Barros, Jean Fernandes Bifurcations and enumeration of central configurations of some planar restricted problems. (English) Zbl 1511.70010 Celest. Mech. Dyn. Astron. 135, No. 2, Paper No. 12, 25 p. (2023). MSC: 70F10 70K50 PDF BibTeX XML Cite \textit{J. F. Barros}, Celest. Mech. Dyn. Astron. 135, No. 2, Paper No. 12, 25 p. (2023; Zbl 1511.70010) Full Text: DOI
Meskhishvili, Mamuka Two non-congruent regular polygons having vertices at the same distances from the point. (English) Zbl 1513.51053 Int. J. Geom. 12, No. 1, 35-45 (2023). MSC: 51M15 51N20 51N35 PDF BibTeX XML Cite \textit{M. Meskhishvili}, Int. J. Geom. 12, No. 1, 35--45 (2023; Zbl 1513.51053) Full Text: arXiv Link
Ghiglioni, Eduardo; Lim, Yongdo The Karcher mean of equilateral triangles. (English) Zbl 1509.15010 Linear Algebra Appl. 656, 421-445 (2023). MSC: 15A30 15B48 15A45 15A15 53C20 PDF BibTeX XML Cite \textit{E. Ghiglioni} and \textit{Y. Lim}, Linear Algebra Appl. 656, 421--445 (2023; Zbl 1509.15010) Full Text: DOI
Rudnick, Zeév; Wigman, Igor On the Robin spectrum for the equilateral triangle. (English) Zbl 1507.35088 J. Phys. A, Math. Theor. 55, No. 25, Article ID 254004, 31 p. (2022). MSC: 35J25 PDF BibTeX XML Cite \textit{Z. Rudnick} and \textit{I. Wigman}, J. Phys. A, Math. Theor. 55, No. 25, Article ID 254004, 31 p. (2022; Zbl 1507.35088) Full Text: DOI arXiv
Pamfilos, Paris Equilaterals inscribed in conics. (English) Zbl 1513.51054 Int. J. Geom. 10, No. 1, 5-24 (2021). MSC: 51M15 51N15 51N20 51N25 PDF BibTeX XML Cite \textit{P. Pamfilos}, Int. J. Geom. 10, No. 1, 5--24 (2021; Zbl 1513.51054) Full Text: Link
Williams, David M.; Walters, Gage S. Integration bounds for the regular simplex in \(n\)-dimensional space. (English) Zbl 1490.51019 Int. J. Math. Educ. Sci. Technol. 52, No. 8, 1260-1275 (2021). Reviewer: Lionel Pournin (Paris) MSC: 51M20 52B11 26B15 PDF BibTeX XML Cite \textit{D. M. Williams} and \textit{G. S. Walters}, Int. J. Math. Educ. Sci. Technol. 52, No. 8, 1260--1275 (2021; Zbl 1490.51019) Full Text: DOI
Sakata, Shigehiro Analytic characterization of equilateral triangles. (English) Zbl 1468.51010 Ann. Mat. Pura Appl. (4) 200, No. 5, 2191-2212 (2021). MSC: 51N20 51M04 26B05 26E99 PDF BibTeX XML Cite \textit{S. Sakata}, Ann. Mat. Pura Appl. (4) 200, No. 5, 2191--2212 (2021; Zbl 1468.51010) Full Text: DOI
Joós, Antal Packing 13 circles in an equilateral triangle. (English) Zbl 1458.52006 Aequationes Math. 95, No. 1, 35-65 (2021). Reviewer: Joonhyung Kim (Jeonju) MSC: 52C15 PDF BibTeX XML Cite \textit{A. Joós}, Aequationes Math. 95, No. 1, 35--65 (2021; Zbl 1458.52006) Full Text: DOI
Dergiades, Nikos; Hung, Tran Quang On some extensions of Morley’s trisector theorem. (English) Zbl 1469.51008 J. Geom. Graph. 24, No. 2, 197-205 (2020). Reviewer: Victor V. Pambuccian (Glendale) MSC: 51M04 PDF BibTeX XML Cite \textit{N. Dergiades} and \textit{T. Q. Hung}, J. Geom. Graph. 24, No. 2, 197--205 (2020; Zbl 1469.51008) Full Text: arXiv Link
Zhang, Peng-Fei; Dong, Xin-Han Starlikeness and convexity of Cauchy transform on equilateral triangle. (English) Zbl 1462.30042 Complex Var. Elliptic Equ. 65, No. 9, 1590-1600 (2020). MSC: 30C45 30E20 PDF BibTeX XML Cite \textit{P.-F. Zhang} and \textit{X.-H. Dong}, Complex Var. Elliptic Equ. 65, No. 9, 1590--1600 (2020; Zbl 1462.30042) Full Text: DOI
Wang, Dongming; Huang, Bo; Chen, Xiaoyu On \(n\)-sectors of the angles of an arbitrary triangle. (English) Zbl 1488.51010 Math. Comput. Sci. 14, No. 4, 757-773 (2020). MSC: 51M04 03B35 13P10 51-08 51N20 68V15 68W30 PDF BibTeX XML Cite \textit{D. Wang} et al., Math. Comput. Sci. 14, No. 4, 757--773 (2020; Zbl 1488.51010) Full Text: DOI
Chuangpishit, Huda; Mehrabi, Saeed; Narayanan, Lata; Opatrny, Jaroslav Evacuating equilateral triangles and squares in the face-to-face model. (English) Zbl 1476.68281 Comput. Geom. 89, Article ID 101624, 18 p. (2020). MSC: 68U05 68T40 68W15 PDF BibTeX XML Cite \textit{H. Chuangpishit} et al., Comput. Geom. 89, Article ID 101624, 18 p. (2020; Zbl 1476.68281) Full Text: DOI arXiv
Laczkovich, Miklós Rational points of some elliptic curves related to the tilings of the equilateral triangle. (English) Zbl 1444.11119 Discrete Comput. Geom. 64, No. 3, 985-994 (2020). MSC: 11G05 05B45 52C20 PDF BibTeX XML Cite \textit{M. Laczkovich}, Discrete Comput. Geom. 64, No. 3, 985--994 (2020; Zbl 1444.11119) Full Text: DOI
Nakamura, Hiroaki; Ogawa, Hiroyuki A family of geometric operators on triangles with two complex variables. (English) Zbl 1436.51016 J. Geom. 111, No. 1, Paper No. 2, 16 p. (2020). Reviewer: Niels Lubbes (Linz) MSC: 51M15 51N20 12F05 43A32 PDF BibTeX XML Cite \textit{H. Nakamura} and \textit{H. Ogawa}, J. Geom. 111, No. 1, Paper No. 2, 16 p. (2020; Zbl 1436.51016) Full Text: DOI arXiv
Richter, Christian Tilings of convex polygons by equilateral triangles of many different sizes. (English) Zbl 1434.52022 Discrete Math. 343, No. 3, Article ID 111745, 18 p. (2020). Reviewer: Anton Shutov (Vladimir) MSC: 52C20 PDF BibTeX XML Cite \textit{C. Richter}, Discrete Math. 343, No. 3, Article ID 111745, 18 p. (2020; Zbl 1434.52022) Full Text: DOI arXiv
Richter, Christian; Wirth, Melchior Tilings of convex sets by mutually incongruent equilateral triangles contain arbitrarily small tiles. (English) Zbl 1430.52028 Discrete Comput. Geom. 63, No. 1, 169-181 (2020). MSC: 52C20 05C81 51M20 60J10 PDF BibTeX XML Cite \textit{C. Richter} and \textit{M. Wirth}, Discrete Comput. Geom. 63, No. 1, 169--181 (2020; Zbl 1430.52028) Full Text: DOI arXiv
Mahmoudi, M. G. A proof of van Schooten’s theorem using area calculation. (English) Zbl 1453.51003 Mitt. Math. Ges. Hamb. 39, 175-177 (2019). Reviewer: Antonio M. Oller Marcén (Zaragoza) MSC: 51M04 51M25 PDF BibTeX XML Cite \textit{M. G. Mahmoudi}, Mitt. Math. Ges. Hamb. 39, 175--177 (2019; Zbl 1453.51003)
Ansari, Abdullah A.; Ali, Ashraf; Alam, Mehtab; Kellil, Rabah Cyclic kite configuration with veriable mass of the fifth body in R5BP. (English) Zbl 1428.70024 Appl. Appl. Math. 14, No. 2, 985-1002 (2019). MSC: 70F15 85A20 70F05 PDF BibTeX XML Cite \textit{A. A. Ansari} et al., Appl. Appl. Math. 14, No. 2, 985--1002 (2019; Zbl 1428.70024) Full Text: Link
Obradović, Marija Tiling the lateral surface of the concave cupolae of the second sort. (English) Zbl 1428.00042 Nexus Netw. J. 21, No. 1, 59-77 (2019). MSC: 00A67 52C20 PDF BibTeX XML Cite \textit{M. Obradović}, Nexus Netw. J. 21, No. 1, 59--77 (2019; Zbl 1428.00042) Full Text: DOI
Gómez-Molleda, M. A.; Lario, Joan-C. Ruler and compass constructions of the equilateral triangle and pentagon in the lemniscate curve. (English) Zbl 1448.51011 Math. Intell. 41, No. 4, 17-21 (2019). Reviewer: Cătălin Barbu (Bacau) MSC: 51M15 PDF BibTeX XML Cite \textit{M. A. Gómez-Molleda} and \textit{J.-C. Lario}, Math. Intell. 41, No. 4, 17--21 (2019; Zbl 1448.51011) Full Text: DOI
Iosevich, Alex; Liu, Bochen Equilateral triangles in subsets of \(\mathbb{R}^d\) of large Hausdorff dimension. (English) Zbl 1417.52023 Isr. J. Math. 231, No. 1, 123-137 (2019). MSC: 52C10 28A75 28A78 PDF BibTeX XML Cite \textit{A. Iosevich} and \textit{B. Liu}, Isr. J. Math. 231, No. 1, 123--137 (2019; Zbl 1417.52023) Full Text: DOI arXiv
Krishna, Dasari Naga Vijay A note on special cases of Van Aubel’s theorem. (English) Zbl 1477.51010 Int. J. Adv. Appl. Math. Mech. 5, No. 4, 30-51 (2018). Reviewer: Hiroshi Okumura (Maebashi) MSC: 51M04 PDF BibTeX XML Cite \textit{D. N. V. Krishna}, Int. J. Adv. Appl. Math. Mech. 5, No. 4, 30--51 (2018; Zbl 1477.51010) Full Text: Link
Chuangpishit, Huda; Mehrabi, Saeed; Narayanan, Lata; Opatrny, Jaroslav Evacuating an equilateral triangle in the face-to-face model. (English) Zbl 1487.68038 Aspnes, James (ed.) et al., 21st international conference on principles of distributed systems, OPODIS 2017, Lisboa, Portugal, December 18–20, 2017. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 95, Article 11, 16 p. (2018). MSC: 68M14 68T40 68W15 PDF BibTeX XML Cite \textit{H. Chuangpishit} et al., LIPIcs -- Leibniz Int. Proc. Inform. 95, Article 11, 16 p. (2018; Zbl 1487.68038) Full Text: DOI
Ansari, Abdullah A. The circular restricted four-body problem with triaxial primaries and variable infinitesimal mass. (English) Zbl 1406.70020 Appl. Appl. Math. 13, No. 2, 818-838 (2018). MSC: 70F15 85A20 70F05 PDF BibTeX XML Cite \textit{A. A. Ansari}, Appl. Appl. Math. 13, No. 2, 818--838 (2018; Zbl 1406.70020) Full Text: Link
Richter, Christian Tiling by incongruent equilateral triangles without requiring local finiteness. II. (English) Zbl 1394.52021 Elem. Math. 73, No. 1, 15-22 (2018). Reviewer: Antonio M. Oller (Zaragoza) MSC: 52C20 51M04 PDF BibTeX XML Cite \textit{C. Richter}, Elem. Math. 73, No. 1, 15--22 (2018; Zbl 1394.52021) Full Text: DOI
Shuman, Kevin J. A special case of the Morley trisector theorem for an arbitrary isosceles triangle. (English) Zbl 1414.51011 Pi Mu Epsilon J. 14, No. 7, 469-473 (2017). MSC: 51M04 PDF BibTeX XML Cite \textit{K. J. Shuman}, Pi Mu Epsilon J. 14, No. 7, 469--473 (2017; Zbl 1414.51011)
Segal, Ruti; Sigler, Avi (Berman); Stupel, Moshe Some more surprising properties of the “king” of triangles. (English) Zbl 1387.51018 J. Geom. Graph. 21, No. 1, 79-88 (2017). Reviewer: Mowaffaq Hajja (Amman) MSC: 51M04 51M15 PDF BibTeX XML Cite \textit{R. Segal} et al., J. Geom. Graph. 21, No. 1, 79--88 (2017; Zbl 1387.51018) Full Text: Link
Stambaugh, Nathaniel; Semon, Mark Symmetry and solutions to the Helmholtz equation inside an equilateral triangle. (English) Zbl 1371.35038 J. Geom. Symmetry Phys. 43, 37-45 (2017). MSC: 35J05 35B06 PDF BibTeX XML Cite \textit{N. Stambaugh} and \textit{M. Semon}, J. Geom. Symmetry Phys. 43, 37--45 (2017; Zbl 1371.35038) Full Text: DOI Link
Okumura, Hiroshi An equilateral triangle in the arbelos. (English) Zbl 1370.51007 Int. J. Geom. 5, No. 2, 93-95 (2016). MSC: 51M04 51M20 PDF BibTeX XML Cite \textit{H. Okumura}, Int. J. Geom. 5, No. 2, 93--95 (2016; Zbl 1370.51007) Full Text: Link
Bérard, Pierre; Helffer, Bernard Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle. (English) Zbl 1382.58021 Lett. Math. Phys. 106, No. 12, 1729-1789 (2016). Reviewer: Peter B. Gilkey (Eugene) MSC: 58J50 35B05 35P20 PDF BibTeX XML Cite \textit{P. Bérard} and \textit{B. Helffer}, Lett. Math. Phys. 106, No. 12, 1729--1789 (2016; Zbl 1382.58021) Full Text: DOI arXiv
Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Katz, Daniel J.; Kolesnikov, Levon On the number of similar instances of a pattern in a finite set. (English) Zbl 1353.05030 Electron. J. Comb. 23, No. 4, Research Paper P4.39, 24 p. (2016). MSC: 05B25 05A99 52C10 PDF BibTeX XML Cite \textit{B. M. Ábrego} et al., Electron. J. Comb. 23, No. 4, Research Paper P4.39, 24 p. (2016; Zbl 1353.05030) Full Text: arXiv Link
Izumi, Taisuke Improving the lower bound on opaque sets for equilateral triangle. (English) Zbl 1350.52001 Discrete Appl. Math. 213, 130-138 (2016). MSC: 52A10 PDF BibTeX XML Cite \textit{T. Izumi}, Discrete Appl. Math. 213, 130--138 (2016; Zbl 1350.52001) Full Text: DOI arXiv
Grebot, Guy; Szczpanski, Kevin Quantity of non-congruent struts in alternate division. (English) Zbl 1345.52006 J. Geom. 107, No. 1, 151-168 (2016). Reviewer: Geir Agnarsson (Fairfax) MSC: 52B05 52B10 52A38 PDF BibTeX XML Cite \textit{G. Grebot} and \textit{K. Szczpanski}, J. Geom. 107, No. 1, 151--168 (2016; Zbl 1345.52006) Full Text: DOI
Galiev, Sh. I.; Khor’kov, A. V. Multiple circle coverings of an equilateral triangle, square, and circle. (Russian. English summary) Zbl 1349.52018 Diskretn. Anal. Issled. Oper. 22, No. 6, 5-28 (2015). MSC: 52C15 05B40 PDF BibTeX XML Cite \textit{Sh. I. Galiev} and \textit{A. V. Khor'kov}, Diskretn. Anal. Issled. Oper. 22, No. 6, 5--28 (2015; Zbl 1349.52018) Full Text: MNR
Martínez Hermoso, Juan Antonio; Martínez Hermoso, Fernando; de Paula Montes Tubío, Francisco; Jiménez Serrano, Alejandro Geometry and proportions in the funeral chapel of Sarenput II. (English) Zbl 1326.00057 Nexus Netw. J. 17, No. 1, 287-309 (2015). MSC: 00A67 01A16 PDF BibTeX XML Cite \textit{J. A. Martínez Hermoso} et al., Nexus Netw. J. 17, No. 1, 287--309 (2015; Zbl 1326.00057) Full Text: DOI
Arnold, Maxim; Zharnitsky, Vadim Cyclic evasion in the three bug problem. (English) Zbl 1330.51017 Am. Math. Mon. 122, No. 4, 377-380 (2015). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 51N35 51N05 PDF BibTeX XML Cite \textit{M. Arnold} and \textit{V. Zharnitsky}, Am. Math. Mon. 122, No. 4, 377--380 (2015; Zbl 1330.51017) Full Text: DOI
Misic, Slobodan; Obradovic, Marija; Dukanovic, Gordana Composite concave cupolae as geometric and architectural forms. (English) Zbl 1326.51017 J. Geom. Graph. 19, No. 1, 79-91 (2015). MSC: 51N05 51M20 00A67 PDF BibTeX XML Cite \textit{S. Misic} et al., J. Geom. Graph. 19, No. 1, 79--91 (2015; Zbl 1326.51017) Full Text: Link
Januszewski, Janusz Translative packing of unit squares into equilateral triangles. (English) Zbl 1331.52026 Demonstr. Math. 48, No. 3, 452-461 (2015). Reviewer: Christian Richter (Jena) MSC: 52C15 PDF BibTeX XML Cite \textit{J. Januszewski}, Demonstr. Math. 48, No. 3, 452--461 (2015; Zbl 1331.52026) Full Text: DOI
Coghetto, Roland Morley’s trisector theorem. (English) Zbl 1318.51007 Formaliz. Math. 23, No. 2, 75-79 (2015). MSC: 51M04 03B35 PDF BibTeX XML Cite \textit{R. Coghetto}, Formaliz. Math. 23, No. 2, 75--79 (2015; Zbl 1318.51007) Full Text: DOI
Dong, Fengming; Zhao, Dongsheng; Ho, Weng Kin On the largest outscribed equilateral triangle. (English) Zbl 1383.51016 Math. Gaz. 98, No. 541, 79-84 (2014). MSC: 51M04 51M25 PDF BibTeX XML Cite \textit{F. Dong} et al., Math. Gaz. 98, No. 541, 79--84 (2014; Zbl 1383.51016) Full Text: DOI
Kuruklis, Spiridon A. Trisectors like bisectors with equilaterals instead of points. (English) Zbl 1327.51018 Cubo 16, No. 2, 71-110 (2014). Reviewer: Georgi Hristov Georgiev (Shumen) MSC: 51M04 51M15 PDF BibTeX XML Cite \textit{S. A. Kuruklis}, Cubo 16, No. 2, 71--110 (2014; Zbl 1327.51018) Full Text: DOI
Zhu, Shuqiang Eulerian relative equilibria of the curved \(3\)-body problems in \(\mathbf{S}^{2}\). (English) Zbl 1368.70015 Proc. Am. Math. Soc. 142, No. 8, 2837-2848 (2014). MSC: 70F07 70F15 PDF BibTeX XML Cite \textit{S. Zhu}, Proc. Am. Math. Soc. 142, No. 8, 2837--2848 (2014; Zbl 1368.70015) Full Text: DOI
Hertel, Eike; Richter, Christian Tiling convex polygons with congruent equilateral triangles. (English) Zbl 1350.52010 Discrete Comput. Geom. 51, No. 3, 753-759 (2014). Reviewer: Guangxian Zhu (New York) MSC: 52C20 PDF BibTeX XML Cite \textit{E. Hertel} and \textit{C. Richter}, Discrete Comput. Geom. 51, No. 3, 753--759 (2014; Zbl 1350.52010) Full Text: DOI
Szabados, Michal Distances of group tables and Latin squares via equilateral triangle dissections. (English) Zbl 1281.05031 J. Comb. Theory, Ser. A 123, 1-7 (2014). MSC: 05B15 05B05 PDF BibTeX XML Cite \textit{M. Szabados}, J. Comb. Theory, Ser. A 123, 1--7 (2014; Zbl 1281.05031) Full Text: DOI
Donolato, Cesare A vector-based proof of Morley’s trisector theorem. (English) Zbl 1282.51007 Forum Geom. 13, 233-235 (2013). MSC: 51M04 PDF BibTeX XML Cite \textit{C. Donolato}, Forum Geom. 13, 233--235 (2013; Zbl 1282.51007) Full Text: Link
Ionascu, Eugen J. Ehrhart’s polynomial for equilateral triangles in \(\mathbb Z^3\). (English) Zbl 1293.52012 Australas. J. Comb. 55, 189-204 (2013). Reviewer: Matthias Beck (San Francisco) MSC: 52C05 11H06 PDF BibTeX XML Cite \textit{E. J. Ionascu}, Australas. J. Comb. 55, 189--204 (2013; Zbl 1293.52012) Full Text: arXiv Link
Richter, Christian Tiling by incongruent equilateral triangles without requiring local finiteness. (English) Zbl 1264.51009 Elem. Math. 67, No. 4, 157-163 (2012). Reviewer: Antonio M. Oller (Zaragoza) MSC: 51M04 52C20 PDF BibTeX XML Cite \textit{C. Richter}, Elem. Math. 67, No. 4, 157--163 (2012; Zbl 1264.51009) Full Text: DOI
Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia Stability of a Hamiltonian system in a limiting case. (English) Zbl 1253.70029 Regul. Chaotic Dyn. 17, No. 1, 24-35 (2012). MSC: 70K65 70F10 34C20 34C25 37J40 PDF BibTeX XML Cite \textit{K. R. Meyer} et al., Regul. Chaotic Dyn. 17, No. 1, 24--35 (2012; Zbl 1253.70029) Full Text: DOI
Donovan, Diane M.; Lefevre, James G.; McCourt, Thomas A.; Cavenagh, Nicholas J. Distinct equilateral triangle dissections of convex regions. (English) Zbl 1265.05091 Commentat. Math. Univ. Carol. 53, No. 2, 189-210 (2012). Reviewer: Elizaveta Zamorzaeva (Chisinau) MSC: 05B45 05B15 PDF BibTeX XML Cite \textit{D. M. Donovan} et al., Commentat. Math. Univ. Carol. 53, No. 2, 189--210 (2012; Zbl 1265.05091)
Vartziotis, Dimitris; Huggenberger, Simon Iterative geometric triangle transformations. (English) Zbl 1262.51013 Elem. Math. 67, No. 2, 68-83 (2012). Reviewer: Agota H. Temesvári (Pécs) MSC: 51M05 51M04 PDF BibTeX XML Cite \textit{D. Vartziotis} and \textit{S. Huggenberger}, Elem. Math. 67, No. 2, 68--83 (2012; Zbl 1262.51013) Full Text: DOI
Begehr, H.; Vaitekhovich, T. Harmonic Dirichlet problem for some equilateral triangle. (English) Zbl 1238.31004 Complex Var. Elliptic Equ. 57, No. 2-4, 185-196 (2012). Reviewer: Konstantin Malyutin (Sumy) MSC: 31A25 30E25 35J05 35J08 35J25 35C15 PDF BibTeX XML Cite \textit{H. Begehr} and \textit{T. Vaitekhovich}, Complex Var. Elliptic Equ. 57, No. 2--4, 185--196 (2012; Zbl 1238.31004) Full Text: DOI
Hu, Mingdi; Lou, Zhigang Relationship of lengths and angles in the classical logic metric space. (Chinese. English summary) Zbl 1249.03001 J. Northwest Univ., Nat. Sci. Ed. 41, No. 2, 205-209 (2011). MSC: 03B05 54E35 68T37 PDF BibTeX XML Cite \textit{M. Hu} and \textit{Z. Lou}, J. Northwest Univ., Nat. Sci. Ed. 41, No. 2, 205--209 (2011; Zbl 1249.03001)
McCartin, Brian J. Laplacian eigenstructure of the equilateral triangle. (English) Zbl 1319.35116 Ruse: Hikari Ltd. (ISBN 978-954-91999-6-3/pbk). x, 200 p. (2011). MSC: 35Pxx 34-03 35-03 34L05 34B24 35J05 35P05 35Qxx 78A50 PDF BibTeX XML Cite \textit{B. J. McCartin}, Laplacian eigenstructure of the equilateral triangle. Ruse: Hikari Ltd. (2011; Zbl 1319.35116) Full Text: Link
McCartin, Brian J. An elementary property of the equilateral triangle: a tale of two proofs. (English) Zbl 1232.51013 Int. Math. Forum 6, No. 13-16, 699-701 (2011). Reviewer: Antonio M. Oller (Zaragoza) MSC: 51M04 51M25 PDF BibTeX XML Cite \textit{B. J. McCartin}, Int. Math. Forum 6, No. 13--16, 699--701 (2011; Zbl 1232.51013) Full Text: EuDML Link
Martini, Horst; Spirova, Margarita; Swanepoel, Konrad J. Geometry where direction matters – or does it? (English) Zbl 1233.52005 Math. Intell. 33, No. 3, 115-125 (2011). Reviewer: Rolf Riesinger (Wien) MSC: 52A21 52-02 51-02 46B20 90B85 PDF BibTeX XML Cite \textit{H. Martini} et al., Math. Intell. 33, No. 3, 115--125 (2011; Zbl 1233.52005) Full Text: DOI
Novikov, S. P. New discretization of complex analysis: the Euclidean and hyperbolic planes. (English) Zbl 1296.30057 Proc. Steklov Inst. Math. 273, 238-251 (2011); reprinted from Tr. Mat. Inst. Steklova 273, 257-270 (2011). MSC: 30G25 30F45 37B10 PDF BibTeX XML Cite \textit{S. P. Novikov}, Proc. Steklov Inst. Math. 273, 238--251 (2011; Zbl 1296.30057) Full Text: DOI arXiv
Huybrechs, Daan; Iserles, Arieh; Nørsett, Syvert P. From high oscillation to rapid approximation. V: The equilateral triangle. (English) Zbl 1219.65129 IMA J. Numer. Anal. 31, No. 3, 755-785 (2011). MSC: 65N25 PDF BibTeX XML Cite \textit{D. Huybrechs} et al., IMA J. Numer. Anal. 31, No. 3, 755--785 (2011; Zbl 1219.65129) Full Text: DOI
Hu, Ming-Di Equilateral polygons in classical logic metric space. (English) Zbl 1253.03029 Cao, Bing-Yuan (ed.) et al., Quantitative logic and soft computing 2010. Vol. 2. Proceedings of the 2nd international conference (QL & SC 2010), Xiamen, China, October 22–25, 2010. Berlin: Springer (ISBN 978-3-642-15659-5/pbk; 978-3-642-15660-1/ebook). Advances in Intelligent and Soft Computing 82, 127-134 (2010). MSC: 03B05 54E35 PDF BibTeX XML Cite \textit{M.-D. Hu}, Adv. Intell. Soft Comput. 82, 127--134 (2010; Zbl 1253.03029) Full Text: DOI
McCartin, Brian J. Eigenstructure of the discrete Laplacian on the equilateral triangle: the Dirichlet & Neumann problems. (English) Zbl 1219.35152 Appl. Math. Sci., Ruse 4, No. 53-56, 2633-2646 (2010). MSC: 35P10 35C05 35J05 35J25 PDF BibTeX XML Cite \textit{B. J. McCartin}, Appl. Math. Sci., Ruse 4, No. 53--56, 2633--2646 (2010; Zbl 1219.35152) Full Text: Link
Hu, Jiangping; Hu, Xiaoming Nonlinear filtering in target tracking using cooperative mobile sensors. (English) Zbl 1205.94036 Automatica 46, No. 12, 2041-2046 (2010). MSC: 94A12 PDF BibTeX XML Cite \textit{J. Hu} and \textit{X. Hu}, Automatica 46, No. 12, 2041--2046 (2010; Zbl 1205.94036) Full Text: DOI arXiv
Charalambopoulos, A.; Dassios, G.; Fokas, A. S. Laplace’s equation in the exterior of a convex polygon. The equilateral triangle. (English) Zbl 1214.35013 Q. Appl. Math. 68, No. 4, 645-660 (2010). Reviewer: Lubomira Softova (Aversa) MSC: 35J05 35C15 35J25 31A25 31A10 PDF BibTeX XML Cite \textit{A. Charalambopoulos} et al., Q. Appl. Math. 68, No. 4, 645--660 (2010; Zbl 1214.35013) Full Text: DOI Link
Baganis, G.; Hadjinicolaou, M. Analytic solution of an exterior Neumann problem in a non-convex domain. (English) Zbl 1221.35123 Math. Methods Appl. Sci. 33, No. 17, 2067-2075 (2010). MSC: 35J25 35J05 35C15 31A10 31A25 35A22 PDF BibTeX XML Cite \textit{G. Baganis} and \textit{M. Hadjinicolaou}, Math. Methods Appl. Sci. 33, No. 17, 2067--2075 (2010; Zbl 1221.35123) Full Text: DOI
Drápal, Aleš; Hämäläinen, Carlo An enumeration of equilateral triangle dissections. (English) Zbl 1205.52014 Discrete Appl. Math. 158, No. 14, 1479-1495 (2010). Reviewer: Arnfried Kemnitz (Braunschweig) MSC: 52C20 52B45 05A15 PDF BibTeX XML Cite \textit{A. Drápal} and \textit{C. Hämäläinen}, Discrete Appl. Math. 158, No. 14, 1479--1495 (2010; Zbl 1205.52014) Full Text: DOI arXiv
Drápal, Ale; Hämäläinen, Carlo; Kala, Vítězslav Latin bitrades, dissections of equilateral triangles, and abelian groups. (English) Zbl 1287.05016 J. Comb. Des. 18, No. 1, 1-24 (2010). MSC: 05B15 PDF BibTeX XML Cite \textit{A. Drápal} et al., J. Comb. Des. 18, No. 1, 1--24 (2010; Zbl 1287.05016) Full Text: DOI arXiv
Baganis, G.; Hadjinicolaou, M. Analytic solution of an exterior Dirichlet problem in a non-convex domain. (English) Zbl 1185.35053 IMA J. Appl. Math. 74, No. 5, 668-684 (2009). MSC: 35J25 35J05 35C15 35A22 PDF BibTeX XML Cite \textit{G. Baganis} and \textit{M. Hadjinicolaou}, IMA J. Appl. Math. 74, No. 5, 668--684 (2009; Zbl 1185.35053) Full Text: DOI
Parker, John R.; Paupert, Julien Unfaithful complex hyperbolic triangle groups. II: Higher order reflections. (English) Zbl 1161.20046 Pac. J. Math. 239, No. 2, 357-389 (2009). MSC: 20H10 22E40 51F15 20F05 PDF BibTeX XML Cite \textit{J. R. Parker} and \textit{J. Paupert}, Pac. J. Math. 239, No. 2, 357--389 (2009; Zbl 1161.20046) Full Text: DOI
d’Azevedo Breda, Ana M.; Ribeiro, Patrícia S.; Santos, Altino F. A class of spherical dihedral \(f\)-tilings. (English) Zbl 1161.52014 Eur. J. Comb. 30, No. 1, 119-132 (2009). Reviewer: Milica Stojanović (Beograd) MSC: 52C20 05B45 PDF BibTeX XML Cite \textit{A. M. d'Azevedo Breda} et al., Eur. J. Comb. 30, No. 1, 119--132 (2009; Zbl 1161.52014) Full Text: DOI
Baxter, Andrew M.; Umble, Ronald Periodic orbit for billiards on an equilateral triangle. (English) Zbl 1172.37017 Am. Math. Mon. 115, No. 6, 479-491 (2008). Reviewer: Alois Klíč (Praha) MSC: 37D50 37C25 PDF BibTeX XML Cite \textit{A. M. Baxter} and \textit{R. Umble}, Am. Math. Mon. 115, No. 6, 479--491 (2008; Zbl 1172.37017) Full Text: DOI arXiv
McCartin, Brian J. Eigenstructure of the equilateral triangle. V: The impedance boundary condition. (English) Zbl 1171.35087 Appl. Math. Sci., Ruse 2, No. 41-44, 2187-2217 (2008). Reviewer: Chie-Ping Chu (Taipei) MSC: 35P10 35C05 35J05 76A05 PDF BibTeX XML Cite \textit{B. J. McCartin}, Appl. Math. Sci., Ruse 2, No. 41--44, 2187--2217 (2008; Zbl 1171.35087) Full Text: Link
Parker, John R. Unfaithful complex hyperbolic triangle groups. I: Involutions. (English) Zbl 1158.20023 Pac. J. Math. 238, No. 1, 145-169 (2008). Reviewer: Gerhard Rosenberger (Dortmund) MSC: 20H10 22E40 51F15 20F05 PDF BibTeX XML Cite \textit{J. R. Parker}, Pac. J. Math. 238, No. 1, 145--169 (2008; Zbl 1158.20023) Full Text: DOI
Dassios, George What non-linear methods offered to linear problems? The Fokas transform method. (English) Zbl 1200.37067 Int. J. Non-Linear Mech. 42, No. 1, 146-156 (2007). MSC: 37K15 35Q74 44A15 PDF BibTeX XML Cite \textit{G. Dassios}, Int. J. Non-Linear Mech. 42, No. 1, 146--156 (2007; Zbl 1200.37067) Full Text: DOI
Hashimoto, Yoshitake A short proof of Morley’s theorem. (English) Zbl 1157.51005 Elem. Math. 62, No. 3, 121 (2007). Reviewer: Mowaffaq Hajja (Irbid) MSC: 51M04 PDF BibTeX XML Cite \textit{Y. Hashimoto}, Elem. Math. 62, No. 3, 121 (2007; Zbl 1157.51005) Full Text: DOI
Čerin, Zvonko Configurations of inscribed equilateral triangles. (English) Zbl 1156.51017 J. Geom. 87, No. 1-2, 14-30 (2007). Reviewer: Erhard Quaisser (Potsdam) MSC: 51N20 51M04 51M15 PDF BibTeX XML Cite \textit{Z. Čerin}, J. Geom. 87, No. 1--2, 14--30 (2007; Zbl 1156.51017) Full Text: DOI
Robinson, P. L. The sphere is not flat. (English) Zbl 1136.53004 Am. Math. Mon. 113, No. 2, 171-173 (2006). Reviewer: Hubert Gollek (Berlin) MSC: 53A05 53-01 PDF BibTeX XML Cite \textit{P. L. Robinson}, Am. Math. Mon. 113, No. 2, 171--173 (2006; Zbl 1136.53004) Full Text: DOI
Dassios, G.; Fokas, A. S. The basic elliptic equations in an equilateral triangle. (English) Zbl 1186.35040 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 461, No. 2061, 2721-2748 (2005). MSC: 35J15 35C10 PDF BibTeX XML Cite \textit{G. Dassios} and \textit{A. S. Fokas}, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 461, No. 2061, 2721--2748 (2005; Zbl 1186.35040) Full Text: DOI arXiv
Soifer, Alexander Two new problems on covering triangles with triangles and squares with squares. (English) Zbl 1095.52007 Congr. Numerantium 175, 183-188 (2005). Reviewer: Robert Dawson (Halifax) MSC: 52C15 05B40 PDF BibTeX XML Cite \textit{A. Soifer}, Congr. Numerantium 175, 183--188 (2005; Zbl 1095.52007)
Yang, Xiao-Song; Tang, Yun A note on entropy of 3-buffer flow model. (English) Zbl 1063.37072 Chaos Solitons Fractals 23, No. 1, 87-91 (2005). MSC: 37N40 37B40 90B10 37D45 37B10 PDF BibTeX XML Cite \textit{X.-S. Yang} and \textit{Y. Tang}, Chaos Solitons Fractals 23, No. 1, 87--91 (2005; Zbl 1063.37072) Full Text: DOI
Čerin, Zvonko The vertex-midpoint-centroid triangles. (English) Zbl 1077.51004 Forum Geom. 4, 97-109 (2004). Reviewer: R. W. van der Waall (Amsterdam) MSC: 51M04 PDF BibTeX XML Cite \textit{Z. Čerin}, Forum Geom. 4, 97--109 (2004; Zbl 1077.51004) Full Text: Link
Marcu, Dănuţ A note on the triangles in graphs. (English) Zbl 1056.05047 Geombinatorics 14, No. 1, 18-20 (2004). Reviewer: Alexander Rappoport (Moskva) MSC: 05C12 05C38 PDF BibTeX XML Cite \textit{D. Marcu}, Geombinatorics 14, No. 1, 18--20 (2004; Zbl 1056.05047)
Conway, John H.; Soifer, Alexander Cover-up. (English) Zbl 1057.52009 Geombinatorics 14, No. 1, 8-9 (2004). Reviewer: Rolf Riesinger (Wien) MSC: 52C15 11H31 51M04 PDF BibTeX XML Cite \textit{J. H. Conway} and \textit{A. Soifer}, Geombinatorics 14, No. 1, 8--9 (2004; Zbl 1057.52009)
Kizbikenov, K. O.; Pervukhin, A. V. Lebesgue’s problem for quadrangles. (Russian) Zbl 1036.52013 Tr. Rubtsovsk. Ind. Inst. 12, 50-54 (2003). Reviewer: Victor Alexandrov (Novosibirsk) MSC: 52A38 52C15 52A10 PDF BibTeX XML Cite \textit{K. O. Kizbikenov} and \textit{A. V. Pervukhin}, Tr. Rubtsovsk. Ind. Inst. 12, 50--54 (2003; Zbl 1036.52013)
McCartin, Brian J. Eigenstructure of the equilateral triangle. I: The Dirichlet problem. (English) Zbl 1122.35311 SIAM Rev. 45, No. 2, 267-287 (2003). MSC: 35C05 35J05 35P10 PDF BibTeX XML Cite \textit{B. J. McCartin}, SIAM Rev. 45, No. 2, 267--287 (2003; Zbl 1122.35311) Full Text: DOI
Dombrovsky, S. F.; Rozvadovs’ka, G. P.; Sobko, E. V. On stratification of the symmetry center of equilateral triangles in the class of progression triangles. (Ukrainian. English summary) Zbl 1066.51010 Kraj. Zadachi Dyfer. Rivnyan’ 9, 29-34 (2002). Reviewer: Yu. I. Samoylenko (Kyïv) MSC: 51M99 PDF BibTeX XML Cite \textit{S. F. Dombrovsky} et al., Kraĭ. Zadachi Dyfer. Rivnyan' 9, 29--34 (2002; Zbl 1066.51010)
Warren, William E.; Byskov, Esben Three-fold symmetry restrictions on two-dimensional micropolar materials. (English) Zbl 1018.74002 Eur. J. Mech., A, Solids 21, No. 5, 779-792 (2002). MSC: 74A35 PDF BibTeX XML Cite \textit{W. E. Warren} and \textit{E. Byskov}, Eur. J. Mech., A, Solids 21, No. 5, 779--792 (2002; Zbl 1018.74002) Full Text: DOI
Roberts, Gareth E. Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. (English) Zbl 1181.70015 J. Differ. Equations 182, No. 1, 191-218 (2002). MSC: 70F07 PDF BibTeX XML Cite \textit{G. E. Roberts}, J. Differ. Equations 182, No. 1, 191--218 (2002; Zbl 1181.70015) Full Text: DOI
Long, Yiming; Sun, Shanzhong Four-body central configurations with some equal masses. (English) Zbl 1033.70004 Arch. Ration. Mech. Anal. 162, No. 1, 25-44 (2002). MSC: 70F10 PDF BibTeX XML Cite \textit{Y. Long} and \textit{S. Sun}, Arch. Ration. Mech. Anal. 162, No. 1, 25--44 (2002; Zbl 1033.70004) Full Text: DOI
Suzuki, Fukuzo An equilateral triangle with sides through the vertices of an isosceles triangle. (English) Zbl 1026.51010 Math. Mag. 74, No. 4, 304-310 (2001). MSC: 51M04 PDF BibTeX XML Cite \textit{F. Suzuki}, Math. Mag. 74, No. 4, 304--310 (2001; Zbl 1026.51010) Full Text: DOI
Martini, Horst; Swanepoel, Konrad J.; Weiß, Gunter The geometry of Minkowski spaces – a survey. I. (English) Zbl 0984.52004 Expo. Math. 19, No. 2, 97-142 (2001). Reviewer: Rolf Schneider (Freiburg i.Br.) MSC: 52A21 52A10 52-02 PDF BibTeX XML Cite \textit{H. Martini} et al., Expo. Math. 19, No. 2, 97--142 (2001; Zbl 0984.52004) Full Text: DOI arXiv
Finta, Béla Characterization of the isosceles and the equilateral triangle by algebraic relations. (English) Zbl 0996.51004 Ann. Univ. Sci. Budap. Rolando Eőtvős, Sect. Math. 43, 49-60 (2000). Reviewer: Milica Stojanovic (Beograd) MSC: 51M04 51M20 PDF BibTeX XML Cite \textit{B. Finta}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 43, 49--60 (2000; Zbl 0996.51004)
Essén, Hanno On the equilateral triangle solution to the three-body problem. (English) Zbl 0998.70008 Eur. J. Phys. 21, No. 6, 579-590 (2000). MSC: 70F07 70F10 PDF BibTeX XML Cite \textit{H. Essén}, Eur. J. Phys. 21, No. 6, 579--590 (2000; Zbl 0998.70008) Full Text: DOI
Nurmela, Kari J. Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles. (English) Zbl 0986.52011 Exp. Math. 9, No. 2, 241-250 (2000). Reviewer: Elena E.Berdysheva (Erlangen) MSC: 52C15 PDF BibTeX XML Cite \textit{K. J. Nurmela}, Exp. Math. 9, No. 2, 241--250 (2000; Zbl 0986.52011) Full Text: DOI Euclid EuDML
Chenciner, Alain; Venturelli, Andrea Minima of the action integral in the Newtonian problem of 4 bodies with equal masses: ‘Hip-hop’ orbits. (Minima de l’intégrale d’action du problème newtonien de 4 corps de masses égales dans \(R^3\): Orbites ‘hip-hop’.) (French) Zbl 0984.70009 Celest. Mech. Dyn. Astron. 77, No. 2, 139-152 (2000). MSC: 70F10 PDF BibTeX XML Cite \textit{A. Chenciner} and \textit{A. Venturelli}, Celest. Mech. Dyn. Astron. 77, No. 2, 139--152 (2000; Zbl 0984.70009) Full Text: DOI
Long, Yiming; Zhang, Shiqing Geometric characterizations for variational minimization solutions of the 3-body problem. (English) Zbl 0980.70009 Acta Math. Sin., Engl. Ser. 16, No. 4, 579-592 (2000). MSC: 70F07 70G75 PDF BibTeX XML Cite \textit{Y. Long} and \textit{S. Zhang}, Acta Math. Sin., Engl. Ser. 16, No. 4, 579--592 (2000; Zbl 0980.70009) Full Text: DOI
Kuipers, Jack B. Quaternions and rotation sequences. (English) Zbl 0993.53005 Mladenov, I. M. (ed.) et al., Proceedings of the international conference on geometry, integrability and quantization, Varna, Bulgaria, September 1-10, 1999. Sofia: Coral Press Scientific Publishing. 127-143 (2000). Reviewer: Victor Alexandrov (Novosibirsk) MSC: 53A17 70B10 70F15 PDF BibTeX XML Cite \textit{J. B. Kuipers}, in: Proceedings of the international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, September 1--10, 1999. Sofia: Coral Press Scientific Publishing. 127--143 (2000; Zbl 0993.53005)
Long, Yiming; Zhang, Shiqing Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy. (English) Zbl 0947.70009 J. Differ. Equations 160, No. 2, 422-438 (2000). MSC: 70F07 70H30 PDF BibTeX XML Cite \textit{Y. Long} and \textit{S. Zhang}, J. Differ. Equations 160, No. 2, 422--438 (2000; Zbl 0947.70009) Full Text: DOI
Ábrego, B. M.; Fernández-Merchant, S. On the maximum number of equilateral triangles. I. (English) Zbl 0963.52007 Discrete Comput. Geom. 23, No. 1, 129-135 (2000). MSC: 52C10 PDF BibTeX XML Cite \textit{B. M. Ábrego} and \textit{S. Fernández-Merchant}, Discrete Comput. Geom. 23, No. 1, 129--135 (2000; Zbl 0963.52007) Full Text: DOI
Djordjević, Radosav Ž. Some inequalities for triangles: Old and new results. (English) Zbl 0980.51014 Rassias, Themistocles M. (ed.) et al., Analytic and geometric inequalities and applications. Dordrecht: Kluwer Academic Publishers. Math. Appl., Dordr. 478, 69-92 (1999). Reviewer: Horst Martini (Chemnitz) MSC: 51M04 51M16 PDF BibTeX XML Cite \textit{R. Ž. Djordjević}, Math. Appl., Dordr. 478, 69--92 (1999; Zbl 0980.51014)
Zhang, Shiqing The least action for 3-body problems. (English) Zbl 0963.70543 Int. J. Math. Game Theory Algebra 9, No. 2, 131-134 (1999). MSC: 70F07 70H30 PDF BibTeX XML Cite \textit{S. Zhang}, Int. J. Math. Game Theory Algebra 9, No. 2, 131--134 (1999; Zbl 0963.70543)
Pekarsky, Sergey; Marsden, Jerrold E. Point vortices on a sphere: Stability of relative equilibria. (English) Zbl 0927.37013 J. Math. Phys. 39, No. 11, 5894-5907 (1998). MSC: 37C75 37C80 70H05 70K20 76B47 70H14 53D20 37J15 PDF BibTeX XML Cite \textit{S. Pekarsky} and \textit{J. E. Marsden}, J. Math. Phys. 39, No. 11, 5894--5907 (1998; Zbl 0927.37013) Full Text: DOI Link
Chernyshov, A. D. Nonsteady flow of viscous fluid in a tube of triangular cross-section. (English. Russian original) Zbl 0972.76020 Fluid Dyn. 33, No. 5, 803-806 (1998); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 1998, No. 5, 199-203 (1998). Reviewer: Tomislav Zlatanovski (Skopje) MSC: 76D05 PDF BibTeX XML Cite \textit{A. D. Chernyshov}, Fluid Dyn. 33, No. 5, 803--806 (1998; Zbl 0972.76020); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 1998, No. 5, 199--203 (1998) Full Text: DOI