.35031) Full Text: DOI
Dong, Nguyen Phuong; Long, Hoang Viet; Son, Nguyen Thi Kim The dynamical behaviors of fractional-order SE\(_1\)E\(_2\)IQR epidemic model for malware propagation on wireless sensor network. (English) Zbl 1486.94192 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106428, 31 p. (2022). MSC: 94D05 05C82 34A08 92D30 PDF BibTeX XML Cite \textit{N. P. Dong} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106428, 31 p. (2022; Zbl 1486.94192) Full Text: DOI
Dong, Lingmin; Li, Bo; Zhang, Guanghui Analysis on a diffusive SI epidemic model with logistic source and saturation infection mechanism. (English) Zbl 1487.35077 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1111-1140 (2022). MSC: 35B40 35K51 35K57 92D30 PDF BibTeX XML Cite \textit{L. Dong} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1111--1140 (2022; Zbl 1487.35077) Full Text: DOI
Jonnalagadda, Jagan Mohan Epidemic analysis and mathematical modelling of H1N1 (A) with vaccination. (English) Zbl 1484.92054 Nonauton. Dyn. Syst. 9, 1-10 (2022). MSC: 92C60 34D23 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda}, Nonauton. Dyn. Syst. 9, 1--10 (2022; Zbl 1484.92054) Full Text: DOI
Castellano, Keoni; Salako, Rachidi B. On the effect of lowering population’s movement to control the spread of an infectious disease. (English) Zbl 1486.92210 J. Differ. Equations 316, 1-27 (2022). Reviewer: Ran Zhang (Nanjing) MSC: 92D30 35J47 35B25 PDF BibTeX XML Cite \textit{K. Castellano} and \textit{R. B. Salako}, J. Differ. Equations 316, 1--27 (2022; Zbl 1486.92210) Full Text: DOI
Ahmetolan, Semra; Bilge, Ayse Humeyra; Demirci, Ali; Dobie, Ayse Peker A susceptible-infectious (SI) model with two infective stages and an endemic equilibrium. (English) Zbl 07478782 Math. Comput. Simul. 194, 19-35 (2022). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{S. Ahmetolan} et al., Math. Comput. Simul. 194, 19--35 (2022; Zbl 07478782) Full Text: DOI
Pan, Yifei; Zhu, Siyao; Wang, Jinliang Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source. (English) Zbl 1482.35042 Z. Angew. Math. Phys. 73, No. 1, Paper No. 36, 26 p. (2022). MSC: 35B40 35K51 35K57 35J57 92D25 PDF BibTeX XML Cite \textit{Y. Pan} et al., Z. Angew. Math. Phys. 73, No. 1, Paper No. 36, 26 p. (2022; Zbl 1482.35042) Full Text: DOI
An, Xiaowei; Song, Xianfa A spatial SIS model in heterogeneous environments with vary advective rate. (English) Zbl 1501.92138 Math. Biosci. Eng. 18, No. 5, 5449-5477 (2021). Reviewer: Yilun Shang (Newcastle upon Tyne) MSC: 92D30 34D20 PDF BibTeX XML Cite \textit{X. An} and \textit{X. Song}, Math. Biosci. Eng. 18, No. 5, 5449--5477 (2021; Zbl 1501.92138) Full Text: DOI
Raut, Seema; Janardhan, Sujatha; Khekare, Ganesh Dynamical study of a vector host epidemic model with non-monotone incidence. (English) Zbl 1499.92134 J. Dyn. Syst. Geom. Theor. 19, No. 1, 77-94 (2021). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{S. Raut} et al., J. Dyn. Syst. Geom. Theor. 19, No. 1, 77--94 (2021; Zbl 1499.92134) Full Text: DOI
Lei, Chengxia; Shen, Yi; Zhang, Guanghui; Zhang, Yuxiang Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts. (English) Zbl 1480.35040 Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4259-4292 (2021). MSC: 35B40 35K51 35K57 35J57 92D25 PDF BibTeX XML Cite \textit{C. Lei} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4259--4292 (2021; Zbl 1480.35040) Full Text: DOI
Ogundare, Babatunde Sunday; Akingbade, James Boundedness and stability properties of solutions of mathematical model of measles. (English) Zbl 1482.92107 Tamkang J. Math. 52, No. 1, 91-112 (2021). Reviewer: Xinyu Song (Xinyang) MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{B. S. Ogundare} and \textit{J. Akingbade}, Tamkang J. Math. 52, No. 1, 91--112 (2021; Zbl 1482.92107) Full Text: DOI
Yeo, Ténan Stochastic and deterministic SIS patch model. (English) Zbl 1478.92240 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6173-6184 (2021). MSC: 92D30 60H30 34D23 PDF BibTeX XML Cite \textit{T. Yeo}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6173--6184 (2021; Zbl 1478.92240) Full Text: DOI arXiv
Liu, Chuanxin; Cui, Renhao Qualitative analysis on an SIRS reaction-diffusion epidemic model with saturation infection mechanism. (English) Zbl 1475.92178 Nonlinear Anal., Real World Appl. 62, Article ID 103364, 22 p. (2021). MSC: 92D30 35K57 35B40 35Q92 PDF BibTeX XML Cite \textit{C. Liu} and \textit{R. Cui}, Nonlinear Anal., Real World Appl. 62, Article ID 103364, 22 p. (2021; Zbl 1475.92178) Full Text: DOI
Liang, Shuangshuang; Nie, Linfei; Hu, Lin Analysis of vector-borne infectious disease model with age-structured and horizontal transmission. (Chinese. English summary) Zbl 1488.35065 J. East China Norm. Univ., Nat. Sci. Ed. 2021, No. 3, 47-55 (2021). MSC: 35B35 35B40 92D30 PDF BibTeX XML Cite \textit{S. Liang} et al., J. East China Norm. Univ., Nat. Sci. Ed. 2021, No. 3, 47--55 (2021; Zbl 1488.35065) Full Text: DOI
Gao, Daozhou; Lou, Yuan Impact of state-dependent dispersal on disease prevalence. (English) Zbl 1478.34057 J. Nonlinear Sci. 31, No. 5, Paper No. 73, 41 p. (2021). MSC: 34C60 92D30 34C05 34D05 34D20 PDF BibTeX XML Cite \textit{D. Gao} and \textit{Y. Lou}, J. Nonlinear Sci. 31, No. 5, Paper No. 73, 41 p. (2021; Zbl 1478.34057) Full Text: DOI
Hu, Lin; Nie, Lin-Fei Dynamic modeling and analysis of COVID-19 in different transmission process and control strategies. (English) Zbl 1471.92316 Math. Methods Appl. Sci. 44, No. 2, 1409-1422 (2021). Reviewer: Ran Zhang (Nanjing) MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{L. Hu} and \textit{L.-F. Nie}, Math. Methods Appl. Sci. 44, No. 2, 1409--1422 (2021; Zbl 1471.92316) Full Text: DOI
Zhang, Jialiang; Cui, Renhao Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection. (English) Zbl 1475.35368 Math. Methods Appl. Sci. 44, No. 1, 517-532 (2021). MSC: 35Q92 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{R. Cui}, Math. Methods Appl. Sci. 44, No. 1, 517--532 (2021; Zbl 1475.35368) Full Text: DOI
Yang, Liu; Nakata, Yukihiko Note on the uniqueness of an endemic equilibrium of an epidemic model with boosting of immunity. (English) Zbl 1469.92132 J. Biol. Syst. 29, No. 2, 291-302 (2021). MSC: 92D30 92D25 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Y. Nakata}, J. Biol. Syst. 29, No. 2, 291--302 (2021; Zbl 1469.92132) Full Text: DOI
Kopfová, Jana; Nábělková, Petra; Rachinskii, Dmitrii; Rouf, Samiha C. Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator. (English) Zbl 1472.34092 J. Math. Biol. 83, No. 2, Paper No. 11, 34 p. (2021). MSC: 34C60 34A36 34C55 34D05 34D23 92D30 34C05 PDF BibTeX XML Cite \textit{J. Kopfová} et al., J. Math. Biol. 83, No. 2, Paper No. 11, 34 p. (2021; Zbl 1472.34092) Full Text: DOI arXiv
Corcoran, Carl; Hastings, Alan A low-dimensional network model for an SIS epidemic: analysis of the super compact pairwise model. (English) Zbl 1467.92183 Bull. Math. Biol. 83, No. 7, Paper No. 77, 26 p. (2021). MSC: 92D30 PDF BibTeX XML Cite \textit{C. Corcoran} and \textit{A. Hastings}, Bull. Math. Biol. 83, No. 7, Paper No. 77, 26 p. (2021; Zbl 1467.92183) Full Text: DOI arXiv
Cui, Renhao Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. (English) Zbl 1471.35275 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 2997-3022 (2021). MSC: 35Q92 35K57 35J57 35B40 35A01 92D25 92C60 92D30 PDF BibTeX XML Cite \textit{R. Cui}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 2997--3022 (2021; Zbl 1471.35275) Full Text: DOI
Li, Jianquan; Xie, Xin; Chen, Yuming A new way of constructing Lyapunov functions with application to an SI epidemic model. (English) Zbl 1460.34055 Appl. Math. Lett. 113, Article ID 106777, 6 p. (2021). MSC: 34C60 92D30 34C05 34D05 34D23 34D20 34C23 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Lett. 113, Article ID 106777, 6 p. (2021; Zbl 1460.34055) Full Text: DOI
Chen, Xiaodan; Cui, Renhao Global stability in a diffusive cholera epidemic model with nonlinear incidence. (English) Zbl 1448.92283 Appl. Math. Lett. 111, Article ID 106596, 7 p. (2021). MSC: 92D30 35B35 PDF BibTeX XML Cite \textit{X. Chen} and \textit{R. Cui}, Appl. Math. Lett. 111, Article ID 106596, 7 p. (2021; Zbl 1448.92283) Full Text: DOI
Saxena, Garima; Sharma, R. K.; Agrawal, Ankit Global dynamics of an SIQR epidemic model with specific non-linear incidence rate. (English) Zbl 07682587 Gaṇita 70, No. 2, 313-322 (2020). MSC: 34C60 34D20 92D30 34C05 34D05 PDF BibTeX XML Cite \textit{G. Saxena} et al., Gaṇita 70, No. 2, 313--322 (2020; Zbl 07682587) Full Text: Link
Li, Huicong; Peng, Rui; Xiang, Tian Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. (English) Zbl 1504.35072 Eur. J. Appl. Math. 31, No. 1, 26-56 (2020). MSC: 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{H. Li} et al., Eur. J. Appl. Math. 31, No. 1, 26--56 (2020; Zbl 1504.35072) Full Text: DOI arXiv
Ndam, Joel N. Modelling the impacts of lockdown and isolation on the eradication of COVID-19. (English) Zbl 1505.92216 Biomath 9, No. 2, Article ID 2009107, 8 p. (2020). MSC: 92D30 34D20 PDF BibTeX XML Cite \textit{J. N. Ndam}, Biomath 9, No. 2, Article ID 2009107, 8 p. (2020; Zbl 1505.92216) Full Text: DOI
Vujović, Vuk; Krstić, Marija Stability of stochastic model for hepatitis C transmission with an isolation stage. (English) Zbl 1513.92091 Filomat 34, No. 14, 4795-4809 (2020). MSC: 92D30 60H10 34D20 PDF BibTeX XML Cite \textit{V. Vujović} and \textit{M. Krstić}, Filomat 34, No. 14, 4795--4809 (2020; Zbl 1513.92091) Full Text: DOI
Ali, Ishtiaq; Ullah Khan, Sami Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. (English) Zbl 1490.92064 Chaos Solitons Fractals 138, Article ID 110008, 8 p. (2020). MSC: 92D30 34K20 37N25 92C60 PDF BibTeX XML Cite \textit{I. Ali} and \textit{S. Ullah Khan}, Chaos Solitons Fractals 138, Article ID 110008, 8 p. (2020; Zbl 1490.92064) Full Text: DOI
Badole, Monika; Tiwari, S. K.; Sharma, Aayush Equilibriums and stability of an SVIR epidemic model with non linear saturated incidence. (English) Zbl 1488.92038 South East Asian J. Math. Math. Sci. 16, No. 3, 311-328 (2020). MSC: 92C60 34C60 34D20 PDF BibTeX XML Cite \textit{M. Badole} et al., South East Asian J. Math. Math. Sci. 16, No. 3, 311--328 (2020; Zbl 1488.92038) Full Text: Link
Suo, Jinzhe; Li, Bo Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. (English) Zbl 1470.92352 Math. Biosci. Eng. 17, No. 1, 418-441 (2020). MSC: 92D30 35K57 35Q92 PDF BibTeX XML Cite \textit{J. Suo} and \textit{B. Li}, Math. Biosci. Eng. 17, No. 1, 418--441 (2020; Zbl 1470.92352) Full Text: DOI
Fekede, Birliew; Mebrate, Benyam Sensitivity and mathematical model analysis on secondhand smoking tobacco. (English) Zbl 1465.92116 J. Egypt. Math. Soc. 28, Paper No. 50, 16 p. (2020). MSC: 92D30 92C60 PDF BibTeX XML Cite \textit{B. Fekede} and \textit{B. Mebrate}, J. Egypt. Math. Soc. 28, Paper No. 50, 16 p. (2020; Zbl 1465.92116) Full Text: DOI
Osman, Shaibu; Makinde, Oluwole Daniel; Theuri, David Mwangi Mathematical modelling of Listeriosis epidemics in animal and human population with optimal control. (English) Zbl 1453.92314 Tamkang J. Math. 51, No. 4, 261-287 (2020). MSC: 92D30 92C60 34B18 34C11 34D23 PDF BibTeX XML Cite \textit{S. Osman} et al., Tamkang J. Math. 51, No. 4, 261--287 (2020; Zbl 1453.92314) Full Text: DOI
Arora, Ruchi; Kumar, Dharmendra; Jhamb, Ishita; Narang, Avina Kaur Mathematical modeling of Chikungunya dynamics: stability and simulation. (English) Zbl 1453.92286 Cubo 22, No. 2, 177-201 (2020). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{R. Arora} et al., Cubo 22, No. 2, 177--201 (2020; Zbl 1453.92286) Full Text: DOI
Melese, Dawit; Muhye, Ousman; Sahu, Subrata Kumar Dynamical behavior of an eco-epidemiological model incorporating prey refuge and prey harvesting. (English) Zbl 1453.92251 Appl. Appl. Math. 15, No. 2, 1193-1212 (2020). MSC: 92D25 92D30 92D40 34D20 PDF BibTeX XML Cite \textit{D. Melese} et al., Appl. Appl. Math. 15, No. 2, 1193--1212 (2020; Zbl 1453.92251) Full Text: Link
Zhang, Jialiang; Cui, Renhao Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment. (English) Zbl 1453.92336 Nonlinear Anal., Real World Appl. 55, Article ID 103115, 20 p. (2020). MSC: 92D30 35Q92 35B35 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{R. Cui}, Nonlinear Anal., Real World Appl. 55, Article ID 103115, 20 p. (2020; Zbl 1453.92336) Full Text: DOI
Guo, Gang; Li, Guihua Sensitivity analysis of an SIR two plaque infectious disease model in public health education. (Chinese. English summary) Zbl 1463.92066 J. North Univ. China, Nat. Sci. 41, No. 3, 203-208 (2020). MSC: 92D30 PDF BibTeX XML Cite \textit{G. Guo} and \textit{G. Li}, J. North Univ. China, Nat. Sci. 41, No. 3, 203--208 (2020; Zbl 1463.92066) Full Text: DOI
Gao, Daozhou How does dispersal affect the infection size? (English) Zbl 1453.92297 SIAM J. Appl. Math. 80, No. 5, 2144-2169 (2020). MSC: 92D30 91D25 34C60 34D05 PDF BibTeX XML Cite \textit{D. Gao}, SIAM J. Appl. Math. 80, No. 5, 2144--2169 (2020; Zbl 1453.92297) Full Text: DOI
Zhang, Jialiang; Cui, Renhao Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation and spontaneous infection mechanism. (English) Zbl 1447.35070 Z. Angew. Math. Phys. 71, No. 5, Paper No. 150, 21 p. (2020). MSC: 35B40 35K57 35K51 92D25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{R. Cui}, Z. Angew. Math. Phys. 71, No. 5, Paper No. 150, 21 p. (2020; Zbl 1447.35070) Full Text: DOI
Guo, Youming; Li, Tingting Optimal control and stability analysis of an online game addiction model with two stages. (English) Zbl 1446.49002 Math. Methods Appl. Sci. 43, No. 7, 4391-4408 (2020). MSC: 49J15 49K15 92D30 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{T. Li}, Math. Methods Appl. Sci. 43, No. 7, 4391--4408 (2020; Zbl 1446.49002) Full Text: DOI
Wanduku, Divine; Oluyede, B. O. Some asymptotic properties of SEIRS models with nonlinear incidence and random delays. (English) Zbl 1444.92127 Nonlinear Anal., Model. Control 25, No. 3, 461-481 (2020). MSC: 92D30 34K50 PDF BibTeX XML Cite \textit{D. Wanduku} and \textit{B. O. Oluyede}, Nonlinear Anal., Model. Control 25, No. 3, 461--481 (2020; Zbl 1444.92127) Full Text: DOI arXiv
Sun, Xueying; Cui, Renhao Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment. (English) Zbl 1444.92124 J. Math. Anal. Appl. 490, No. 1, Article ID 124212, 21 p. (2020). MSC: 92D30 35Q92 PDF BibTeX XML Cite \textit{X. Sun} and \textit{R. Cui}, J. Math. Anal. Appl. 490, No. 1, Article ID 124212, 21 p. (2020; Zbl 1444.92124) Full Text: DOI
Tian, Canrong; Zhang, Qunying; Zhang, Lai Global stability in a networked SIR epidemic model. (English) Zbl 1444.92125 Appl. Math. Lett. 107, Article ID 106444, 5 p. (2020). MSC: 92D30 35B35 35Q92 PDF BibTeX XML Cite \textit{C. Tian} et al., Appl. Math. Lett. 107, Article ID 106444, 5 p. (2020; Zbl 1444.92125) Full Text: DOI
Silva, Cristiana J.; Torres, Delfim F. M. Erratum to: “Modeling and optimal control of HIV/AIDS prevention through PrEP”. (English) Zbl 1441.34063 Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1619-1621 (2020). MSC: 34C60 92D30 34D23 49K15 PDF BibTeX XML Cite \textit{C. J. Silva} and \textit{D. F. M. Torres}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1619--1621 (2020; Zbl 1441.34063) Full Text: DOI
Chladná, Zuzana; Kopfová, Jana; Rachinskii, Dmitrii; Rouf, Samiha C. Global dynamics of SIR model with switched transmission rate. (English) Zbl 1440.34044 J. Math. Biol. 80, No. 4, 1209-1233 (2020). MSC: 34C60 34D23 92D30 92D25 34A36 34D05 34C05 PDF BibTeX XML Cite \textit{Z. Chladná} et al., J. Math. Biol. 80, No. 4, 1209--1233 (2020; Zbl 1440.34044) Full Text: DOI
Kim, Kwang Su; Ibrahim, Malik Muhammad; Jung, Il Hyo; Kim, Sangil Mathematical analysis of the effectiveness of control strategies to prevent the autorun virus transmission propagation. (English) Zbl 1433.68048 Appl. Math. Comput. 371, Article ID 124955, 15 p. (2020). MSC: 68M11 68M10 34D23 49N90 92D30 34D20 PDF BibTeX XML Cite \textit{K. S. Kim} et al., Appl. Math. Comput. 371, Article ID 124955, 15 p. (2020; Zbl 1433.68048) Full Text: DOI
Yao, Yao; Xiao, Xi; Zhang, Chengping; Dou, Changsheng; Xia, Shutao Stability analysis of an SDILR model based on rumor recurrence on social media. (English) Zbl 07571171 Physica A 535, Article ID 122236, 13 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{Y. Yao} et al., Physica A 535, Article ID 122236, 13 p. (2019; Zbl 07571171) Full Text: DOI
Wang, Yan’e; Wang, Zhiguo; Lei, Chengxia Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate. (English) Zbl 1497.92311 Math. Biosci. Eng. 16, No. 5, 3885-3913 (2019). MSC: 92D30 PDF BibTeX XML Cite \textit{Y. Wang} et al., Math. Biosci. Eng. 16, No. 5, 3885--3913 (2019; Zbl 1497.92311) Full Text: DOI
Tahir, Muhammad; Shah, Syed Inayat Ali; Zaman, Gul; Khan, Tahir Stability behaviour of mathematical model MERS corona virus spread in population. (English) Zbl 1499.92142 Filomat 33, No. 12, 3947-3960 (2019). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{M. Tahir} et al., Filomat 33, No. 12, 3947--3960 (2019; Zbl 1499.92142) Full Text: DOI
Hasan, Bushra; Singh, Manmohan; Richards, David; Blicblau, Aaron Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects. (English) Zbl 07316758 Math. Comput. Simul. 166, 56-75 (2019). MSC: 65-XX PDF BibTeX XML Cite \textit{B. Hasan} et al., Math. Comput. Simul. 166, 56--75 (2019; Zbl 07316758) Full Text: DOI
Zhu, Ling The asymptotic behavior of a logistic SIR epidemic model with stochastic perturbation. (English) Zbl 1463.34216 J. Univ. Sci. Technol. China 49, No. 11, 902-911 (2019). MSC: 34C60 34D05 34D20 60H10 92D30 34C05 34F05 34D10 PDF BibTeX XML Cite \textit{L. Zhu}, J. Univ. Sci. Technol. China 49, No. 11, 902--911 (2019; Zbl 1463.34216) Full Text: DOI
Rajasekar, S. P.; Pitchaimani, M. Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses. (English) Zbl 1442.92179 Chaos Solitons Fractals 118, 207-221 (2019). MSC: 92D30 60H10 60H30 34F05 34D20 PDF BibTeX XML Cite \textit{S. P. Rajasekar} and \textit{M. Pitchaimani}, Chaos Solitons Fractals 118, 207--221 (2019; Zbl 1442.92179) Full Text: DOI
Wang, Mengpin; Zou, Shaofen Studies on an SIR model with bilinear incidence. (Chinese. English summary) Zbl 1449.92048 J. Nat. Sci. Hunan Norm. Univ. 42, No. 3, 90-94 (2019). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{M. Wang} and \textit{S. Zou}, J. Nat. Sci. Hunan Norm. Univ. 42, No. 3, 90--94 (2019; Zbl 1449.92048)
Song, Pengfei; Lou, Yuan; Xiao, Yanni A spatial SEIRS reaction-diffusion model in heterogeneous environment. (English) Zbl 1440.35101 J. Differ. Equations 267, No. 9, 5084-5114 (2019). Reviewer: Andrei Perjan (Chişinău) MSC: 35J57 35K57 92D30 PDF BibTeX XML Cite \textit{P. Song} et al., J. Differ. Equations 267, No. 9, 5084--5114 (2019; Zbl 1440.35101) Full Text: DOI
De la Sen, Manuel; Ibeas, Asier; Alonso-Quesada, Santiago; Nistal, Raul On a SIR model in a patchy environment under constant and feedback decentralized controls with asymmetric parameterizations. (English) Zbl 1423.92227 Symmetry 11, No. 3, Paper No. 430, 42 p. (2019). MSC: 92D30 93A14 93B52 PDF BibTeX XML Cite \textit{M. De la Sen} et al., Symmetry 11, No. 3, Paper No. 430, 42 p. (2019; Zbl 1423.92227) Full Text: DOI
Li, Huicong; Peng, Rui Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models. (English) Zbl 1425.92189 J. Math. Biol. 79, No. 4, 1279-1317 (2019). MSC: 92D30 92D40 34D23 PDF BibTeX XML Cite \textit{H. Li} and \textit{R. Peng}, J. Math. Biol. 79, No. 4, 1279--1317 (2019; Zbl 1425.92189) Full Text: DOI
Deng, Keng Asymptotic behavior of an SIR reaction-diffusion model with a linear source. (English) Zbl 1422.35114 Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 5945-5957 (2019). MSC: 35K57 35J57 35B35 35B40 92D25 PDF BibTeX XML Cite \textit{K. Deng}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 11, 5945--5957 (2019; Zbl 1422.35114) Full Text: DOI
Han, Shuyu; Lei, Chengxia Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence. (English) Zbl 1423.92229 Appl. Math. Lett. 98, 114-120 (2019). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{S. Han} and \textit{C. Lei}, Appl. Math. Lett. 98, 114--120 (2019; Zbl 1423.92229) Full Text: DOI
Yang, Fei-Ying; Li, Wan-Tong; Ruan, Shigui Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions. (English) Zbl 1416.35285 J. Differ. Equations 267, No. 3, 2011-2051 (2019). MSC: 35Q92 35B40 45A05 45F05 47G20 92D30 PDF BibTeX XML Cite \textit{F.-Y. Yang} et al., J. Differ. Equations 267, No. 3, 2011--2051 (2019; Zbl 1416.35285) Full Text: DOI
Zhao, Jiandong; Wang, Lisha; Han, Zhixia Stability analysis of two new SIRS models with two viruses. (English) Zbl 1499.34291 Int. J. Comput. Math. 95, No. 10, 2026-2035 (2018). MSC: 34C60 34D20 39A12 39A60 34C05 34D05 92D30 PDF BibTeX XML Cite \textit{J. Zhao} et al., Int. J. Comput. Math. 95, No. 10, 2026--2035 (2018; Zbl 1499.34291) Full Text: DOI
Odetunde, O.; Lawal, J.; Edogbanya, H. O.; Ibrahim, M. O. Optimal control analysis of effect of HAART on immune cells against HIV infection. (English) Zbl 1430.92048 Adv. Math., Sci. J. 7, No. 2, 89-107 (2018). MSC: 92C60 49N90 PDF BibTeX XML Cite \textit{O. Odetunde} et al., Adv. Math., Sci. J. 7, No. 2, 89--107 (2018; Zbl 1430.92048) Full Text: Link
Zhang, Ying; Zhao, Jing Mathematic study and analysis for a kind of vector-borne transmission disease. (Chinese. English summary) Zbl 1424.92053 Math. Pract. Theory 48, No. 20, 270-278 (2018). MSC: 92D30 34D20 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{J. Zhao}, Math. Pract. Theory 48, No. 20, 270--278 (2018; Zbl 1424.92053)
Parsamanesh, Mahmood; Farnoosh, Rahman On the global stability of the endemic state in an epidemic model with vaccination. (English) Zbl 1418.92187 Math. Sci., Springer 12, No. 4, 313-320 (2018). MSC: 92D30 92C60 34D23 PDF BibTeX XML Cite \textit{M. Parsamanesh} and \textit{R. Farnoosh}, Math. Sci., Springer 12, No. 4, 313--320 (2018; Zbl 1418.92187) Full Text: DOI
Abiodun, Gbenga J.; Witbooi, P.; Okosun, Kazeem O. Modelling the impact of climatic variables on malaria transmission. (English) Zbl 1409.92219 Hacet. J. Math. Stat. 47, No. 2, 219-235 (2018). MSC: 92D30 92D40 92D25 PDF BibTeX XML Cite \textit{G. J. Abiodun} et al., Hacet. J. Math. Stat. 47, No. 2, 219--235 (2018; Zbl 1409.92219) Full Text: DOI
Zhu, Chunjuan Dynamics of an HIV/AIDS epidemic model with family care. (English) Zbl 1424.34182 J. Shanghai Norm. Univ., Nat. Sci. 47, No. 3, 370-382 (2018). MSC: 34C60 92C60 34D20 34D05 PDF BibTeX XML Cite \textit{C. Zhu}, J. Shanghai Norm. Univ., Nat. Sci. 47, No. 3, 370--382 (2018; Zbl 1424.34182)
Lei, Chengxia; Li, Fujun; Liu, Jiang Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. (English) Zbl 1404.35256 Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4499-4517 (2018). MSC: 35K57 35Q92 35J57 35B40 92D25 PDF BibTeX XML Cite \textit{C. Lei} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4499--4517 (2018; Zbl 1404.35256) Full Text: DOI
Yin, Hongyan; Yang, Cuihong; Zhang, Xin’an; Li, Jia The impact of releasing sterile mosquitoes on malaria transmission. (English) Zbl 1404.92210 Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3837-3853 (2018). MSC: 92D30 92C50 PDF BibTeX XML Cite \textit{H. Yin} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3837--3853 (2018; Zbl 1404.92210) Full Text: DOI
Kuniya, Toshikazu Correction: “Stability analysis of an age-structured SIR epidemic model with a reduction method to ODEs”. (English) Zbl 1404.92191 Mathematics 6, No. 11, Paper No. 252, 1 p. (2018). MSC: 92D30 34D20 34C60 34D05 PDF BibTeX XML Cite \textit{T. Kuniya}, Mathematics 6, No. 11, Paper No. 252, 1 p. (2018; Zbl 1404.92191) Full Text: DOI
Kuniya, Toshikazu Stability analysis of an age-structured SIR epidemic model with a reduction method to ODEs. (English) Zbl 1404.92190 Mathematics 6, No. 9, Paper No. 147, 10 p. (2018); correction ibid. 6, No. 11, Paper No. 252, 1 p. (2018). MSC: 92D30 34C60 34D05 34D20 35Q92 PDF BibTeX XML Cite \textit{T. Kuniya}, Mathematics 6, No. 9, Paper No. 147, 10 p. (2018; Zbl 1404.92190) Full Text: DOI
Mileo Batistela, Cristiane; Castilho Piqueira, José Roberto SIRA computer viruses propagation model: mortality and robustness. (English) Zbl 1401.34064 Int. J. Appl. Comput. Math. 4, No. 5, Paper No. 128, 9 p. (2018). MSC: 34C60 34D20 92D30 PDF BibTeX XML Cite \textit{C. Mileo Batistela} and \textit{J. R. Castilho Piqueira}, Int. J. Appl. Comput. Math. 4, No. 5, Paper No. 128, 9 p. (2018; Zbl 1401.34064) Full Text: DOI
Abdullah, M.; Ahmad, Aqeel; Raza, Nauman; Farman, M.; Ahmad, M. O. Approximate solution and analysis of smoking epidemic model with Caputo fractional derivatives. (English) Zbl 1507.92082 Int. J. Appl. Comput. Math. 4, No. 5, Paper No. 112, 16 p. (2018). MSC: 92D30 65L99 PDF BibTeX XML Cite \textit{M. Abdullah} et al., Int. J. Appl. Comput. Math. 4, No. 5, Paper No. 112, 16 p. (2018; Zbl 1507.92082) Full Text: DOI
Bürli, Christine; Harbrecht, Helmut; Odermatt, Peter; Sayasone, Somphou; Chitnis, Nakul Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini. (English) Zbl 1397.92619 J. Theor. Biol. 439, 181-194 (2018). MSC: 92D30 PDF BibTeX XML Cite \textit{C. Bürli} et al., J. Theor. Biol. 439, 181--194 (2018; Zbl 1397.92619) Full Text: DOI
Ji, Chunyan; Jiang, Daqing The asymptotic behavior of a stochastic multigroup SIS model. (English) Zbl 1387.34074 Int. J. Biomath. 11, No. 3, Article ID 1850037, 16 p. (2018). MSC: 34C60 34F05 34E10 92D30 34D05 34D20 PDF BibTeX XML Cite \textit{C. Ji} and \textit{D. Jiang}, Int. J. Biomath. 11, No. 3, Article ID 1850037, 16 p. (2018; Zbl 1387.34074) Full Text: DOI
Blé, Gamaliel; Esteva, Lourdes; Peregrino, Alejandro Global analysis of a mathematical model for hepatitis C considering the host immune system. (English) Zbl 1385.34035 J. Math. Anal. Appl. 461, No. 2, 1378-1390 (2018). MSC: 34C60 34D23 34D05 92C60 PDF BibTeX XML Cite \textit{G. Blé} et al., J. Math. Anal. Appl. 461, No. 2, 1378--1390 (2018; Zbl 1385.34035) Full Text: DOI
Wen, Xiaowei; Ji, Juping; Li, Bo Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism. (English) Zbl 1379.92068 J. Math. Anal. Appl. 458, No. 1, 715-729 (2018). MSC: 92D30 PDF BibTeX XML Cite \textit{X. Wen} et al., J. Math. Anal. Appl. 458, No. 1, 715--729 (2018; Zbl 1379.92068) Full Text: DOI
Wei, Changcheng; Fang, Juanyan; Wei, Yanting Global analysis of SIQS model with nonlinear saturated contact rate. (English) Zbl 1454.92032 Int. J. Comput. Sci. Math. 8, No. 1, 73-81 (2017). MSC: 92D30 PDF BibTeX XML Cite \textit{C. Wei} et al., Int. J. Comput. Sci. Math. 8, No. 1, 73--81 (2017; Zbl 1454.92032) Full Text: DOI
Xiao, Xi; Fu, Peng; Dou, Changsheng; Li, Qing; Hu, Guangwu; Xia, Shutao Design and analysis of SEIQR worm propagation model in mobile internet. (English) Zbl 1464.68028 Commun. Nonlinear Sci. Numer. Simul. 43, 341-350 (2017). MSC: 68M11 34C60 34D05 PDF BibTeX XML Cite \textit{X. Xiao} et al., Commun. Nonlinear Sci. Numer. Simul. 43, 341--350 (2017; Zbl 1464.68028) Full Text: DOI
Lubuma, Jean M.-S.; Terefe, Y. A. Global stability for the continuous and discrete SIS-diffusion epidemiological models. (English) Zbl 1426.37063 Quaest. Math. 40, No. 2, 161-176 (2017). MSC: 37N25 92D30 39A30 PDF BibTeX XML Cite \textit{J. M. S. Lubuma} and \textit{Y. A. Terefe}, Quaest. Math. 40, No. 2, 161--176 (2017; Zbl 1426.37063) Full Text: DOI
Yang, Wei; Shu, Zhan; Lam, James; Sun, Chengjun Global dynamics of an HIV model incorporating senior male clients. (English) Zbl 1426.92087 Appl. Math. Comput. 311, 203-216 (2017). MSC: 92D30 PDF BibTeX XML Cite \textit{W. Yang} et al., Appl. Math. Comput. 311, 203--216 (2017; Zbl 1426.92087) Full Text: DOI
Nie, Lin-Fei; Xue, Ya-Nan The roles of maturation delay and vaccination on the spread of dengue virus and optimal control. (English) Zbl 1422.92161 Adv. Difference Equ. 2017, Paper No. 278, 19 p. (2017). MSC: 92D30 92C60 37N25 49N90 49J15 PDF BibTeX XML Cite \textit{L.-F. Nie} and \textit{Y.-N. Xue}, Adv. Difference Equ. 2017, Paper No. 278, 19 p. (2017; Zbl 1422.92161) Full Text: DOI
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed Asymptotic behavior of stochastic multi-group epidemic models with distributed delays. (English) Zbl 1400.92520 Physica A 467, 527-541 (2017). MSC: 92D30 PDF BibTeX XML Cite \textit{Q. Liu} et al., Physica A 467, 527--541 (2017; Zbl 1400.92520) Full Text: DOI
Djiomba Njankou, Sylvie Diane; Nyabadza, Farai Modelling the potential role of media campaigns in Ebola transmission dynamics. (English) Zbl 1487.92038 Int. J. Differ. Equ. 2017, Article ID 3758269, 13 p. (2017). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{S. D. Djiomba Njankou} and \textit{F. Nyabadza}, Int. J. Differ. Equ. 2017, Article ID 3758269, 13 p. (2017; Zbl 1487.92038) Full Text: DOI
Sun, Chuancheng; Qiu, Zhipeng; Yang, Xiaomin The analysis of a vector-borne disease model with media impact. (Chinese. English summary) Zbl 1399.92049 J. Syst. Sci. Math. Sci. 37, No. 9, 2028-2038 (2017). MSC: 92D30 34D23 93D05 PDF BibTeX XML Cite \textit{C. Sun} et al., J. Syst. Sci. Math. Sci. 37, No. 9, 2028--2038 (2017; Zbl 1399.92049)
Yang, Junxian; Zhang, Qingguo; Wang, Leihong Global stability of a modified HIV infection model with saturation incidence. (English) Zbl 1395.92178 Mondaini, Rubem P. (ed.), Mathematical biology and biological physics. Selected papers based on the presentations at the 16th international symposium on mathematical and computational biology, BIOMAT 2016, Nankai University, Tianjin, China, October 30 – November 4, 2016. Hackensack, NJ: World Scientific (ISBN 978-981-3227-87-3/hbk; 978-981-3227-89-7/ebook). 288-303 (2017). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{J. Yang} et al., in: Mathematical biology and biological physics. Selected papers based on the presentations at the 16th international symposium on mathematical and computational biology, BIOMAT 2016, Nankai University, Tianjin, China, October 30 -- November 4, 2016. Hackensack, NJ: World Scientific. 288--303 (2017; Zbl 1395.92178) Full Text: DOI
Tumwiine, Julius; Robert, Godwin A mathematical model for treatment of bovine brucellosis in cattle population. (English) Zbl 1384.34059 J. Math. Model. 5, No. 2, 137-152 (2017). MSC: 34C60 34D05 34C05 34D23 92D30 PDF BibTeX XML Cite \textit{J. Tumwiine} and \textit{G. Robert}, J. Math. Model. 5, No. 2, 137--152 (2017; Zbl 1384.34059) Full Text: DOI