Zayed, Mohra Lower growth of generalized Hadamard product functions in Clifford setting. (English) Zbl 1462.30104 Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805-826 (2021). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. Zayed}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805--826 (2021; Zbl 1462.30104) Full Text: DOI
Bandura, Andriy; Skaskiv, Oleh Slice holomorphic functions in several variables with bounded \(L\)-index in direction. (English) Zbl 1432.32002 Axioms 8, No. 3, Paper No. 88, 12 p. (2019). MSC: 32A10 32A17 32A37 30H99 30A05 PDF BibTeX XML Cite \textit{A. Bandura} and \textit{O. Skaskiv}, Axioms 8, No. 3, Paper No. 88, 12 p. (2019; Zbl 1432.32002) Full Text: DOI
Abdalla, M.; Abul-Ez, M. The growth of generalized Hadamard product of entire axially monogenic functions. (English) Zbl 1488.30238 Hacet. J. Math. Stat. 47, No. 5, 1231-1239 (2018). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. Abdalla} and \textit{M. Abul-Ez}, Hacet. J. Math. Stat. 47, No. 5, 1231--1239 (2018; Zbl 1488.30238) Full Text: Link
Isaev, Alexander Twenty-one lectures on complex analysis. A first course. (English) Zbl 1386.30001 Springer Undergraduate Mathematics Series. Cham: Springer (ISBN 978-3-319-68169-6/pbk; 978-3-319-68170-2/ebook). xii, 194 p. (2017). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 30-01 30E20 30A05 30B10 30C35 30D20 PDF BibTeX XML Cite \textit{A. Isaev}, Twenty-one lectures on complex analysis. A first course. Cham: Springer (2017; Zbl 1386.30001) Full Text: DOI
Kumar, Susheel; Bala, Kirandeep Generalized order of entire monogenic functions of slow growth. (English) Zbl 1295.30114 J. Nonlinear Sci. Appl. 5, No. 6, 418-425 (2012). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{K. Bala}, J. Nonlinear Sci. Appl. 5, No. 6, 418--425 (2012; Zbl 1295.30114) Full Text: DOI Link
Kumar, Susheel; Bala, Kirandeep Generalized type of entire monogenic functions of slow growth. (English) Zbl 1273.30044 Transylv. J. Math. Mech. 3, No. 2, 95-102 (2011). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{K. Bala}, Transylv. J. Math. Mech. 3, No. 2, 95--102 (2011; Zbl 1273.30044)
Lin, I-Hsiung Classical complex analysis. A geometric approach. Vol. 2. (English) Zbl 1238.30002 Hackensack, NJ: World Scientific (ISBN 978-981-4271-28-8/hbk; 978-981-4271-29-5/pbk). xvii, 694 p. (2011). Reviewer: Dov Aharonov (Haifa) MSC: 30-01 30D10 30E20 30A05 PDF BibTeX XML Cite \textit{I-H. Lin}, Classical complex analysis. A geometric approach. Vol. 2. Hackensack, NJ: World Scientific (2011; Zbl 1238.30002)
Constales, D.; De Almeida, R.; Krausshar, R. S. A generalization of Wiman and Valiron’s theory to the Clifford analysis setting. (English) Zbl 1171.30021 Cubo 11, No. 1, 1-20 (2009). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{D. Constales} et al., Cubo 11, No. 1, 1--20 (2009; Zbl 1171.30021)
de Almeida, Regina; Kraußhar, R. S. On the asymptotic growth of entire monogenic functions. (English) Zbl 1095.30044 Z. Anal. Anwend. 24, No. 4, 791-813 (2006). Reviewer: Piwen Yang (Sichuan) MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{R. de Almeida} and \textit{R. S. Kraußhar}, Z. Anal. Anwend. 24, No. 4, 791--813 (2006; Zbl 1095.30044) Full Text: DOI
Qian, Tao Paley-Wiener theorems and Shannon sampling in the Clifford analysis setting. (English) Zbl 1103.94012 Abłamowicz, Rafał (ed.), Clifford algebras. Applications to mathematics, physics, and engineering. Papers from the 6th international conference on Clifford algebras and their applications in mathematical physics, Cookeville, TN, USA, May 20–25, 2002. Boston, MA: Birkhäuser (ISBN 0-8176-3525-4/hbk). Progress in Mathematical Physics 34, 115-124 (2004). MSC: 94A20 41A05 30D15 15A66 PDF BibTeX XML Cite \textit{T. Qian}, Prog. Math. Phys. 34, 115--124 (2004; Zbl 1103.94012)
Brodovich, M. T. On the holomorphy of a function that having derivatives with respect to some sets. (Russian) Zbl 0974.30501 Mat. Stud. 9, No. 2, 155-164 (1998). MSC: 30A05 30D15 PDF BibTeX XML Cite \textit{M. T. Brodovich}, Mat. Stud. 9, No. 2, 155--164 (1998; Zbl 0974.30501)
Khabibullin, B. N. On the type of entire and meromorphic functions. (English. Russian original) Zbl 0802.30023 Russ. Acad. Sci., Sb., Math. 77, No. 2, 293-301 (1994); translation from Mat. Sb. 183, No. 11, 35-44 (1992). Reviewer: A.F.Grishin (Khar’kov) MSC: 30D15 30D35 30A05 30E05 PDF BibTeX XML Cite \textit{B. N. Khabibullin}, Russ. Acad. Sci., Sb., Math. 77, No. 2, 35--44 (1992; Zbl 0802.30023); translation from Mat. Sb. 183, No. 11, 35--44 (1992) Full Text: DOI
Zeriahi, Ahmed Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines. (Best polynomial approximation and growth of entire functions on certain affine algebraic varieties). (French) Zbl 0596.32025 Ann. Inst. Fourier 37, No. 2, 79-104 (1987). MSC: 32E30 32A22 32E20 31C15 32U05 30A05 31C10 47Gxx 32A30 PDF BibTeX XML Cite \textit{A. Zeriahi}, Ann. Inst. Fourier 37, No. 2, 79--104 (1987; Zbl 0596.32025) Full Text: DOI Numdam EuDML