Alencar, D. S. M.; Alves, T. F. A.; Alves, G. A.; Lima, F. W. S.; Macedo-Filho, A.; Ferreira, R. S. Two-dimensional diffusive epidemic process in the presence of quasiperiodic and quenched disorder. (English) Zbl 07688971 J. Stat. Mech. Theory Exp. 2023, No. 4, Article ID 043205, 14 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{D. S. M. Alencar} et al., J. Stat. Mech. Theory Exp. 2023, No. 4, Article ID 043205, 14 p. (2023; Zbl 07688971) Full Text: DOI OpenURL
Allard, Antoine; Moore, Cristopher; Scarpino, Samuel V.; Althouse, Benjamin M.; Hébert-Dufresne, Laurent The role of directionality, heterogeneity, and correlations in epidemic risk and spread. (English) Zbl 07683991 SIAM Rev. 65, No. 2, 471-492 (2023). MSC: 65-XX PDF BibTeX XML Cite \textit{A. Allard} et al., SIAM Rev. 65, No. 2, 471--492 (2023; Zbl 07683991) Full Text: DOI arXiv OpenURL
Juher, David; Rojas, David; Saldaña, Joan Saddle-node bifurcation of limit cycles in an epidemic model with two levels of awareness. (English) Zbl 07683348 Physica D 448, Article ID 133714, 10 p. (2023). MSC: 92D30 37G15 PDF BibTeX XML Cite \textit{D. Juher} et al., Physica D 448, Article ID 133714, 10 p. (2023; Zbl 07683348) Full Text: DOI arXiv OpenURL
Bai, Fan An age-of-infection model with both symptomatic and asymptomatic infections. (English) Zbl 07681288 J. Math. Biol. 86, No. 5, Paper No. 82, 22 p. (2023). MSC: 92D30 45J05 PDF BibTeX XML Cite \textit{F. Bai}, J. Math. Biol. 86, No. 5, Paper No. 82, 22 p. (2023; Zbl 07681288) Full Text: DOI arXiv OpenURL
Xu, Wanxiao; Shu, Hongying; Wang, Lin; Wang, Xiang-Sheng; Watmough, James The importance of quarantine: modelling the COVID-19 testing process. (English) Zbl 07681287 J. Math. Biol. 86, No. 5, Paper No. 81, 21 p. (2023). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{W. Xu} et al., J. Math. Biol. 86, No. 5, Paper No. 81, 21 p. (2023; Zbl 07681287) Full Text: DOI OpenURL
Lu, Lei; Qiao, Meihong; Wang, Jia-Bing Epidemic waves in a discrete diffusive endemic model with treatment and external supplies. (English) Zbl 07676853 Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107163, 30 p. (2023). MSC: 92D30 PDF BibTeX XML Cite \textit{L. Lu} et al., Commun. Nonlinear Sci. Numer. Simul. 120, Article ID 107163, 30 p. (2023; Zbl 07676853) Full Text: DOI OpenURL
Zhang, Tailei; Li, Zhimin Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. (English) Zbl 07675956 Commun. Pure Appl. Anal. 22, No. 1, 1-18 (2023). MSC: 34K60 34K21 34K20 34K25 92D30 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Z. Li}, Commun. Pure Appl. Anal. 22, No. 1, 1--18 (2023; Zbl 07675956) Full Text: DOI OpenURL
Melo, Alison M. V. D. L.; Santos, Matheus C. Final size and partial distance estimate for a two-group SEIRD model. (English) Zbl 07672982 J. Math. Biol. 86, No. 4, Paper No. 56, 32 p. (2023). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{A. M. V. D. L. Melo} and \textit{M. C. Santos}, J. Math. Biol. 86, No. 4, Paper No. 56, 32 p. (2023; Zbl 07672982) Full Text: DOI arXiv OpenURL
San, Xue-Feng; Wang, Zhi-Cheng; Feng, Zhaosheng Traveling waves for an epidemic system with bilinear incidence in a periodic patchy environment. (English) Zbl 07672952 J. Differ. Equations 357, 98-137 (2023). MSC: 34C60 92D30 34A33 34K31 34K16 PDF BibTeX XML Cite \textit{X.-F. San} et al., J. Differ. Equations 357, 98--137 (2023; Zbl 07672952) Full Text: DOI OpenURL
Pang, Guodong; Pardoux, Étienne Functional law of large numbers and PDEs for epidemic models with infection-age dependent infectivity. (English) Zbl 07671507 Appl. Math. Optim. 87, No. 3, Paper No. 50, 45 p. (2023). MSC: 92D30 45D05 35Q92 PDF BibTeX XML Cite \textit{G. Pang} and \textit{É. Pardoux}, Appl. Math. Optim. 87, No. 3, Paper No. 50, 45 p. (2023; Zbl 07671507) Full Text: DOI arXiv OpenURL
Yoshida, Norio Existence of exact solution of the susceptible-exposed-infectious-recovered (SEIR) epidemic model. (English) Zbl 07668586 J. Differ. Equations 355, 103-143 (2023). MSC: 34C60 92D30 34A05 34A12 34D05 PDF BibTeX XML Cite \textit{N. Yoshida}, J. Differ. Equations 355, 103--143 (2023; Zbl 07668586) Full Text: DOI arXiv OpenURL
Colombo, R. M.; Garavello, M.; Marcellini, F.; Rossi, E. General renewal equations motivated by biology and epidemiology. (English) Zbl 07661948 J. Differ. Equations 354, 133-169 (2023). MSC: 35L65 35L50 92D30 PDF BibTeX XML Cite \textit{R. M. Colombo} et al., J. Differ. Equations 354, 133--169 (2023; Zbl 07661948) Full Text: DOI arXiv OpenURL
Mahrouf, Marouane; Lotfi, El Mehdi; Hattaf, Khalid; Yousfi, Noura Non-pharmaceutical interventions and vaccination controls in a stochastic SIVR epidemic model. (English) Zbl 1508.92282 Differ. Equ. Dyn. Syst. 31, No. 1, 93-111 (2023). MSC: 92D30 92C60 93E20 49J15 49L12 PDF BibTeX XML Cite \textit{M. Mahrouf} et al., Differ. Equ. Dyn. Syst. 31, No. 1, 93--111 (2023; Zbl 1508.92282) Full Text: DOI OpenURL
Yin, Shuangshuang; Wu, Jianhong; Song, Pengfei Optimal control by deep learning techniques and its applications on epidemic models. (English) Zbl 1508.92316 J. Math. Biol. 86, No. 3, Paper No. 36, 26 p. (2023). MSC: 92D30 49J15 68T07 49L20 PDF BibTeX XML Cite \textit{S. Yin} et al., J. Math. Biol. 86, No. 3, Paper No. 36, 26 p. (2023; Zbl 1508.92316) Full Text: DOI OpenURL
Li, Jianquan; Chen, Yuming; Zhang, Peijun; Liu, Xiaogang A novel approach to determine negative (semi-)definiteness in applying Lyapunov direct method. (English) Zbl 07639195 Appl. Math. Lett. 138, Article ID 108516, 8 p. (2023). MSC: 34D20 34D23 92D30 34C60 26Dxx PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Lett. 138, Article ID 108516, 8 p. (2023; Zbl 07639195) Full Text: DOI OpenURL
Lu, Lei; Wang, Jia-Bing Traveling waves of the SIR epidemic model with discrete diffusion and treatment. (English) Zbl 1505.35080 Appl. Math. Lett. 138, Article ID 108515, 8 p. (2023). MSC: 35C07 39A12 92D30 PDF BibTeX XML Cite \textit{L. Lu} and \textit{J.-B. Wang}, Appl. Math. Lett. 138, Article ID 108515, 8 p. (2023; Zbl 1505.35080) Full Text: DOI OpenURL
Guo, Ke; Ma, Wanbiao Existence of positive periodic solutions of several types of biological models with periodic coefficients. (English) Zbl 1507.34051 Nonlinear Anal., Real World Appl. 69, Article ID 103760, 26 p. (2023). MSC: 34C60 92D30 37C60 34C25 47N20 PDF BibTeX XML Cite \textit{K. Guo} and \textit{W. Ma}, Nonlinear Anal., Real World Appl. 69, Article ID 103760, 26 p. (2023; Zbl 1507.34051) Full Text: DOI OpenURL
Beaufort, Louis-Brahim; Massé, Pierre-Yves; Reboulet, Antonin; Oudre, Laurent Network reconstruction problem for an epidemic reaction-diffusion system. (English) Zbl 1508.92239 J. Complex Netw. 10, No. 6, Article ID cnac047, 33 p. (2022). MSC: 92D30 92C42 35K57 PDF BibTeX XML Cite \textit{L.-B. Beaufort} et al., J. Complex Netw. 10, No. 6, Article ID cnac047, 33 p. (2022; Zbl 1508.92239) Full Text: DOI OpenURL
Ledder, Glenn Incorporating mass vaccination into compartment models for infectious diseases. (English) Zbl 1508.92143 Math. Biosci. Eng. 19, No. 9, 9457-9480 (2022). MSC: 92C60 34C60 PDF BibTeX XML Cite \textit{G. Ledder}, Math. Biosci. Eng. 19, No. 9, 9457--9480 (2022; Zbl 1508.92143) Full Text: DOI OpenURL
Görtz, Maurice; Krug, Joachim Nonlinear dynamics of an epidemic compartment model with asymptomatic infections and mitigation. (English) Zbl 07650510 J. Phys. A, Math. Theor. 55, No. 41, Article ID 414005, 14 p. (2022). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{M. Görtz} and \textit{J. Krug}, J. Phys. A, Math. Theor. 55, No. 41, Article ID 414005, 14 p. (2022; Zbl 07650510) Full Text: DOI arXiv OpenURL
Tomé, Tânia; de Oliveira, Mário J. Effect of immunization through vaccination on the SIS epidemic spreading model. (English) Zbl 1507.92121 J. Phys. A, Math. Theor. 55, No. 27, Article ID 275602, 12 p. (2022). MSC: 92D30 92D25 37N25 PDF BibTeX XML Cite \textit{T. Tomé} and \textit{M. J. de Oliveira}, J. Phys. A, Math. Theor. 55, No. 27, Article ID 275602, 12 p. (2022; Zbl 1507.92121) Full Text: DOI arXiv OpenURL
Vuong, Yen V.; Hauray, Maxime; Pardoux, Étienne Conditional propagation of chaos in a spatial stochastic epidemic model with common noise. (English) Zbl 1499.92147 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 3, 1180-1210 (2022). MSC: 92D30 60K35 60H15 82C40 PDF BibTeX XML Cite \textit{Y. V. Vuong} et al., Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 3, 1180--1210 (2022; Zbl 1499.92147) Full Text: DOI arXiv OpenURL
Bertaglia, Giulia; Liu, Liu; Pareschi, Lorenzo; Zhu, Xueyu Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties. (English) Zbl 1498.65016 Netw. Heterog. Media 17, No. 3, 401-425 (2022). MSC: 65C30 65M08 65L04 92D30 82C40 35L50 35K57 PDF BibTeX XML Cite \textit{G. Bertaglia} et al., Netw. Heterog. Media 17, No. 3, 401--425 (2022; Zbl 1498.65016) Full Text: DOI arXiv OpenURL
Colombo, Rinaldo M.; Marcellini, Francesca; Rossi, Elena Vaccination strategies through intra-compartmental dynamics. (English) Zbl 1501.92084 Netw. Heterog. Media 17, No. 3, 385-400 (2022). MSC: 92C60 34C60 35Q92 PDF BibTeX XML Cite \textit{R. M. Colombo} et al., Netw. Heterog. Media 17, No. 3, 385--400 (2022; Zbl 1501.92084) Full Text: DOI OpenURL
Sowndarrajan, P. T.; Shangerganesh, L.; Debbouche, A.; Torres, D. F. M. Optimal control of a heroin epidemic mathematical model. (English) Zbl 1506.34068 Optimization 71, No. 11, 3107-3131 (2022). MSC: 34C60 92D30 34C05 34D20 34D23 34D05 49J15 PDF BibTeX XML Cite \textit{P. T. Sowndarrajan} et al., Optimization 71, No. 11, 3107--3131 (2022; Zbl 1506.34068) Full Text: DOI arXiv OpenURL
Li, Shuping; Zhao, Xiaorong; Zhang, Ruixia Site-bond percolation model of epidemic spreading with vaccination in complex networks. (English) Zbl 1501.92173 J. Math. Biol. 85, No. 5, Paper No. 49, 14 p. (2022). MSC: 92D30 92C60 60K35 PDF BibTeX XML Cite \textit{S. Li} et al., J. Math. Biol. 85, No. 5, Paper No. 49, 14 p. (2022; Zbl 1501.92173) Full Text: DOI OpenURL
Christopher, Anthonysamy John; Magesh, Nanjudan Analytical and approximate solutions for conformable fractional order corona-virus (COVID-19) epidemic model. (English) Zbl 07601466 South East Asian J. Math. Math. Sci. 18, No. 2, 331-348 (2022). MSC: 34C60 34F05 92D30 34A08 PDF BibTeX XML Cite \textit{A. J. Christopher} and \textit{N. Magesh}, South East Asian J. Math. Math. Sci. 18, No. 2, 331--348 (2022; Zbl 07601466) Full Text: Link OpenURL
Foutel-Rodier, Félix; Blanquart, François; Courau, Philibert; Czuppon, Peter; Duchamps, Jean-Jil; Gamblin, Jasmine; Kerdoncuff, Élise; Kulathinal, Rob; Régnier, Léo; Vuduc, Laura; Lambert, Amaury; Schertzer, Emmanuel From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics. (English) Zbl 1501.35410 J. Math. Biol. 85, No. 4, Paper No. 43, 44 p. (2022). MSC: 35Q92 92D30 92C60 62P10 60J80 60J85 35A24 65M06 65M25 92-08 35R60 PDF BibTeX XML Cite \textit{F. Foutel-Rodier} et al., J. Math. Biol. 85, No. 4, Paper No. 43, 44 p. (2022; Zbl 1501.35410) Full Text: DOI arXiv OpenURL
Yoshida, Norio Exact solution of the Susceptible-Infectious-Recovered-Deceased (SIRD) epidemic model. (English) Zbl 07599858 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 38, 24 p. (2022). MSC: 34C60 92D30 34A05 PDF BibTeX XML Cite \textit{N. Yoshida}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 38, 24 p. (2022; Zbl 07599858) Full Text: DOI OpenURL
Chatterjee, Shirshendu; Sivakoff, David; Wascher, Matthew The effect of avoiding known infected neighbors on the persistence of a recurring infection process. (English) Zbl 1507.60126 Electron. J. Probab. 27, Paper No. 109, 40 p. (2022). MSC: 60K35 05C22 92D30 91D30 PDF BibTeX XML Cite \textit{S. Chatterjee} et al., Electron. J. Probab. 27, Paper No. 109, 40 p. (2022; Zbl 1507.60126) Full Text: DOI arXiv Link OpenURL
Ito, Hiroshi; Malisoff, Michael; Mazenc, Frédéric Strict Lyapunov functions and feedback controls for SIR models with quarantine and vaccination. (English) Zbl 1500.92107 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 6969-6988 (2022). MSC: 92D30 92C60 93D30 93D25 93D20 34D23 PDF BibTeX XML Cite \textit{H. Ito} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 6969--6988 (2022; Zbl 1500.92107) Full Text: DOI OpenURL
Dong, Lingmin; Hou, Shuai; Lei, Chengxia Global attractivity of the equilibria of the diffusive SIR and SEIR epidemic models with multiple parallel infectious stages and nonlinear incidence mechanism. (English) Zbl 1498.92208 Appl. Math. Lett. 134, Article ID 108352, 11 p. (2022). MSC: 92D30 35Q92 PDF BibTeX XML Cite \textit{L. Dong} et al., Appl. Math. Lett. 134, Article ID 108352, 11 p. (2022; Zbl 1498.92208) Full Text: DOI OpenURL
Pang, Guodong; Pardoux, Étienne Functional limit theorems for non-Markovian epidemic models. (English) Zbl 1498.92241 Ann. Appl. Probab. 32, No. 3, 1615-1665 (2022). MSC: 92D30 60F17 60F05 PDF BibTeX XML Cite \textit{G. Pang} and \textit{É. Pardoux}, Ann. Appl. Probab. 32, No. 3, 1615--1665 (2022; Zbl 1498.92241) Full Text: DOI arXiv OpenURL
Yao, Shao-Wen; Ahmad, Aqeel; Inc, Mustafa; Farman, Muhammad; Ghaffar, Abdul; Akgul, Ali Analysis of fractional order diarrhea model using fractal fractional operator. (English) Zbl 1504.34124 Fractals 30, No. 5, Article ID 2240173, 12 p. (2022). MSC: 34C60 92D30 34D10 34D05 34A08 28A80 47N20 PDF BibTeX XML Cite \textit{S.-W. Yao} et al., Fractals 30, No. 5, Article ID 2240173, 12 p. (2022; Zbl 1504.34124) Full Text: DOI OpenURL
Song, Haitao; Liu, Fang; Li, Feng; Cao, Xiaochun; Wang, Hao; Jia, Zhongwei; Zhu, Huaiping; Li, Michael Y.; Lin, Wei; Yang, Hong; Hu, Jianghong; Jin, Zhen Modeling the second outbreak of COVID-19 with isolation and contact tracing. (English) Zbl 1504.34121 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5757-5777 (2022). MSC: 34C60 92C60 92D30 34C05 34D20 34D23 34D05 93B30 PDF BibTeX XML Cite \textit{H. Song} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5757--5777 (2022; Zbl 1504.34121) Full Text: DOI OpenURL
Wang, Yejuan; Zhang, Lijuan; Yuan, Yuan Tempered fractional order compartment models and applications in biology. (English) Zbl 1498.60155 Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 5297-5316 (2022). MSC: 60G22 34A08 92D30 PDF BibTeX XML Cite \textit{Y. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 5297--5316 (2022; Zbl 1498.60155) Full Text: DOI OpenURL
Liu, Suli; Liu, Guyue; Li, Huilai Discrete state-structured epidemic models with distributed delays. (English) Zbl 1497.92278 Int. J. Biomath. 15, No. 6, Article ID 2250040, 16 p. (2022). MSC: 92D30 PDF BibTeX XML Cite \textit{S. Liu} et al., Int. J. Biomath. 15, No. 6, Article ID 2250040, 16 p. (2022; Zbl 1497.92278) Full Text: DOI OpenURL
El Koufi, Amine; Bennar, Abdelkrim; Yousfi, Noura A stochastic analysis for a triple delayed SIR epidemic model with vaccination incorporating Lévy noise. (English) Zbl 1497.92254 Int. J. Biomath. 15, No. 6, Article ID 2250038, 29 p. (2022). MSC: 92D30 92C60 60G51 34K60 PDF BibTeX XML Cite \textit{A. El Koufi} et al., Int. J. Biomath. 15, No. 6, Article ID 2250038, 29 p. (2022; Zbl 1497.92254) Full Text: DOI OpenURL
Takács, Bálint M.; Faragó, István; Horváth, Róbert; Repovš, Dušan Qualitative properties of space-dependent SIR models with constant delay and their numerical solutions. (English) Zbl 1492.92116 Comput. Methods Appl. Math. 22, No. 3, 713-728 (2022). MSC: 92D30 65M06 34K60 65M12 92-08 PDF BibTeX XML Cite \textit{B. M. Takács} et al., Comput. Methods Appl. Math. 22, No. 3, 713--728 (2022; Zbl 1492.92116) Full Text: DOI arXiv OpenURL
Tomovski, Igor; Basnarkov, Lasko; Abazi, Alajdin Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks. (English) Zbl 07562502 Physica A 599, Article ID 127480, 21 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{I. Tomovski} et al., Physica A 599, Article ID 127480, 21 p. (2022; Zbl 07562502) Full Text: DOI arXiv OpenURL
Eichenbaum, Martin S.; Rebelo, Sergio; Trabandt, Mathias Epidemics in the New Keynesian model. (English) Zbl 1492.91213 J. Econ. Dyn. Control 140, Article ID 104334, 19 p. (2022). MSC: 91B64 92D30 PDF BibTeX XML Cite \textit{M. S. Eichenbaum} et al., J. Econ. Dyn. Control 140, Article ID 104334, 19 p. (2022; Zbl 1492.91213) Full Text: DOI OpenURL
Saldaña, Fernando; Velasco-Hernández, Jorge X. Modeling the COVID-19 pandemic: a primer and overview of mathematical epidemiology. (English) Zbl 1491.92121 S\(\vec{\text{e}}\)MA J. 79, No. 2, 225-251 (2022). MSC: 92D30 65L05 PDF BibTeX XML Cite \textit{F. Saldaña} and \textit{J. X. Velasco-Hernández}, S\(\vec{\text{e}}\)MA J. 79, No. 2, 225--251 (2022; Zbl 1491.92121) Full Text: DOI arXiv OpenURL
Ben Aribi, Walid; Naffeti, Bechir; Ayouni, Kaouther; Ammar, Hamadi; Triki, Henda; Ben Miled, Slimane; Kebir, Amira Global stability and numerical analysis of a compartmental model of the transmission of the hepatitis A virus (HAV): a case study in Tunisia. (English) Zbl 1497.92234 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 126, 28 p. (2022). Reviewer: Ran Zhang (Nanjing) MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{W. Ben Aribi} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 126, 28 p. (2022; Zbl 1497.92234) Full Text: DOI OpenURL
Wang, Li-li; Huang, Nan-jing Ergodic stationary distribution of a stochastic nonlinear epidemic model with relapse and cure. (English) Zbl 1501.34047 Appl. Anal. 101, No. 7, 2652-2668 (2022). MSC: 34C60 92D30 34F05 60H10 34D05 60E99 PDF BibTeX XML Cite \textit{L.-l. Wang} and \textit{N.-j. Huang}, Appl. Anal. 101, No. 7, 2652--2668 (2022; Zbl 1501.34047) Full Text: DOI OpenURL
Liu, Qun; Jiang, Daqing Dynamics of a stochastic multigroup SEI epidemic model. (English) Zbl 1501.34044 Stochastic Anal. Appl. 40, No. 4, 623-656 (2022). MSC: 34C60 92D30 34F05 34D05 60H10 60E99 60J65 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{D. Jiang}, Stochastic Anal. Appl. 40, No. 4, 623--656 (2022; Zbl 1501.34044) Full Text: DOI OpenURL
Grimmett, Geoffrey R.; Li, Zhongyang Brownian snails with removal: epidemics in diffusing populations. (English) Zbl 1495.60091 Electron. J. Probab. 27, Paper No. 78, 31 p. (2022). MSC: 60K35 92D30 82C22 PDF BibTeX XML Cite \textit{G. R. Grimmett} and \textit{Z. Li}, Electron. J. Probab. 27, Paper No. 78, 31 p. (2022; Zbl 1495.60091) Full Text: DOI arXiv OpenURL
Silva, Cristiana J.; Cantin, Guillaume; Cruz, Carla; Fonseca-Pinto, Rui; Passadouro, Rui; dos Santos, Estevão Soares; Torres, Delfim F. M. Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves. (English) Zbl 1501.34046 J. Math. Anal. Appl. 514, No. 2, Article ID 125171, 25 p. (2022). MSC: 34C60 92C60 92D30 92B20 34C05 34D20 34D05 37C60 34C25 PDF BibTeX XML Cite \textit{C. J. Silva} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 125171, 25 p. (2022; Zbl 1501.34046) Full Text: DOI arXiv OpenURL
Petrakova, Viktoriya; Krivorotko, Olga Mean field game for modeling of COVID-19 spread. (English) Zbl 1492.91044 J. Math. Anal. Appl. 514, No. 1, Article ID 126271, 20 p. (2022). MSC: 91A16 92D30 34K60 PDF BibTeX XML Cite \textit{V. Petrakova} and \textit{O. Krivorotko}, J. Math. Anal. Appl. 514, No. 1, Article ID 126271, 20 p. (2022; Zbl 1492.91044) Full Text: DOI arXiv OpenURL
Adedire, O.; Ndam, Joel N. Mathematical model of the spread of COVID-19 in Plateau State, Nigeria. (English) Zbl 1493.92064 J. Egypt. Math. Soc. 30, Paper No. 10, 18 p. (2022). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{O. Adedire} and \textit{J. N. Ndam}, J. Egypt. Math. Soc. 30, Paper No. 10, 18 p. (2022; Zbl 1493.92064) Full Text: DOI OpenURL
Hikal, M. M.; Elsheikh, M. M. A.; Zahra, W. K. Stability analysis of COVID-19 model with fractional-order derivative and a delay in implementing the quarantine strategy. (English) Zbl 1500.34072 J. Appl. Math. Comput. 68, No. 1, 295-321 (2022). MSC: 34K60 34K37 92D30 34K21 34K20 34K25 PDF BibTeX XML Cite \textit{M. M. Hikal} et al., J. Appl. Math. Comput. 68, No. 1, 295--321 (2022; Zbl 1500.34072) Full Text: DOI OpenURL
Zhou, Xueyong; Wang, Mengya Dynamic analysis of a fractional-order SIRS model with time delay. (English) Zbl 1500.34074 Nonlinear Anal., Model. Control 27, No. 2, 368-384 (2022). MSC: 34K60 92D30 34K37 34K25 34K21 34K20 34K18 34K13 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{M. Wang}, Nonlinear Anal., Model. Control 27, No. 2, 368--384 (2022; Zbl 1500.34074) Full Text: DOI OpenURL
Takács, Bálint; Hadjimichael, Yiannis High order discretization methods for spatial-dependent epidemic models. (English) Zbl 07529660 Math. Comput. Simul. 198, 211-236 (2022). MSC: 92-XX 65-XX PDF BibTeX XML Cite \textit{B. Takács} and \textit{Y. Hadjimichael}, Math. Comput. Simul. 198, 211--236 (2022; Zbl 07529660) Full Text: DOI arXiv OpenURL
Olivares, Alberto; Staffetti, Ernesto Robust optimal control of compartmental models in epidemiology: application to the COVID-19 pandemic. (English) Zbl 1490.92111 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106509, 21 p. (2022). MSC: 92D30 93E20 PDF BibTeX XML Cite \textit{A. Olivares} and \textit{E. Staffetti}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106509, 21 p. (2022; Zbl 1490.92111) Full Text: DOI OpenURL
Messina, Eleonora; Pezzella, Mario; Vecchio, Antonia A non-standard numerical scheme for an age-of-infection epidemic model. (English) Zbl 1492.65366 J. Comput. Dyn. 9, No. 2, 239-252 (2022). MSC: 65R20 45D05 92-08 92D30 PDF BibTeX XML Cite \textit{E. Messina} et al., J. Comput. Dyn. 9, No. 2, 239--252 (2022; Zbl 1492.65366) Full Text: DOI arXiv OpenURL
Forien, Raphaël; Pardoux, Étienne Household epidemic models and McKean-Vlasov Poisson driven stochastic differential equations. (English) Zbl 1498.92211 Ann. Appl. Probab. 32, No. 2, 1210-1233 (2022). MSC: 92D30 60K35 60J80 60F17 PDF BibTeX XML Cite \textit{R. Forien} and \textit{É. Pardoux}, Ann. Appl. Probab. 32, No. 2, 1210--1233 (2022; Zbl 1498.92211) Full Text: DOI arXiv OpenURL
Hubert, Emma; Mastrolia, Thibaut; Possamaï, Dylan; Warin, Xavier Incentives, lockdown, and testing: from Thucydides’ analysis to the COVID-19 pandemic. (English) Zbl 1487.92043 J. Math. Biol. 84, No. 5, Paper No. 37, 48 p. (2022). MSC: 92D30 91B43 91B64 93E20 PDF BibTeX XML Cite \textit{E. Hubert} et al., J. Math. Biol. 84, No. 5, Paper No. 37, 48 p. (2022; Zbl 1487.92043) Full Text: DOI arXiv OpenURL
Tsemogne, Olivier; Hayel, Yezekael; Kamhoua, Charles; Deugoue, Gabriel A partially observable stochastic zero-sum game for a network epidemic control problem. (English) Zbl 1489.91019 Dyn. Games Appl. 12, No. 1, 82-109 (2022). MSC: 91A15 91A27 92D30 91A80 PDF BibTeX XML Cite \textit{O. Tsemogne} et al., Dyn. Games Appl. 12, No. 1, 82--109 (2022; Zbl 1489.91019) Full Text: DOI OpenURL
Hernández, G.; Martín del Rey, A. Community-distributed compartmental models. (English) Zbl 07511835 Physica A 596, Article ID 127092, 13 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{G. Hernández} and \textit{A. Martín del Rey}, Physica A 596, Article ID 127092, 13 p. (2022; Zbl 07511835) Full Text: DOI OpenURL
Bisiacco, Mauro; Pillonetto, Gianluigi; Cobelli, Claudio Closed-form expressions and nonparametric estimation of COVID-19 infection rate. (English) Zbl 1486.92204 Automatica 140, Article ID 110265, 8 p. (2022). MSC: 92D30 62P10 62G05 PDF BibTeX XML Cite \textit{M. Bisiacco} et al., Automatica 140, Article ID 110265, 8 p. (2022; Zbl 1486.92204) Full Text: DOI OpenURL
Crimaldi, Irene; Louis, Pierre-Yves; Minelli, Ida G. An urn model with random multiple drawing and random addition. (English) Zbl 1486.60041 Stochastic Processes Appl. 147, 270-299 (2022). MSC: 60F05 60B10 60F15 60G42 62P25 91D30 PDF BibTeX XML Cite \textit{I. Crimaldi} et al., Stochastic Processes Appl. 147, 270--299 (2022; Zbl 1486.60041) Full Text: DOI arXiv OpenURL
Shan, Chunhua Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. (English) Zbl 1491.34065 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1447-1469 (2022). MSC: 34C60 34E15 34C45 34C05 34C23 34C26 92D25 34C37 34D20 34D05 PDF BibTeX XML Cite \textit{C. Shan}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1447--1469 (2022; Zbl 1491.34065) Full Text: DOI OpenURL
Chen, Qinyi; Porter, Mason A. Epidemic thresholds of infectious diseases on tie-decay networks. (English) Zbl 1483.90036 J. Complex Netw. 10, No. 1, Article ID cnab031, 24 p. (2022). MSC: 90B10 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{M. A. Porter}, J. Complex Netw. 10, No. 1, Article ID cnab031, 24 p. (2022; Zbl 1483.90036) Full Text: DOI arXiv OpenURL
Ahmetolan, Semra; Bilge, Ayse Humeyra; Demirci, Ali; Dobie, Ayse Peker A susceptible-infectious (SI) model with two infective stages and an endemic equilibrium. (English) Zbl 07478782 Math. Comput. Simul. 194, 19-35 (2022). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{S. Ahmetolan} et al., Math. Comput. Simul. 194, 19--35 (2022; Zbl 07478782) Full Text: DOI OpenURL
Baccelli, François; Ramesan, Nithin A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes. (English) Zbl 1478.92176 J. Math. Biol. 84, No. 1-2, Paper No. 4, 40 p. (2022). MSC: 92D30 60G55 60K35 PDF BibTeX XML Cite \textit{F. Baccelli} and \textit{N. Ramesan}, J. Math. Biol. 84, No. 1--2, Paper No. 4, 40 p. (2022; Zbl 1478.92176) Full Text: DOI arXiv OpenURL
Guan, Gui; Guo, Zhenyuan Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks. (English) Zbl 1481.92139 Appl. Math. Modelling 101, 55-75 (2022). MSC: 92D30 34K35 34K60 PDF BibTeX XML Cite \textit{G. Guan} and \textit{Z. Guo}, Appl. Math. Modelling 101, 55--75 (2022; Zbl 1481.92139) Full Text: DOI OpenURL
Forets, Marcelo; Schilling, Christian Reachability of weakly nonlinear systems using Carleman linearization. (English) Zbl 07670974 Bell, Paul C. (ed.) et al., Reachability problems. 15th international conference, RP 2021, Liverpool, UK, October 25–27, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13035, 85-99 (2021). MSC: 68Qxx PDF BibTeX XML Cite \textit{M. Forets} and \textit{C. Schilling}, Lect. Notes Comput. Sci. 13035, 85--99 (2021; Zbl 07670974) Full Text: DOI arXiv OpenURL
Ashyralyev, Allaberen; Hincal, Evren; Kaymakamzade, Bilgen Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. (English) Zbl 1501.92139 Math. Biosci. Eng. 18, No. 6, 8883-8904 (2021). MSC: 92D30 35K55 65M06 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Math. Biosci. Eng. 18, No. 6, 8883--8904 (2021; Zbl 1501.92139) Full Text: DOI OpenURL
Bertaglia, Giulia; Boscheri, Walter; Dimarco, Giacomo; Pareschi, Lorenzo Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty. (English) Zbl 1501.92144 Math. Biosci. Eng. 18, No. 5, 7028-7059 (2021). MSC: 92D30 35Q49 35Q92 PDF BibTeX XML Cite \textit{G. Bertaglia} et al., Math. Biosci. Eng. 18, No. 5, 7028--7059 (2021; Zbl 1501.92144) Full Text: DOI arXiv OpenURL
Fitzgibbon, William E.; Morgan, Jeffrey J.; Webb, Glenn F.; Wu, Yixiang A diffusive SEIR model for community transmission of COVID-19 epidemics: application to Brazil. (English) Zbl 1498.92210 Math. Appl. Sci. Eng. 2, No. 4, 290-309 (2021). MSC: 92D30 35K57 35Q92 PDF BibTeX XML Cite \textit{W. E. Fitzgibbon} et al., Math. Appl. Sci. Eng. 2, No. 4, 290--309 (2021; Zbl 1498.92210) Full Text: DOI OpenURL
Pan, Weiqiu; Li, Tianzeng; Ali, Safdar A fractional order epidemic model for the simulation of outbreaks of ebola. (English) Zbl 1494.92140 Adv. Difference Equ. 2021, Paper No. 161, 21 p. (2021). MSC: 92D30 34A08 26A33 PDF BibTeX XML Cite \textit{W. Pan} et al., Adv. Difference Equ. 2021, Paper No. 161, 21 p. (2021; Zbl 1494.92140) Full Text: DOI OpenURL
De la Sen, M.; Ibeas, A. On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic. (English) Zbl 1494.92126 Adv. Difference Equ. 2021, Paper No. 92, 30 p. (2021). MSC: 92D30 92C60 34C60 37N25 34D23 PDF BibTeX XML Cite \textit{M. De la Sen} and \textit{A. Ibeas}, Adv. Difference Equ. 2021, Paper No. 92, 30 p. (2021; Zbl 1494.92126) Full Text: DOI OpenURL
Amouch, Mohamed; Karim, Noureddine Modeling the dynamic of COVID-19 with different types of transmissions. (English) Zbl 1498.92192 Chaos Solitons Fractals 150, Article ID 111188, 8 p. (2021). MSC: 92D30 34C60 34D20 PDF BibTeX XML Cite \textit{M. Amouch} and \textit{N. Karim}, Chaos Solitons Fractals 150, Article ID 111188, 8 p. (2021; Zbl 1498.92192) Full Text: DOI OpenURL
Basnarkov, Lasko SEAIR epidemic spreading model of COVID-19. (English) Zbl 1496.92103 Chaos Solitons Fractals 142, Article ID 110394, 16 p. (2021). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{L. Basnarkov}, Chaos Solitons Fractals 142, Article ID 110394, 16 p. (2021; Zbl 1496.92103) Full Text: DOI arXiv Link OpenURL
Parsamanesh, Mahmood; Erfanian, Majid Global dynamics of a mathematical model for propagation of infection diseases with saturated incidence rate. (Persian. English summary) Zbl 1499.34279 JAMM, J. Adv. Math. Model. 11, No. 1, 69-81 (2021). MSC: 34C60 82D30 34D05 34D23 PDF BibTeX XML Cite \textit{M. Parsamanesh} and \textit{M. Erfanian}, JAMM, J. Adv. Math. Model. 11, No. 1, 69--81 (2021; Zbl 1499.34279) Full Text: DOI OpenURL
Liu, Suli; Li, Michael Y. Epidemic models with discrete state structures. (English) Zbl 1485.92141 Physica D 422, Article ID 132903, 14 p. (2021). MSC: 92D30 34D23 PDF BibTeX XML Cite \textit{S. Liu} and \textit{M. Y. Li}, Physica D 422, Article ID 132903, 14 p. (2021; Zbl 1485.92141) Full Text: DOI Link OpenURL
Zanella, Mattia; Bardelli, Chiara; Dimarco, Giacomo; Deandrea, Silvia; Perotti, Pietro; Azzi, Mara; Figini, Silvia; Toscani, Giuseppe A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian province. (English) Zbl 1481.92174 Math. Models Methods Appl. Sci. 31, No. 12, 2533-2570 (2021). MSC: 92D30 92C60 35Q92 91D10 PDF BibTeX XML Cite \textit{M. Zanella} et al., Math. Models Methods Appl. Sci. 31, No. 12, 2533--2570 (2021; Zbl 1481.92174) Full Text: DOI arXiv OpenURL
Bertaglia, Giulia; Pareschi, Lorenzo Hyperbolic compartmental models for epidemic spread on networks with uncertain data: application to the emergence of COVID-19 in Italy. (English) Zbl 1478.92178 Math. Models Methods Appl. Sci. 31, No. 12, 2495-2531 (2021). MSC: 92D30 92-10 65M08 65L04 35K57 82C40 PDF BibTeX XML Cite \textit{G. Bertaglia} and \textit{L. Pareschi}, Math. Models Methods Appl. Sci. 31, No. 12, 2495--2531 (2021; Zbl 1478.92178) Full Text: DOI arXiv OpenURL
Amanbaev, T. R.; Antony, S. J. Development of mathematical epidemic models taking into account the effects of isolating individuals in a population. (Russian. English translation) Zbl 1481.92129 Mat. Model. 33, No. 11, 39-60 (2021); translation in Math. Models Comput. Simul. 14, No. 3, 466-479 (2022). MSC: 92D30 34C60 PDF BibTeX XML Cite \textit{T. R. Amanbaev} and \textit{S. J. Antony}, Mat. Model. 33, No. 11, 39--60 (2021; Zbl 1481.92129); translation in Math. Models Comput. Simul. 14, No. 3, 466--479 (2022) Full Text: DOI MNR OpenURL
Liu, Kai-Yang; Wu, Chang-Hong Lyapunov functionals for some distributed delay models in epidemiology. (English) Zbl 1477.92025 Ann. Math. Sci. Appl. 6, No. 2, 145-172 (2021). MSC: 92D30 34K20 34K25 PDF BibTeX XML Cite \textit{K.-Y. Liu} and \textit{C.-H. Wu}, Ann. Math. Sci. Appl. 6, No. 2, 145--172 (2021; Zbl 1477.92025) Full Text: DOI OpenURL
Junior, Valdivino V.; Rodriguez, Pablo M.; Speroto, Adalto Stochastic rumors on random trees. (English) Zbl 07451708 J. Stat. Mech. Theory Exp. 2021, No. 12, Article ID 123403, 24 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{V. V. Junior} et al., J. Stat. Mech. Theory Exp. 2021, No. 12, Article ID 123403, 24 p. (2021; Zbl 07451708) Full Text: DOI arXiv OpenURL
Liu, Chen; Dou, Jihong; Li, Yufeng; Zhao, Tingting Analysis of a kind of host-vector epidemic model with standard incidence rate and dual vertical transmission. (Chinese. English summary) Zbl 1488.34278 Pure Appl. Math. 37, No. 2, 198-208 (2021). MSC: 34C60 34D20 92D30 34C05 34D05 34D23 PDF BibTeX XML Cite \textit{C. Liu} et al., Pure Appl. Math. 37, No. 2, 198--208 (2021; Zbl 1488.34278) Full Text: DOI OpenURL
Feng, Lixiang; Wang, Defen Global stability of an epidemic model with quarantine and incomplete treatment. (Chinese. English summary) Zbl 1488.34267 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 4, 1235-1248 (2021). MSC: 34C60 34C05 34D20 92D30 PDF BibTeX XML Cite \textit{L. Feng} and \textit{D. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 4, 1235--1248 (2021; Zbl 1488.34267) OpenURL
Zhang, Xiao-Bing; Zhang, Xiao-Hong The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size. (English) Zbl 1481.92178 Appl. Math. Modelling 91, 749-767 (2021). MSC: 92D30 34C60 34D05 60H10 PDF BibTeX XML Cite \textit{X.-B. Zhang} and \textit{X.-H. Zhang}, Appl. Math. Modelling 91, 749--767 (2021; Zbl 1481.92178) Full Text: DOI OpenURL
Al-Darabsah, Isam A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles. (English) Zbl 1481.92128 Appl. Math. Modelling 91, 74-92 (2021). MSC: 92D30 34D23 34K60 PDF BibTeX XML Cite \textit{I. Al-Darabsah}, Appl. Math. Modelling 91, 74--92 (2021; Zbl 1481.92128) Full Text: DOI OpenURL
Xu, Yancong; Wei, Lijun; Jiang, Xiaoyu; Zhu, Zirui Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. (English) Zbl 1483.34071 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6229-6252 (2021). MSC: 34C60 34C05 34D20 34D05 34C23 34C37 PDF BibTeX XML Cite \textit{Y. Xu} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6229--6252 (2021; Zbl 1483.34071) Full Text: DOI OpenURL
San, Xuefeng; He, Yuan Traveling waves for a two-group epidemic model with latent period and bilinear incidence in a patchy environment. (English) Zbl 1489.34119 Commun. Pure Appl. Anal. 20, No. 10, 3299-3318 (2021). Reviewer: Xiong Li (Beijing) MSC: 34K60 34K31 34K10 92D30 PDF BibTeX XML Cite \textit{X. San} and \textit{Y. He}, Commun. Pure Appl. Anal. 20, No. 10, 3299--3318 (2021; Zbl 1489.34119) Full Text: DOI OpenURL
Boujallal, Lahoucine; Elhia, Mohamed; Balatif, Omar A novel control set-valued approach with application to epidemic models. (English) Zbl 1478.92179 J. Appl. Math. Comput. 65, No. 1-2, 295-319 (2021). Reviewer: Yilun Shang (Newcastle) MSC: 92D30 93C10 93D30 54C60 35Q92 PDF BibTeX XML Cite \textit{L. Boujallal} et al., J. Appl. Math. Comput. 65, No. 1--2, 295--319 (2021; Zbl 1478.92179) Full Text: DOI OpenURL
Di Lauro, Francesco; Berthouze, Luc; Dorey, Matthew D.; Miller, Joel C.; Kiss, István Z. The impact of contact structure and mixing on control measures and disease-induced herd immunity in epidemic models: a mean-field model perspective. (English) Zbl 1482.92092 Bull. Math. Biol. 83, No. 11, Paper No. 117, 25 p. (2021). Reviewer: Attila Dénes (Szeged) MSC: 92D30 PDF BibTeX XML Cite \textit{F. Di Lauro} et al., Bull. Math. Biol. 83, No. 11, Paper No. 117, 25 p. (2021; Zbl 1482.92092) Full Text: DOI arXiv OpenURL
Naserizadeh, L.; Hadizadeh, M.; Amiraslani, A. Cubature rules based on a bivariate degree-graded alternative orthogonal basis and their applications. (English) Zbl 07431514 Math. Comput. Simul. 190, 231-245 (2021). MSC: 65-XX 68-XX PDF BibTeX XML Cite \textit{L. Naserizadeh} et al., Math. Comput. Simul. 190, 231--245 (2021; Zbl 07431514) Full Text: DOI OpenURL
Lu, Min; Huang, Jicai; Ruan, Shigui; Yu, Pei Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate. (English) Zbl 1482.34125 J. Dyn. Differ. Equations 33, No. 4, 1625-1661 (2021). MSC: 34C60 92D30 34C05 34D20 34D23 34C23 34C37 34D05 PDF BibTeX XML Cite \textit{M. Lu} et al., J. Dyn. Differ. Equations 33, No. 4, 1625--1661 (2021; Zbl 1482.34125) Full Text: DOI OpenURL
Chen, Yuli; Liu, Fawang; Yu, Qiang; Li, Tianzeng Review of fractional epidemic models. (English) Zbl 1481.92135 Appl. Math. Modelling 97, 281-307 (2021). MSC: 92D30 26A33 34A08 34C60 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Modelling 97, 281--307 (2021; Zbl 1481.92135) Full Text: DOI OpenURL
Denu, Dawit; Ngoma, Sedar; Salako, Rachidi B. Analysis of a time-delayed HIV/AIDS epidemic model with education campaigns. (English) Zbl 1476.92042 Comput. Appl. Math. 40, No. 6, Paper No. 210, 35 p. (2021). MSC: 92D30 34K60 PDF BibTeX XML Cite \textit{D. Denu} et al., Comput. Appl. Math. 40, No. 6, Paper No. 210, 35 p. (2021; Zbl 1476.92042) Full Text: DOI arXiv OpenURL
Maiorana, Andrea; Meneghelli, Marco; Resnati, Mario Effectiveness of isolation measures with app support to contain COVID-19 epidemics: a parametric approach. (English) Zbl 1475.92181 J. Math. Biol. 83, No. 5, Paper No. 46, 39 p. (2021). MSC: 92D30 62P10 PDF BibTeX XML Cite \textit{A. Maiorana} et al., J. Math. Biol. 83, No. 5, Paper No. 46, 39 p. (2021; Zbl 1475.92181) Full Text: DOI arXiv OpenURL
El Fatini, Mohamed; Louriki, Mohammed; Pettersson, Roger; Zararsiz, Zarife Epidemic modeling: diffusion approximation vs. stochastic differential equations allowing reflection. (English) Zbl 1475.92158 Int. J. Biomath. 14, No. 5, Article ID 2150036, 21 p. (2021). MSC: 92D30 60H10 60J85 PDF BibTeX XML Cite \textit{M. El Fatini} et al., Int. J. Biomath. 14, No. 5, Article ID 2150036, 21 p. (2021; Zbl 1475.92158) Full Text: DOI OpenURL
Boscheri, Walter; Dimarco, Giacomo; Pareschi, Lorenzo Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations. (English) Zbl 1473.92006 Math. Models Methods Appl. Sci. 31, No. 6, 1059-1097 (2021). MSC: 92-10 65M08 35L50 65L04 35K57 82C40 92D30 PDF BibTeX XML Cite \textit{W. Boscheri} et al., Math. Models Methods Appl. Sci. 31, No. 6, 1059--1097 (2021; Zbl 1473.92006) Full Text: DOI arXiv OpenURL
Zara, M. C.; Monteiro, L. H. A. The negative impact of technological advancements on mental health: an epidemiological approach. (English) Zbl 1508.92112 Appl. Math. Comput. 396, Article ID 125905, 8 p. (2021). MSC: 92C50 92D30 92C60 34C60 PDF BibTeX XML Cite \textit{M. C. Zara} and \textit{L. H. A. Monteiro}, Appl. Math. Comput. 396, Article ID 125905, 8 p. (2021; Zbl 1508.92112) Full Text: DOI OpenURL
Sauer, Timothy; Berry, Tyrus; Ebeigbe, Donald; Norton, Michael M.; Whalen, Andrew J.; Schiff, Steven J. Identifiability of infection model parameters early in an epidemic. (English) Zbl 1475.92189 SIAM J. Control Optim. 59, No. 5, S27-S48 (2021). MSC: 92D30 PDF BibTeX XML Cite \textit{T. Sauer} et al., SIAM J. Control Optim. 59, No. 5, S27--S48 (2021; Zbl 1475.92189) Full Text: DOI OpenURL
Xue, Xiaofeng; Shen, Yumeng Large and moderate deviation principles for susceptible-infected-removed epidemic in a random environment. (English) Zbl 1474.92123 Front. Math. China 16, No. 4, 1117-1161 (2021). MSC: 92D30 60F10 60K35 PDF BibTeX XML Cite \textit{X. Xue} and \textit{Y. Shen}, Front. Math. China 16, No. 4, 1117--1161 (2021; Zbl 1474.92123) Full Text: DOI OpenURL
Dolbeault, Jean; Turinici, Gabriel Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model. (English) Zbl 1472.92209 Comput. Math. Biophys. 9, No. 1, 14-21 (2021). MSC: 92D30 PDF BibTeX XML Cite \textit{J. Dolbeault} and \textit{G. Turinici}, Comput. Math. Biophys. 9, No. 1, 14--21 (2021; Zbl 1472.92209) Full Text: DOI OpenURL
Jardón-Kojakhmetov, Hildeberto; Kuehn, Christian; Pugliese, Andrea; Sensi, Mattia A geometric analysis of the SIRS epidemiological model on a homogeneous network. (English) Zbl 1479.34083 J. Math. Biol. 83, No. 4, Paper No. 37, 38 p. (2021). MSC: 34C60 34C05 34D20 34E13 34E15 34C23 34C26 92D30 34C20 PDF BibTeX XML Cite \textit{H. Jardón-Kojakhmetov} et al., J. Math. Biol. 83, No. 4, Paper No. 37, 38 p. (2021; Zbl 1479.34083) Full Text: DOI arXiv OpenURL