×

Feedback optimization problem for master-slave teleoperation tracking in the presence of random noise in dynamics and feedback. (English) Zbl 1349.93279

Summary: In this work, we study the problem of a teleoperation master-slave system with error feedback based on sampled versions of the past and present master and slave positions. The sampling interval is the teleoperation delay, and small random fluctuations in the feedback coefficients are considered apart from small random noise in the dynamics. The overall master-slave dynamical system is abstracted into a stochastic delay differential system with random fluctuations in the parameters. This system is transformed into an ordinary stochastic differential system with an infinite-dimensional state vector, and using perturbation theory, integral expressions for the state correlations are obtained in terms of the noise correlations and feedback coefficient fluctuation correlations. We then partially explain how these computations may be used in minimizing the expected value of a cost functional of the state such as the master-slave tracking error energy. Some details about how the underlying delay differential equations for the master-slave dynamics are simulated using the fourth-order Runge-Kutta algorithm are provided. Finally, the simulation experiments are carried out on hardware, i.e., using the actual PHANToM Omni robot and these demonstrate excellent master-slave tracking when sampled teleoperation feedback is given.

MSC:

93C83 Control/observation systems involving computers (process control, etc.)
93B52 Feedback control
93E03 Stochastic systems in control theory (general)

Software:

OpenHaptics; PHANSIM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tavakoli, M., Aziminejad, A., Patel, R.V., Moallem, M.: Discrete-time bilateral TOP: modelling and stability analysis. IET Control Theory Appl. 2, 496-512 (2008) · doi:10.1049/iet-cta:20070195
[2] Hua, C., Li, J., Yang, Y., Guan, X.: Extended-state-observer-based finite-time synchronization control design of teleoperation with experimental validation. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2687-3 · Zbl 1349.93157
[3] Ganjefar, S., Sarajchi, M.V., Beheshti, M.T.H.: Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2078-1 · Zbl 1348.93163
[4] Alfi, A., Bakhshi, A., Yousefi, M., Talebi, H.A.: Design and implementation of robust-fixed structure controller for telerobotic systems. J. Intell. Robot. Syst. (2016). doi:10.1007/s10846-016-0335-2 · Zbl 1306.93040
[5] Alfi, A., Khosravi, A., Lari, A.: Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via synthesis. IMA J. Math. Control Inf. (2013). doi:10.1093/imamci/dnt005 · Zbl 1285.93039
[6] Alfi, A., Farrokhi, M.: Force reflecting bilateral control of masterslave systems in teleoperation. J. Intell. Robot. Syst. (2008). doi:10.1007/s10846-008-9210-0
[7] Ghoushkhanehee, S.V., Alfi, A.: Model Predictive Control of transparent bilateral teleoperation systems under uncertain communication time-delay. In: Control Conference (ASCC), 2013 9th Asian, Istanbul, 2013, pp. 1-6. doi:10.1109/ASCC.2013.6606130
[8] Naifar, O., Makhlouf, A.B., Hammami, M.A., Ouali, A.: State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2162-6 · Zbl 1348.93127
[9] Islam, S., Liu, P.X., El Saddik, A.: Nonlinear control for teleoperation systems with time varying delay. Nonlinear Dyn. 76, 931-954 (2014) · Zbl 1306.93040 · doi:10.1007/s11071-013-1179-y
[10] Aziminejad, A., Tavakoli, M., Patel, R.V., Moallem, M.: Transparent time-delayed bilateral TOP using wave variables. IEEE Trans. Control Syst. Technol. 16, 548-555 (2008) · doi:10.1109/TCST.2007.908222
[11] Kawada, H., Namerikawa, T.: Bilateral control of nonlinear TOP with time varying communication delays. In: American Control Conference, pp. 189-194. (2008)
[12] Singla, R., Agarwal, V., Parthasarathy, H.: Nonlinear robot TOP with random fluctuations in the feedback controller. In: IEEE IC4. Indore. (2015). doi:10.1109/IC4.2015.7375514 · Zbl 1306.93040
[13] Martinez, C.A.L., Polat, I., van de Molengraft, R., Steinbuch, M.: Robust high performance bilateral TOP under bounded time-varying dynamics. IEEE Trans. Control Syst. Technol. 23, 206-218 (2015) · doi:10.1109/TCST.2014.2321522
[14] Hua, C., Yang, Y., Liu, P.X.: Output-feedback adaptive control of networked TOP system with time-varying delay and bounded inputs. IEEE Trans. Mechatron. 20, 2009-2020 (2015) · Zbl 1328.35273 · doi:10.1109/TMECH.2014.2359969
[15] Chawda, V., O’Malley, M.K.: Position synchronization in bilateral TOP under time-varying communication delays. IEEE Trans. Mechatron. 20, 245-253 (2015) · doi:10.1109/TMECH.2014.2317946
[16] Islam, S., Liu, P.X., Saddik, A.E., Yang, Y.B.: Bilateral control of TOP systems with time delay. IEEE Trans. Mechatron. 20, 1-12 (2015) · doi:10.1109/TMECH.2013.2297354
[17] Ye, Y., Liu, P.X.: Improving trajectory tracking in wave-variable-based TOP. IEEE Trans. Mechatron. 15, 321-326 (2010) · doi:10.1109/TMECH.2009.2020733
[18] Sirouspour, S.: Modeling and control of cooperative TOP systems. IEEE Trans. Robot. 21, 1220-1225 (2005) · doi:10.1109/TRO.2005.852254
[19] Sirouspour, S., Shahdi, A.: Model predictive control for transparent TOP under communication time delay. IEEE Trans. Robot. 22, 1131-1145 (2006) · doi:10.1109/TRO.2006.882939
[20] Malysz, P., Sirouspour, S.: A kinematic control framework for single-slave asymmetric TOP systems. IEEE Trans. Robot. 27, 901-917 (2011) · doi:10.1109/TRO.2011.2152950
[21] Chopra, N., Spong, M.W., Hirche, S., Buss, M.: Bilateral TOP over the internet: the time varying delay problem. In: Proceedings of the American Control Conference, pp. 155-160. (2003)
[22] Pan, Y.J., Canudas-de-Wit, C., Sename, O.: A new predictive approach for bilateral TOP with applications to drive-by-wire systems. IEEE Trans. Robot. 22, 1146-1162 (2006) · doi:10.1109/TRO.2006.886279
[23] Wu, J., Shi, Y., Huang, J., Constantinescu, d: Stochastic stabilization for bilateral TOP over networks with probabilistic delays. Mechatronics 22, 1050-1059 (2012) · doi:10.1016/j.mechatronics.2012.08.010
[24] Shokri-Ghaleh, H., Alfi, A.: Optimal synchronization of teleoperation systems via cuckoo optimization algorithm. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1589-5
[25] Applebaum, D.: Levy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009) · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[26] Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). doi:10.1007/978-3-642-66282-9 · Zbl 0836.47009 · doi:10.1007/978-3-642-66282-9
[27] Alfi, A., Farrokhi, M.: A Simple Structure for Bilateral Transparent Teleoperation Systems With Time Delay. ASME J. Dyn. Syst. Meas. Control. (2008). doi:10.1115/1.2936854
[28] Mohammadi, A., Tavakoli, M., Jazayeri, A.: PHANSIM: a simulink toolkit for the sensable PHANToM haptic devices. In: Proceedings of the 23rd CANCAM, vol. 11, pp. 787-790. Canada (2011)
[29] OpenHaptics Toolkit: The SenSable Technologies Inc, USA http://www.sensable.com/productsopenhapticstoolkit.htm
[30] Koul, M.H., Kumar, P., Singh, P.K., Manivannan, M., Saha, S.K.: Gravity compensation for PHANToMTM Omni haptic interface. In: The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, 25-27 May 2010
[31] Singla, R., Agarwal, V., Parthasarathy, H.: Statistical analysis of tracking and parametric estimation errors in a 2-link robot based on Lyapunov function. Nonlinear Dyn. 82, 217-238 (2015) · Zbl 1348.93201 · doi:10.1007/s11071-015-2151-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.