×

DNS of fractal-generated turbulence. (English) Zbl 1283.76028

Authors’ abstract: An innovative approach which combines high-order compact schemes, immersed boundary method and an efficient domain decomposition method, is used to perform high-fidelity direct numerical simulations (DNS) of four spatially evolving turbulent flows, one generated by a regular grid and three generated by fractal square grids. The main results which we have been able to obtain from these simulations are the following: the vorticity field appears more clustered when generated by fractal square grids compared to a regular grid; fractal square grids generate higher vorticities and turbulence intensities than a regular grid; the flow holds clear geometrical imprints of the fractal grids far downstream, a property which could be used in the future for flow design, management and passive control; the DNS obtained with fractal grids confirmed the existence of two turbulent regions, one where the turbulence progressively amplifies closer to the grid (the production region) followed by one where the turbulence decays; the energy spectra of fluctuating turbulent velocities at various locations in the production region of the flow provide some information on how the turbulence is generated at the smallest scales first near the grid where the smallest wakes are dominant, followed by progressively smaller turbulent frequencies further downstream where progressively larger wakes interact.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

incompact3d
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bachelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge Univ. Press (1953)
[2] Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225(1), 427–448 (2007) · Zbl 1256.76042 · doi:10.1016/j.jcp.2006.12.009
[3] Coffey, C.J., Hunt, G.R., Seoud, R.E., Vassilicos, J.C.: Mixing effectiveness of fractal grids for inline static mixers. In: Proof of Concept Report for the Attention of Imperial Innovations. http://www3.imperial.ac.uk/tmfc/papers/poc (2007)
[4] Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, 035103 (2007) · Zbl 1146.76420 · doi:10.1063/1.2676448
[5] Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180, (2009) · Zbl 1157.76017 · doi:10.1146/annurev.fluid.010908.165203
[6] Laizet, S., Lamballais, E.: High-order compact schemes for incompressible flows: a simple and efficient method with the quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009) · Zbl 1185.76823 · doi:10.1016/j.jcp.2009.05.010
[7] Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution dns of fractal generated turbulence. Comput. Fluids 39(3), 471–484 (2010) · Zbl 1242.76078 · doi:10.1016/j.compfluid.2009.09.018
[8] Laizet, S., Li, N.: Incompact3d, a powerful tool to tackle turbulence problems with up to (105) computational cores. Int. J. Numer. Methods Fluids. doi:10.1002/fld.248010.1002/fld.2480 (2011) · Zbl 1419.76481
[9] Laizet, S., Vassilicos, J.C.: Direct numerical simulation of fractal-generated turbulence. In: Proc. DLES-7. Trieste (2008) · Zbl 1283.76028
[10] Laizet, S., Vassilicos, J.C.: Direct numerical simulation of turbulent flows generated by regular and fractal grids using an immersed boundary method. In: Proc. TSFP 6. Seoul (2009)
[11] Laizet, S., Vassilicos, J.C.: Multiscale generation of turbulence. J. Multiscale Modelling 1, 177–196 (2009) · doi:10.1142/S1756973709000098
[12] Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[13] Lorenz, E.N.: The interaction between a mean flow and random disturbances. Tellus 5(3), 238–250 (1953) · doi:10.1111/j.2153-3490.1953.tb01053.x
[14] Mazellier, N., Vassilicos, J.C.: Turbulence without Richardson–Kolmogorov cascade. Phys. Fluids 22, 075101 (2010) · Zbl 1190.76087 · doi:10.1063/1.3453708
[15] Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004) · Zbl 1134.76362 · doi:10.1017/S0022112003007249
[16] Mohamed, M.S., LaRue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214 (1990) · doi:10.1017/S0022112090002919
[17] Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulence characteristics generated by fractal grids. Int. Rev. Phys. 5, 400–409 (2008)
[18] Nagata, K., Suzuki, H., Sakai, H., Hayase, Y., Kubo, T.: Direct numerical simulation of turbulent mixing in grid-generated turbulence. Phys. Scr. 132, 014054 (2008) · doi:10.1088/0031-8949/2008/T132/014054
[19] Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3,900. Phys. Fluids 20, 085101 (2008) · Zbl 1182.76591 · doi:10.1063/1.2957018
[20] Parnaudeau, P., Lamballais, E., Heitz, D., Silvestrini, J.H.: Combination of the immersed boundary method with compact schemes for DNS of flows in complex geometry. In: Proc. DLES-5. Munich (2003)
[21] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press, Cambridge (1992) · Zbl 0778.65003
[22] Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108 (2007) · Zbl 1182.76682 · doi:10.1063/1.2795211
[23] Stresing, R., Peinke, J., Seoud, R.E., Vassilicos, J.C.: Defining a new class of turbulent flows. Phys. Rev. Lett. 104(19), 194501 (2010) · doi:10.1103/PhysRevLett.104.194501
[24] Townsend, A.A.: The Structure of Turbulent Shear Flows. Cambridge Univ. Press (1956) · Zbl 0070.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.