Calvez, Vincent; Carrillo, José Antonio; Hoffmann, Franca Uniqueness of stationary states for singular Keller-Segel type models. (English) Zbl 07310973 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021). MSC: 35A02 92C17 35B38 35B40 26D10 35J62 PDF BibTeX XML Cite \textit{V. Calvez} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112222, 25 p. (2021; Zbl 07310973) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. (English) Zbl 1446.65116 J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021). MSC: 65M60 65N30 65M06 65M12 65M15 35R11 26A33 35B45 74H10 PDF BibTeX XML Cite \textit{J. Manimaran} et al., J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021; Zbl 1446.65116) Full Text: DOI
Espejo, Elio; Wu, Hao Optimal critical mass for the two-dimensional Keller-Segel model with rotational flux terms. (English) Zbl 07327454 Commun. Math. Sci. 18, No. 2, 379-394 (2020). MSC: 35B40 35K57 92C15 92C17 PDF BibTeX XML Cite \textit{E. Espejo} and \textit{H. Wu}, Commun. Math. Sci. 18, No. 2, 379--394 (2020; Zbl 07327454) Full Text: DOI
Folino, Raffaele; Lattanzio, Corrado; Mascia, Corrado Motion of interfaces for a damped hyperbolic Allen-Cahn equation. (English) Zbl 07326902 Commun. Pure Appl. Anal. 19, No. 9, 4507-4543 (2020). MSC: 35B25 35L71 35L20 35K57 PDF BibTeX XML Cite \textit{R. Folino} et al., Commun. Pure Appl. Anal. 19, No. 9, 4507--4543 (2020; Zbl 07326902) Full Text: DOI
Salahuddin, T.; Siddique, Nazim; Arshad, Maryam Insight into the dynamics of the non-Newtonian Casson fluid on a horizontal object with variable thickness. (English) Zbl 07318096 Math. Comput. Simul. 177, 211-231 (2020). MSC: 76A 76W 80A PDF BibTeX XML Cite \textit{T. Salahuddin} et al., Math. Comput. Simul. 177, 211--231 (2020; Zbl 07318096) Full Text: DOI
Sabino, Piergiacomo Exact simulation of variance gamma-related OU processes: application to the pricing of energy derivatives. (English) Zbl 07307493 Appl. Math. Finance 27, No. 3, 207-227 (2020). MSC: 91G20 60J70 PDF BibTeX XML Cite \textit{P. Sabino}, Appl. Math. Finance 27, No. 3, 207--227 (2020; Zbl 07307493) Full Text: DOI
Chen, Jie; He, Zhengkang; Sun, Shuyu; Guo, Shimin; Chen, Zhangxin Efficient linear schemes with unconditional energy stability for the phase field model of solid-state dewetting problems. (English) Zbl 07295201 J. Comput. Math. 38, No. 3, 452-468 (2020). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Comput. Math. 38, No. 3, 452--468 (2020; Zbl 07295201) Full Text: DOI
Mielke, Alexander; Stephan, Artur Coarse-graining via EDP-convergence for linear fast-slow reaction systems. (English) Zbl 1454.60113 Math. Models Methods Appl. Sci. 30, No. 9, 1765-1807 (2020). MSC: 60J20 47D07 47J30 92E20 PDF BibTeX XML Cite \textit{A. Mielke} and \textit{A. Stephan}, Math. Models Methods Appl. Sci. 30, No. 9, 1765--1807 (2020; Zbl 1454.60113) Full Text: DOI
Koba, Hajime On generalized diffusion and heat systems on an evolving surface with a boundary. (English) Zbl 07286642 Q. Appl. Math. 78, No. 4, 617-640 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q79 35K59 35M33 35A15 80A19 76R50 76T10 PDF BibTeX XML Cite \textit{H. Koba}, Q. Appl. Math. 78, No. 4, 617--640 (2020; Zbl 07286642) Full Text: DOI
Sabino, Piergiacomo Forward or backward simulation? A comparative study. (English) Zbl 1454.91305 Quant. Finance 20, No. 7, 1213-1226 (2020). Reviewer: George Stoica (Saint John) MSC: 91G20 60G40 60G51 60G55 60J70 PDF BibTeX XML Cite \textit{P. Sabino}, Quant. Finance 20, No. 7, 1213--1226 (2020; Zbl 1454.91305) Full Text: DOI
Guo, Wei; Gao, Yunzhu Critical Fujita curves for a class of nonlinear coupled convection-diffusion systems. (Chinese. English summary) Zbl 07266863 J. Jilin Univ., Sci. 58, No. 2, 271-276 (2020). MSC: 35K57 35B40 35B51 PDF BibTeX XML Cite \textit{W. Guo} and \textit{Y. Gao}, J. Jilin Univ., Sci. 58, No. 2, 271--276 (2020; Zbl 07266863) Full Text: DOI
Crevat, Joachim Asymptotic limit of a spatially-extended mean-field FitzHugh-Nagumo model. (English) Zbl 1444.35139 Math. Models Methods Appl. Sci. 30, No. 5, 957-990 (2020). MSC: 35Q92 35K57 82C22 92B20 PDF BibTeX XML Cite \textit{J. Crevat}, Math. Models Methods Appl. Sci. 30, No. 5, 957--990 (2020; Zbl 1444.35139) Full Text: DOI
Boudin, Laurent; Michel, David; Moussa, Ayman Global existence of weak solutions to the incompressible Vlasov-Navier-Stokes system coupled to convection-diffusion equations. (English) Zbl 1450.35211 Math. Models Methods Appl. Sci. 30, No. 8, 1485-1515 (2020). MSC: 35Q35 35Q83 35D30 76D05 76R50 76T10 76T30 35A01 PDF BibTeX XML Cite \textit{L. Boudin} et al., Math. Models Methods Appl. Sci. 30, No. 8, 1485--1515 (2020; Zbl 1450.35211) Full Text: DOI
Kamalia, Putri Zahra; Sakaguchi, Shigeru A construction of patterns with many critical points on topological tori. (English) Zbl 1450.35059 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 39, 15 p. (2020). MSC: 35B36 35B35 35K57 35K58 35J61 35P15 35B38 35B20 35R01 PDF BibTeX XML Cite \textit{P. Z. Kamalia} and \textit{S. Sakaguchi}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 39, 15 p. (2020; Zbl 1450.35059) Full Text: DOI
Huang, Haochuan; Huang, Rui; Wang, Liangwei; Yin, Jingxue Periodic solutions for the degenerate Lotka-Volterra competition system. (English) Zbl 1450.35025 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 73, 35 p. (2020). MSC: 35B10 35K57 35K65 35K51 92D25 PDF BibTeX XML Cite \textit{H. Huang} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 73, 35 p. (2020; Zbl 1450.35025) Full Text: DOI
Burazin, Krešimir; Crnjac, Ivana Convergence of the optimality criteria method for multiple state optimal design problems. (English) Zbl 1452.49002 Comput. Math. Appl. 79, No. 5, 1382-1392 (2020). MSC: 49J20 49J45 35J57 65N12 PDF BibTeX XML Cite \textit{K. Burazin} and \textit{I. Crnjac}, Comput. Math. Appl. 79, No. 5, 1382--1392 (2020; Zbl 1452.49002) Full Text: DOI
Bergerhoff, Leif; Cárdenas, Marcelo; Weickert, Joachim; Welk, Martin Stable backward diffusion models that minimise convex energies. (English) Zbl 07255782 J. Math. Imaging Vis. 62, No. 6-7, 941-960 (2020). MSC: 68 94 76R50 60J60 58J65 37N30 37N40 65D18 68U10 PDF BibTeX XML Cite \textit{L. Bergerhoff} et al., J. Math. Imaging Vis. 62, No. 6--7, 941--960 (2020; Zbl 07255782) Full Text: DOI
Benaïm, Michel; Bréhier, Charles-Edouard; Monmarché, Pierre Analysis of an adaptive biasing force method based on self-interacting dynamics. (English) Zbl 07252720 Electron. J. Probab. 25, Paper No. 88, 28 p. (2020). MSC: 60J60 65C50 PDF BibTeX XML Cite \textit{M. Benaïm} et al., Electron. J. Probab. 25, Paper No. 88, 28 p. (2020; Zbl 07252720) Full Text: DOI Euclid
Floridia, Giuseppe Nonnegative controllability for a class of nonlinear degenerate parabolic equations with application to climate science. (English) Zbl 1448.93025 Electron. J. Differ. Equ. 2020, Paper No. 59, 27 p. (2020). MSC: 93B05 93C20 35K10 35K65 35K57 35K58 PDF BibTeX XML Cite \textit{G. Floridia}, Electron. J. Differ. Equ. 2020, Paper No. 59, 27 p. (2020; Zbl 1448.93025) Full Text: Link
Su, Si; Zhang, Guo-Bao Global stability of traveling waves for delay reaction-diffusion systems without quasi-monotonicity. (English) Zbl 1447.35102 Electron. J. Differ. Equ. 2020, Paper No. 46, 18 p. (2020). MSC: 35C07 35B35 35K45 35K57 35R10 92D30 PDF BibTeX XML Cite \textit{S. Su} and \textit{G.-B. Zhang}, Electron. J. Differ. Equ. 2020, Paper No. 46, 18 p. (2020; Zbl 1447.35102) Full Text: Link
Burger, Martin; Carrillo, José A.; Pietschmann, Jan-Frederik; Schmidtchen, Markus Segregation effects and gap formation in cross-diffusion models. (English) Zbl 1445.35048 Interfaces Free Bound. 22, No. 2, 175-203 (2020). MSC: 35B36 35K51 35K65 35Q92 PDF BibTeX XML Cite \textit{M. Burger} et al., Interfaces Free Bound. 22, No. 2, 175--203 (2020; Zbl 1445.35048) Full Text: DOI
Lou, Shuai; Chen, Shu-sheng; Lin, Bo-xi; Yu, Jian; Yan, Chao Effective high-order energy stable flux reconstruction methods for first-order hyperbolic linear and nonlinear systems. (English) Zbl 1440.76076 J. Comput. Phys. 414, Article ID 109475, 27 p. (2020). MSC: 76M10 65M60 76R50 35L40 PDF BibTeX XML Cite \textit{S. Lou} et al., J. Comput. Phys. 414, Article ID 109475, 27 p. (2020; Zbl 1440.76076) Full Text: DOI
Cancès, Clément; Hillairet, Claire Chainais; Fuhrmann, Jürgen; Gaudeul, Benoît On four numerical schemes for a unipolar degenerate drift-diffusion model. (English) Zbl 07239601 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 163-171 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 65M08 65N08 65M06 65Z05 78A30 35J05 PDF BibTeX XML Cite \textit{C. Cancès} et al., in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 163--171 (2020; Zbl 07239601) Full Text: DOI
Folino, Raffaele; Hernández Melo, César A.; Lopez Rios, Luis; Plaza, Ramón G. Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity. (English) Zbl 1445.35025 Z. Angew. Math. Phys. 71, No. 4, Paper No. 132, 25 p. (2020). MSC: 35B25 35K20 35K59 35B36 82B26 PDF BibTeX XML Cite \textit{R. Folino} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 132, 25 p. (2020; Zbl 1445.35025) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar A time-fractional competition ecological model with cross-diffusion. (English) Zbl 1445.35309 Math. Methods Appl. Sci. 43, No. 8, 5197-5211 (2020). MSC: 35R11 35K57 35K51 35D30 37M05 92D25 PDF BibTeX XML Cite \textit{J. Manimaran} et al., Math. Methods Appl. Sci. 43, No. 8, 5197--5211 (2020; Zbl 1445.35309) Full Text: DOI
Damiani, Leonardo Hax; Kosakowski, Georg; Glaus, Martin A.; Churakov, Sergey V. A framework for reactive transport modeling using FEniCS-Reaktoro: governing equations and benchmarking results. (English) Zbl 1439.86004 Comput. Geosci. 24, No. 3, 1071-1085 (2020). MSC: 86-08 65M60 65Y15 PDF BibTeX XML Cite \textit{L. H. Damiani} et al., Comput. Geosci. 24, No. 3, 1071--1085 (2020; Zbl 1439.86004) Full Text: DOI
Gao, Fuzheng; Zhang, Shangyou; Zhu, Peng Modified weak Galerkin method with weakly imposed boundary condition for convection-dominated diffusion equations. (English) Zbl 1446.76128 Appl. Numer. Math. 157, 490-504 (2020). MSC: 76M10 76R50 65N12 65N15 PDF BibTeX XML Cite \textit{F. Gao} et al., Appl. Numer. Math. 157, 490--504 (2020; Zbl 1446.76128) Full Text: DOI
Jiang, Wei; Zhao, Quan; Bao, Weizhu Sharp-interface model for simulating solid-state dewetting in three dimensions. (English) Zbl 1440.74153 SIAM J. Appl. Math. 80, No. 4, 1654-1677 (2020). MSC: 74G65 74G15 74H15 49Q10 74P10 74S99 PDF BibTeX XML Cite \textit{W. Jiang} et al., SIAM J. Appl. Math. 80, No. 4, 1654--1677 (2020; Zbl 1440.74153) Full Text: DOI
Layton, William; Schneier, Michael Diagnostics for eddy viscosity models of turbulence including data-driven/neural network based parameterizations. (English) Zbl 1445.76049 Results Appl. Math. 8, Article ID 100099, 8 p. (2020). MSC: 76F99 76M99 PDF BibTeX XML Cite \textit{W. Layton} and \textit{M. Schneier}, Results Appl. Math. 8, Article ID 100099, 8 p. (2020; Zbl 1445.76049) Full Text: DOI
Carrillo, José A.; Filbet, Francis; Schmidtchen, Markus Convergence of a finite volume scheme for a system of interacting species with cross-diffusion. (English) Zbl 1443.76155 Numer. Math. 145, No. 3, 473-511 (2020). MSC: 76M12 76R50 65M12 65M08 92C10 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Numer. Math. 145, No. 3, 473--511 (2020; Zbl 1443.76155) Full Text: DOI
Chen, Wenhui Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two space dimensions. (English) Zbl 1442.35242 J. Math. Anal. Appl. 486, No. 2, Article ID 123922, 18 p. (2020). MSC: 35L15 35R11 74J05 PDF BibTeX XML Cite \textit{W. Chen}, J. Math. Anal. Appl. 486, No. 2, Article ID 123922, 18 p. (2020; Zbl 1442.35242) Full Text: DOI
Wang, Yuan-Ming; Ren, Lei Analysis of a high-order compact finite difference method for Robin problems of time-fractional sub-diffusion equations with variable coefficients. (English) Zbl 1442.65182 Appl. Numer. Math. 156, 467-492 (2020). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{L. Ren}, Appl. Numer. Math. 156, 467--492 (2020; Zbl 1442.65182) Full Text: DOI
Kim, Cheolwoong; Seong, Hong Kyoung; Kim, Il Yong; Yoo, Jeonghoon Single variable-based multi-material structural optimization considering interface behavior. (English) Zbl 1442.74159 Comput. Methods Appl. Mech. Eng. 367, Article ID 113114, 20 p. (2020). MSC: 74P10 74A50 PDF BibTeX XML Cite \textit{C. Kim} et al., Comput. Methods Appl. Mech. Eng. 367, Article ID 113114, 20 p. (2020; Zbl 1442.74159) Full Text: DOI
Rodríguez, Nancy; Hu, Yi On the steady-states of a two-species non-local cross-diffusion model. (English) Zbl 1448.35288 J. Appl. Anal. 26, No. 1, 1-19 (2020). MSC: 35K45 35K59 82C24 35K55 PDF BibTeX XML Cite \textit{N. Rodríguez} and \textit{Y. Hu}, J. Appl. Anal. 26, No. 1, 1--19 (2020; Zbl 1448.35288) Full Text: DOI
Meng, Yanling; Zhang, Weiguo; Yu, Zhixian Stability of traveling wave fronts for delayed Belousov-Zhabotinskii models with spatial diffusion. (English) Zbl 1436.35063 Appl. Anal. 99, No. 6, 922-941 (2020). MSC: 35C07 92D25 35B35 35B51 35K57 PDF BibTeX XML Cite \textit{Y. Meng} et al., Appl. Anal. 99, No. 6, 922--941 (2020; Zbl 1436.35063) Full Text: DOI
Wang, Junjun Superconvergence analysis of an energy stable scheme for nonlinear reaction-diffusion equation with BDF mixed FEM. (English) Zbl 1437.65148 Appl. Numer. Math. 153, 457-472 (2020). MSC: 65M60 65N30 65M06 65N15 65M15 65M12 35K57 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Numer. Math. 153, 457--472 (2020; Zbl 1437.65148) Full Text: DOI
Sakata, Shigehiro; Wakasugi, Yuta Movement of time-delayed hot spots in Euclidean space for a degenerate initial state. (English) Zbl 1435.35216 Discrete Contin. Dyn. Syst. 40, No. 5, 2705-2738 (2020). MSC: 35L15 35B38 35C15 35B40 35K05 PDF BibTeX XML Cite \textit{S. Sakata} and \textit{Y. Wakasugi}, Discrete Contin. Dyn. Syst. 40, No. 5, 2705--2738 (2020; Zbl 1435.35216) Full Text: DOI
Holzinger, Philipp; Jüngel, Ansgar Large-time asymptotics for a matrix spin drift-diffusion model. (English) Zbl 1437.82021 J. Math. Anal. Appl. 486, No. 1, Article ID 123887, 20 p. (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 82C70 35Q20 35Q81 35B40 82D37 78A35 PDF BibTeX XML Cite \textit{P. Holzinger} and \textit{A. Jüngel}, J. Math. Anal. Appl. 486, No. 1, Article ID 123887, 20 p. (2020; Zbl 1437.82021) Full Text: DOI
Osting, Braxton; Simanek, Brian A maximal energy pointset configuration problem. (English) Zbl 1434.60058 J. Math. Anal. Appl. 485, No. 2, Article ID 123830, 25 p. (2020). MSC: 60D05 PDF BibTeX XML Cite \textit{B. Osting} and \textit{B. Simanek}, J. Math. Anal. Appl. 485, No. 2, Article ID 123830, 25 p. (2020; Zbl 1434.60058) Full Text: DOI
Zhou, Yongcheng On curvature driven rotational diffusion of proteins on membrane surfaces. (English) Zbl 1441.35010 SIAM J. Appl. Math. 80, No. 1, 359-381 (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35A15 35K15 60J60 35Q84 35A01 35A02 33C10 PDF BibTeX XML Cite \textit{Y. Zhou}, SIAM J. Appl. Math. 80, No. 1, 359--381 (2020; Zbl 1441.35010) Full Text: DOI
Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state. (English) Zbl 1432.65169 SIAM J. Sci. Comput. 42, No. 1, B30-B56 (2020). MSC: 65N30 65N50 49S05 65M06 76R50 76M10 PDF BibTeX XML Cite \textit{J. Kou} et al., SIAM J. Sci. Comput. 42, No. 1, B30--B56 (2020; Zbl 1432.65169) Full Text: DOI arXiv
Ortleb, Sigrun \(L^2\)-stability analysis of IMEX-\(( \sigma,\mu )\) DG schemes for linear advection-diffusion equations. (English) Zbl 1442.65391 Appl. Numer. Math. 147, 43-65 (2020). MSC: 65N30 65L06 35B35 PDF BibTeX XML Cite \textit{S. Ortleb}, Appl. Numer. Math. 147, 43--65 (2020; Zbl 1442.65391) Full Text: DOI
Jiang, Wei; Zhao, Quan Sharp-interface approach for simulating solid-state dewetting in two dimensions: A Cahn-hoffman \(\boldsymbol{\xi}\)-vector formulation. (English) Zbl 1448.74097 Physica D 390, 69-83 (2019). MSC: 74S05 74K35 74A50 PDF BibTeX XML Cite \textit{W. Jiang} and \textit{Q. Zhao}, Physica D 390, 69--83 (2019; Zbl 1448.74097) Full Text: DOI
Liu, Chein-Shan; Chang, Chih-Wen An energy regularization of the MQ-RBF method for solving the Cauchy problems of diffusion-convection-reaction equations. (English) Zbl 07263892 Commun. Nonlinear Sci. Numer. Simul. 67, 375-390 (2019). MSC: 00 PDF BibTeX XML Cite \textit{C.-S. Liu} and \textit{C.-W. Chang}, Commun. Nonlinear Sci. Numer. Simul. 67, 375--390 (2019; Zbl 07263892) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains. (English) Zbl 1442.65244 Comput. Math. Appl. 78, No. 5, 1531-1547 (2019). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Comput. Math. Appl. 78, No. 5, 1531--1547 (2019; Zbl 1442.65244) Full Text: DOI
Liu, Fang; Li, Yeping Asymptotic behavior of solutions of the bipolar quantum drift-diffusion model in the quarter plane. (English) Zbl 1449.35073 Wuhan Univ. J. Nat. Sci. 24, No. 6, 467-473 (2019). MSC: 35B40 35Q40 35K35 PDF BibTeX XML Cite \textit{F. Liu} and \textit{Y. Li}, Wuhan Univ. J. Nat. Sci. 24, No. 6, 467--473 (2019; Zbl 1449.35073) Full Text: DOI
Arguin, Louis-Pierre; Persechino, Roberto The free energy of the GREM with random magnetic field. (English) Zbl 1446.82038 Gayrard, Véronique (ed.) et al., Statistical mechanics of classical and disordered systems. Proceedings of the international conference “Advances in statistical mechanics”, CIRM, Luminy, France, August 28–31, 2018. Cham: Springer. Springer Proc. Math. Stat. 293, 37-61 (2019). MSC: 82B44 60J70 60F10 82D30 60G70 82D40 PDF BibTeX XML Cite \textit{L.-P. Arguin} and \textit{R. Persechino}, Springer Proc. Math. Stat. 293, 37--61 (2019; Zbl 1446.82038) Full Text: DOI
Tao, Yunzhe; Tian, Xiaochuan; Du, Qiang Nonlocal models with heterogeneous localization and their application to seamless local-nonlocal coupling. (English) Zbl 1447.45001 Multiscale Model. Simul. 17, No. 3, 1052-1075 (2019). MSC: 45A05 45K05 47G10 74G65 74H20 74H25 PDF BibTeX XML Cite \textit{Y. Tao} et al., Multiscale Model. Simul. 17, No. 3, 1052--1075 (2019; Zbl 1447.45001) Full Text: DOI
Li, Zhiyuan; Kian, Yavar; Soccorsi, Éric Initial-boundary value problem for distributed order time-fractional diffusion equations. (English) Zbl 1428.35667 Asymptotic Anal. 115, No. 1-2, 95-126 (2019). MSC: 35R11 35D30 44A10 35A01 35A02 35B65 35B35 PDF BibTeX XML Cite \textit{Z. Li} et al., Asymptotic Anal. 115, No. 1--2, 95--126 (2019; Zbl 1428.35667) Full Text: DOI arXiv
Arkashov, N. S.; Seleznev, V. A. Energy characteristics of the anomalous diffusion process. (English. Russian original) Zbl 1434.82035 Theor. Math. Phys. 199, No. 3, 894-908 (2019); translation from Teor. Mat. Fiz. 199, No. 3, 479-496 (2019). MSC: 82B41 60J60 82C41 28A78 PDF BibTeX XML Cite \textit{N. S. Arkashov} and \textit{V. A. Seleznev}, Theor. Math. Phys. 199, No. 3, 894--908 (2019; Zbl 1434.82035); translation from Teor. Mat. Fiz. 199, No. 3, 479--496 (2019) Full Text: DOI
Li, Yeping; Lu, Li Stability of planar diffusion wave for the three dimensional full bipolar Euler-Poisson system. (English) Zbl 1428.35381 Appl. Math. Comput. 356, 392-410 (2019). MSC: 35Q35 76W05 PDF BibTeX XML Cite \textit{Y. Li} and \textit{L. Lu}, Appl. Math. Comput. 356, 392--410 (2019; Zbl 1428.35381) Full Text: DOI
Cheichan, Mohammed S.; Kashkool, Hashim A.; Gao, Fuzheng A weak Galerkin finite element method for solving nonlinear convection-diffusion problems in two dimensions. (English) Zbl 1429.65227 Appl. Math. Comput. 354, 149-163 (2019). MSC: 65M60 35K51 35K57 65M12 65M15 PDF BibTeX XML Cite \textit{M. S. Cheichan} et al., Appl. Math. Comput. 354, 149--163 (2019; Zbl 1429.65227) Full Text: DOI
Bezuglyi, Sergey; Jorgensen, Palle E. T. Graph Laplace and Markov operators on a measure space. (English) Zbl 1454.47098 Alpay, Daniel (ed.) et al., Linear systems, signal processing and hypercomplex analysis. Selected papers of the conference on mathematics, signal processing and linear systems: new problems and directions, Chapman University, Orange, CA, USA, November 14–19, 2017. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 275, 67-138 (2019). Reviewer: Michael Perelmuter (Kyjiw) MSC: 47N30 60J05 47D07 47B25 37B10 37A30 47L50 60J45 PDF BibTeX XML Cite \textit{S. Bezuglyi} and \textit{P. E. T. Jorgensen}, Oper. Theory: Adv. Appl. 275, 67--138 (2019; Zbl 1454.47098) Full Text: DOI arXiv
Wang, Yuan-Ming; Ren, Lei A high-order \(L2\)-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. (English) Zbl 1429.65201 Appl. Math. Comput. 342, 71-93 (2019). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{L. Ren}, Appl. Math. Comput. 342, 71--93 (2019; Zbl 1429.65201) Full Text: DOI
Carrillo, José A.; Delgadino, Matías G.; Dolbeault, Jean; Frank, Rupert L.; Hoffmann, Franca Reverse Hardy-Littlewood-Sobolev inequalities. (English. French summary) Zbl 1442.35011 J. Math. Pures Appl. (9) 132, 133-165 (2019). Reviewer: Shuangjie Peng (Wuhan) MSC: 35A23 26D15 35K55 46E35 49J40 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., J. Math. Pures Appl. (9) 132, 133--165 (2019; Zbl 1442.35011) Full Text: DOI
Carrillo, J. A.; Hittmeir, S.; Volzone, B.; Yao, Y. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. (English) Zbl 1427.35136 Invent. Math. 218, No. 3, 889-977 (2019). Reviewer: Alain Brillard (Riedisheim) MSC: 35K59 35B07 35B40 49J10 49Q20 82C22 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Invent. Math. 218, No. 3, 889--977 (2019; Zbl 1427.35136) Full Text: DOI arXiv
Radkevich, E. V.; Lukashev, E. A.; Vasil’eva, O. A. Hydrodynamic instabilities and nonequilibrium phase transitions. (English. Russian original) Zbl 07125257 Dokl. Math. 99, No. 3, 308-312 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 486, No. 5, 537-542 (2019). MSC: 76F06 76E99 82C26 PDF BibTeX XML Cite \textit{E. V. Radkevich} et al., Dokl. Math. 99, No. 3, 308--312 (2019; Zbl 07125257); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 486, No. 5, 537--542 (2019) Full Text: DOI
Wang, Renhai; Shi, Lin; Wang, Bixiang Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on \(\mathbb{R}^N\). (English) Zbl 1423.35419 Nonlinearity 32, No. 11, 4524-4556 (2019). MSC: 35R11 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} et al., Nonlinearity 32, No. 11, 4524--4556 (2019; Zbl 1423.35419) Full Text: DOI
Folino, Raffaele Slow motion for one-dimensional nonlinear damped hyperbolic Allen-Cahn systems. (English) Zbl 1426.35148 Electron. J. Differ. Equ. 2019, Paper No. 113, 21 p. (2019). MSC: 35L53 35B25 35K57 35L71 PDF BibTeX XML Cite \textit{R. Folino}, Electron. J. Differ. Equ. 2019, Paper No. 113, 21 p. (2019; Zbl 1426.35148) Full Text: Link arXiv
Abbaszadeh, Mostafa; Dehghan, Mehdi Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. (English) Zbl 1428.65073 Appl. Numer. Math. 145, 488-506 (2019). MSC: 65N30 65M06 65M12 35R11 35A01 35A02 65N12 35Q60 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Appl. Numer. Math. 145, 488--506 (2019; Zbl 1428.65073) Full Text: DOI
Andra, Doni; Rosyid, Muhammad Farchani; Hermanto, Arief Theoretical study of interaction between matter and curvature fluid in the theory of \(f(R)\)-gravity: diffusion and friction. (English) Zbl 1426.83027 Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950045, 26 p. (2019). MSC: 83D05 83C40 83C05 83C10 58J65 35Q84 83C55 83C20 83F05 PDF BibTeX XML Cite \textit{D. Andra} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950045, 26 p. (2019; Zbl 1426.83027) Full Text: DOI
Akhunov, Timur; Ambrose, David M.; Douglas Wright, J. Well-posedness of fully nonlinear KdV-type evolution equations. (English) Zbl 1421.35318 Nonlinearity 32, No. 8, 2914-2954 (2019). MSC: 35Q53 35A01 35B30 PDF BibTeX XML Cite \textit{T. Akhunov} et al., Nonlinearity 32, No. 8, 2914--2954 (2019; Zbl 1421.35318) Full Text: DOI
Hartmann, Carsten; Schütte, Christof; Zhang, Wei Jarzynski’s equality, fluctuation theorems, and variance reduction: mathematical analysis and numerical algorithms. (English) Zbl 1416.60078 J. Stat. Phys. 175, No. 6, 1214-1261 (2019). MSC: 60J60 60H10 60H35 65C30 PDF BibTeX XML Cite \textit{C. Hartmann} et al., J. Stat. Phys. 175, No. 6, 1214--1261 (2019; Zbl 1416.60078) Full Text: DOI
Jing, Xiaobo; Li, Jun; Zhao, Xueping; Wang, Qi Second order linear energy stable schemes for Allen-Cahn equations with nonlocal constraints. (English) Zbl 1448.35301 J. Sci. Comput. 80, No. 1, 500-537 (2019). MSC: 35K57 65M12 65M06 PDF BibTeX XML Cite \textit{X. Jing} et al., J. Sci. Comput. 80, No. 1, 500--537 (2019; Zbl 1448.35301) Full Text: DOI arXiv
Benaïm, Michel; Bréhier, Charles-Edouard Convergence analysis of adaptive biasing potential methods for diffusion processes. (English) Zbl 1422.60131 Commun. Math. Sci. 17, No. 1, 81-130 (2019). MSC: 60J60 60J22 PDF BibTeX XML Cite \textit{M. Benaïm} and \textit{C.-E. Bréhier}, Commun. Math. Sci. 17, No. 1, 81--130 (2019; Zbl 1422.60131) Full Text: DOI arXiv
Djida, Jean-Daniel; Nieto, Juan J.; Area, Iván Nonlocal time porous medium equation with fractional time derivative. (English) Zbl 1422.35110 Rev. Mat. Complut. 32, No. 2, 273-304 (2019). Reviewer: Christian Stinner (Darmstadt) MSC: 35K55 35B65 35R11 PDF BibTeX XML Cite \textit{J.-D. Djida} et al., Rev. Mat. Complut. 32, No. 2, 273--304 (2019; Zbl 1422.35110) Full Text: DOI arXiv
Guo, Zhihua; Wu, Shi-Liang Stability of traveling wavefronts for a nonlocal dispersal system with delay. (English) Zbl 1415.35163 J. Dyn. Control Syst. 25, No. 2, 175-195 (2019). MSC: 35K57 35Q92 92D25 92D30 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{S.-L. Wu}, J. Dyn. Control Syst. 25, No. 2, 175--195 (2019; Zbl 1415.35163) Full Text: DOI
Kurokiba, Masaki; Ogawa, Takayoshi Finite-time blow-up for solutions to a degenerate drift-diffusion equation for a fast-diffusion case. (English) Zbl 1411.35153 Nonlinearity 32, No. 6, 2073-2093 (2019). MSC: 35K55 35K65 35K59 PDF BibTeX XML Cite \textit{M. Kurokiba} and \textit{T. Ogawa}, Nonlinearity 32, No. 6, 2073--2093 (2019; Zbl 1411.35153) Full Text: DOI
Fetecau, Razvan C.; Kovacic, Mitchell; Topaloglu, Ihsan Swarming in domains with boundaries: approximation and regularization by nonlinear diffusion. (English) Zbl 07053023 Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1815-1842 (2019). MSC: 35A15 35B35 35B40 35Q92 45K05 PDF BibTeX XML Cite \textit{R. C. Fetecau} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1815--1842 (2019; Zbl 07053023) Full Text: DOI arXiv
Li, Haitong; Li, Jingyu; Mei, Ming; Zhang, Kaijun Asymptotic behavior of solutions to bipolar Euler-Poisson equations with time-dependent damping. (English) Zbl 1414.35031 J. Math. Anal. Appl. 473, No. 2, 1081-1121 (2019). MSC: 35B40 35Q60 82D37 PDF BibTeX XML Cite \textit{H. Li} et al., J. Math. Anal. Appl. 473, No. 2, 1081--1121 (2019; Zbl 1414.35031) Full Text: DOI
Labbas, Rabah; Lemrabet, Keddour; Maingot, Stéphane; Thorel, Alexandre Generalized linear models for population dynamics in two juxtaposed habitats. (English) Zbl 1414.35238 Discrete Contin. Dyn. Syst. 39, No. 5, 2933-2960 (2019). MSC: 35Q92 35B65 35C15 35J40 35R20 47A60 47D06 92D25 PDF BibTeX XML Cite \textit{R. Labbas} et al., Discrete Contin. Dyn. Syst. 39, No. 5, 2933--2960 (2019; Zbl 1414.35238) Full Text: DOI
Pinaud, Olivier The quantum drift-diffusion model: existence and exponential convergence to the equilibrium. (English) Zbl 1412.82022 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 3, 811-836 (2019). MSC: 82C10 35Q82 35Q40 35B40 81Q05 PDF BibTeX XML Cite \textit{O. Pinaud}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 3, 811--836 (2019; Zbl 1412.82022) Full Text: DOI arXiv
Laux, Tim; Yip, Nung Kwan Analysis of diffusion generated motion for mean curvature flow in codimension two: a gradient-flow approach. (English) Zbl 1411.53050 Arch. Ration. Mech. Anal. 232, No. 2, 1113-1163 (2019). MSC: 53C44 35K55 53C80 PDF BibTeX XML Cite \textit{T. Laux} and \textit{N. K. Yip}, Arch. Ration. Mech. Anal. 232, No. 2, 1113--1163 (2019; Zbl 1411.53050) Full Text: DOI
Li, Yeping; Liao, Jie Stability and \( L^{p}\) convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. (English) Zbl 1414.35171 Commun. Pure Appl. Anal. 18, No. 3, 1281-1302 (2019). MSC: 35Q35 35M11 76W05 35B65 76A05 35A01 78A30 PDF BibTeX XML Cite \textit{Y. Li} and \textit{J. Liao}, Commun. Pure Appl. Anal. 18, No. 3, 1281--1302 (2019; Zbl 1414.35171) Full Text: DOI
Quaegebeur, Samuel; Nadarajah, Sivakumaran; Navah, Farshad; Zwanenburg, Philip Stability of energy stable flux reconstruction for the diffusion problem using compact numerical fluxes. (English) Zbl 1433.65310 SIAM J. Sci. Comput. 41, No. 1, A643-A667 (2019). Reviewer: Noureddine Daili (Sétif) MSC: 65N30 65N12 65N15 65N08 65M06 65M60 PDF BibTeX XML Cite \textit{S. Quaegebeur} et al., SIAM J. Sci. Comput. 41, No. 1, A643--A667 (2019; Zbl 1433.65310) Full Text: DOI
Xie, Shunxi Asymptotic stability of solutions to the Hamilton-Jacobi equation. (English) Zbl 1404.35100 J. Math. Anal. Appl. 470, No. 2, 1030-1045 (2019). MSC: 35F21 35B40 35F25 PDF BibTeX XML Cite \textit{S. Xie}, J. Math. Anal. Appl. 470, No. 2, 1030--1045 (2019; Zbl 1404.35100) Full Text: DOI
Shen, Shujun; Liu, Fawang; Anh, Vo V. The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation. (English) Zbl 1398.65229 J. Comput. Appl. Math. 345, 515-534 (2019). MSC: 65M20 65L06 65R10 35R11 34A08 PDF BibTeX XML Cite \textit{S. Shen} et al., J. Comput. Appl. Math. 345, 515--534 (2019; Zbl 1398.65229) Full Text: DOI
Le, Dung Strongly coupled parabolic and elliptic systems. Existence and regularity of strong and weak solutions. (English) Zbl 1411.35003 De Gruyter Series in Nonlinear Analysis and Applications 28. Berlin: De Gruyter (ISBN 978-3-11-060715-4/hbk; 978-3-11-060876-2/ebook). x, 185 p. (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35-02 35K57 35J70 35D35 35B65 35J47 35K40 PDF BibTeX XML Cite \textit{D. Le}, Strongly coupled parabolic and elliptic systems. Existence and regularity of strong and weak solutions. Berlin: De Gruyter (2019; Zbl 1411.35003) Full Text: DOI
Yao, Zhongsheng; Wang, Zhibo A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions. (English) Zbl 1453.65237 J. Appl. Anal. Comput. 8, No. 4, 1159-1169 (2018). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{Z. Yao} and \textit{Z. Wang}, J. Appl. Anal. Comput. 8, No. 4, 1159--1169 (2018; Zbl 1453.65237) Full Text: DOI
Mu, Zhenguo; Gong, Yuezheng; Cai, Wenjun; Wang, Yushun Efficient local energy dissipation preserving algorithms for the Cahn-Hilliard equation. (English) Zbl 1416.65276 J. Comput. Phys. 374, 654-667 (2018). MSC: 65M06 76R50 76M20 PDF BibTeX XML Cite \textit{Z. Mu} et al., J. Comput. Phys. 374, 654--667 (2018; Zbl 1416.65276) Full Text: DOI
Ma, Liangliang; Tan, Qianrong; Liu, Dongbing Fully implicit finite difference scheme for the nonlinear variable-order space-time fractional advection-diffusion equation. (Chinese. English summary) Zbl 1424.65138 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 5, 627-634 (2018). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{L. Ma} et al., J. Sichuan Norm. Univ., Nat. Sci. 41, No. 5, 627--634 (2018; Zbl 1424.65138) Full Text: DOI
Jiang, Yaolin; Miao, Zhen Quasi-Newton waveform relaxation based on energy method. (English) Zbl 1424.65204 J. Comput. Math. 36, No. 4, 542-562 (2018). MSC: 65M99 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{Z. Miao}, J. Comput. Math. 36, No. 4, 542--562 (2018; Zbl 1424.65204) Full Text: DOI
Jiang, Yicheng; Zhang, Kaijun Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. (English) Zbl 1405.35089 Kinet. Relat. Models 11, No. 5, 1235-1253 (2018). MSC: 35K57 35C07 35K58 35Q92 92D25 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{K. Zhang}, Kinet. Relat. Models 11, No. 5, 1235--1253 (2018; Zbl 1405.35089) Full Text: DOI
Peng, Hongyun; Wang, Zhi-An; Zhao, Kun; Zhu, Changjiang Boundary layers and stabilization of the singular Keller-Segel system. (English) Zbl 1405.92033 Kinet. Relat. Models 11, No. 5, 1085-1123 (2018). MSC: 92C17 35Q92 35K57 35A01 35B40 35B44 PDF BibTeX XML Cite \textit{H. Peng} et al., Kinet. Relat. Models 11, No. 5, 1085--1123 (2018; Zbl 1405.92033) Full Text: DOI
Ren, Lei; Liu, Lei Efficient compact finite difference method for variable coefficient fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions in conservative form. (English) Zbl 1413.65329 Comput. Appl. Math. 37, No. 5, 6252-6269 (2018). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{L. Ren} and \textit{L. Liu}, Comput. Appl. Math. 37, No. 5, 6252--6269 (2018; Zbl 1413.65329) Full Text: DOI
Brzeźniak, Zdzisław; Dhariwal, Gaurav; Hussain, Javed; Mariani, Mauro Stochastic and deterministic constrained partial differential equations. (English) Zbl 1405.60084 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 133-146 (2018). MSC: 60H15 35K05 35K55 35Q30 35Q60 58J65 60J25 76M35 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., in: Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10--14, 2016. Cham: Springer. 133--146 (2018; Zbl 1405.60084) Full Text: DOI
Fukushima, Masatoshi Liouville property of harmonic functions of finite energy for Dirichlet forms. (English) Zbl 1405.60120 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 25-42 (2018). MSC: 60J50 31C25 60J60 PDF BibTeX XML Cite \textit{M. Fukushima}, in: Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10--14, 2016. Cham: Springer. 25--42 (2018; Zbl 1405.60120) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen On the longtime behavior of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions. (English) Zbl 1404.35044 J. Elliptic Parabol. Equ. 4, No. 2, 327-347 (2018). MSC: 35B40 47J20 74N25 35G55 PDF BibTeX XML Cite \textit{P. Colli} et al., J. Elliptic Parabol. Equ. 4, No. 2, 327--347 (2018; Zbl 1404.35044) Full Text: DOI arXiv
Cheng, Cui-Ping; Feng, Zhaosheng; Su, You-Hui Global stability of traveling wave fronts for a reaction-diffusion system with a quiescent stage on a one-dimensional spatial lattice. (English) Zbl 1401.35177 Appl. Anal. 97, No. 16, 2920-2940 (2018). MSC: 35K57 35B40 35R20 PDF BibTeX XML Cite \textit{C.-P. Cheng} et al., Appl. Anal. 97, No. 16, 2920--2940 (2018; Zbl 1401.35177) Full Text: DOI
Jiang, Yao-Lin; Miao, Zhen Waveform relaxation of partial differential equations. (English) Zbl 1433.65159 Numer. Algorithms 79, No. 4, 1087-1106 (2018). Reviewer: Christopher Policastro (New York) MSC: 65M06 35K57 65M12 65M15 65Y05 65M99 65L20 65M20 PDF BibTeX XML Cite \textit{Y.-L. Jiang} and \textit{Z. Miao}, Numer. Algorithms 79, No. 4, 1087--1106 (2018; Zbl 1433.65159) Full Text: DOI
Reygner, Julien Equilibrium large deviations for mean-field systems with translation invariance. (English) Zbl 1402.60035 Ann. Appl. Probab. 28, No. 5, 2922-2965 (2018). MSC: 60F10 60J60 60K35 PDF BibTeX XML Cite \textit{J. Reygner}, Ann. Appl. Probab. 28, No. 5, 2922--2965 (2018; Zbl 1402.60035) Full Text: DOI Euclid
García, J. C.; Gliouez, S.; Guerrero-Poblete, F.; Quezada, R. Entangled and dark stationary states of excitation energy transport models in quantum many-particle systems and photosynthesis. (English) Zbl 1401.82032 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21, No. 3, Article ID 1850018, 21 p. (2018). MSC: 82C70 92B05 92C05 82C10 47D07 81V70 81S25 PDF BibTeX XML Cite \textit{J. C. García} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21, No. 3, Article ID 1850018, 21 p. (2018; Zbl 1401.82032) Full Text: DOI
Sakagawa, Hironobu Localization of a Gaussian membrane model with weak pinning potentials. (English) Zbl 1414.60082 ALEA, Lat. Am. J. Probab. Math. Stat. 15, No. 2, 1123-1140 (2018). MSC: 60K35 82B24 82B41 PDF BibTeX XML Cite \textit{H. Sakagawa}, ALEA, Lat. Am. J. Probab. Math. Stat. 15, No. 2, 1123--1140 (2018; Zbl 1414.60082) Full Text: Link
Yang, Zhaoxing; Zhang, Guobao Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity. (English) Zbl 1401.35192 Sci. China, Math. 61, No. 10, 1789-1806 (2018). MSC: 35K57 35B35 92D25 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{G. Zhang}, Sci. China, Math. 61, No. 10, 1789--1806 (2018; Zbl 1401.35192) Full Text: DOI
Chen, Jiajie; Zhang, Pingwen; Zhang, Zhifei Local minimizer and de Giorgi’s type conjecture for the isotropic-nematic interface problem. (English) Zbl 1400.82287 Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 129, 19 p. (2018). MSC: 82D30 35J47 35J61 82B24 82B26 82B27 PDF BibTeX XML Cite \textit{J. Chen} et al., Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 129, 19 p. (2018; Zbl 1400.82287) Full Text: DOI
Carrillo, José A.; Hoffmann, Franca; Mainini, Edoardo; Volzone, Bruno Ground states in the diffusion-dominated regime. (English) Zbl 1430.35122 Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 127, 28 p. (2018). Reviewer: Ahmed Youssfi (Fès) MSC: 35K55 35K65 49K20 74G65 35Q92 92C17 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 127, 28 p. (2018; Zbl 1430.35122) Full Text: DOI
Peng, Xiaoming; Shang, Yadong; Zheng, Xiaoxiao Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion. (English) Zbl 1403.35057 Z. Angew. Math. Phys. 69, No. 4, Paper No. 110, 14 p. (2018). MSC: 35B41 35B40 35K55 PDF BibTeX XML Cite \textit{X. Peng} et al., Z. Angew. Math. Phys. 69, No. 4, Paper No. 110, 14 p. (2018; Zbl 1403.35057) Full Text: DOI
Chang, Mao-Sheng; Wu, Hsi-Chun Global existence of weak solutions for the nonlocal energy-weighted reaction-diffusion equations. (English) Zbl 1407.35111 Taiwanese J. Math. 22, No. 3, 695-723 (2018). Reviewer: Jörg Härterich (Bochum) MSC: 35K57 35D30 35K61 35A35 PDF BibTeX XML Cite \textit{M.-S. Chang} and \textit{H.-C. Wu}, Taiwanese J. Math. 22, No. 3, 695--723 (2018; Zbl 1407.35111) Full Text: DOI Euclid
El-Nabulsi, Rami Ahmad Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes. (English) Zbl 1396.80002 Contin. Mech. Thermodyn. 30, No. 4, 889-915 (2018). MSC: 80A10 PDF BibTeX XML Cite \textit{R. A. El-Nabulsi}, Contin. Mech. Thermodyn. 30, No. 4, 889--915 (2018; Zbl 1396.80002) Full Text: DOI
Alfaro, Matthieu; Ducrot, Arnaud Population invasion with bistable dynamics and adaptive evolution: the evolutionary rescue. (English) Zbl 1441.92029 Proc. Am. Math. Soc. 146, No. 11, 4787-4799 (2018). Reviewer: Andrey Zahariev (Plovdiv) MSC: 92D25 35B40 35K45 35K57 35Q92 PDF BibTeX XML Cite \textit{M. Alfaro} and \textit{A. Ducrot}, Proc. Am. Math. Soc. 146, No. 11, 4787--4799 (2018; Zbl 1441.92029) Full Text: DOI