Friedman, Erich; Tilley, James Saturated sets of distinct integer equilateral triangles. (English) Zbl 1514.52013 Geombinatorics 32, No. 3, 117-121 (2023). Reviewer: Oliver Roche-Newton (Linz) MSC: 52C10 05C15 PDF BibTeX XML Cite \textit{E. Friedman} and \textit{J. Tilley}, Geombinatorics 32, No. 3, 117--121 (2023; Zbl 1514.52013)
Maehara, Hiroshi Spherical ellipses and equilateral spherical triangles. (English) Zbl 07742218 Yokohama Math. J. 68, 69-77 (2022). MSC: 51M09 52A40 PDF BibTeX XML Cite \textit{H. Maehara}, Yokohama Math. J. 68, 69--77 (2022; Zbl 07742218) Full Text: DOI
Sadhu, Sanjib; Roy, Sasanka; Nandi, Soumen; Nandy, Subhas C.; Roy, Suchismita Efficient algorithm for computing the triangle maximizing the length of its smallest side inside a convex polygon. (English) Zbl 1462.68209 Int. J. Found. Comput. Sci. 31, No. 4, 421-443 (2020). MSC: 68U05 52B55 68W40 PDF BibTeX XML Cite \textit{S. Sadhu} et al., Int. J. Found. Comput. Sci. 31, No. 4, 421--443 (2020; Zbl 1462.68209) Full Text: DOI Backlinks: MO
Nakamura, Hiroaki; Ogawa, Hiroyuki A family of geometric operators on triangles with two complex variables. (English) Zbl 1436.51016 J. Geom. 111, No. 1, Paper No. 2, 16 p. (2020). Reviewer: Niels Lubbes (Linz) MSC: 51M15 51N20 12F05 43A32 PDF BibTeX XML Cite \textit{H. Nakamura} and \textit{H. Ogawa}, J. Geom. 111, No. 1, Paper No. 2, 16 p. (2020; Zbl 1436.51016) Full Text: DOI arXiv
Segovia-Chaves, Francis; Vinck-Posada, Herbert; Navarro-Barón, Erik Photonic band structure in a two-dimensional hexagonal lattice of equilateral triangles. (English) Zbl 1477.82005 Phys. Lett., A 383, No. 25, 3207-3213 (2019). MSC: 82B20 82D25 78A40 78A60 PDF BibTeX XML Cite \textit{F. Segovia-Chaves} et al., Phys. Lett., A 383, No. 25, 3207--3213 (2019; Zbl 1477.82005) Full Text: DOI
Pach, János; Tardos, Gábor Tiling the plane with equilateral triangles. (English) Zbl 1430.52027 Geombinatorics 28, No. 4, 201-209 (2019). Reviewer: Christian Richter (Jena) MSC: 52C20 05C81 52C25 60G50 PDF BibTeX XML Cite \textit{J. Pach} and \textit{G. Tardos}, Geombinatorics 28, No. 4, 201--209 (2019; Zbl 1430.52027) Full Text: arXiv
Et-Taoui, Boumediene On the medians of a triangle in two-point homogeneous spaces. (English) Zbl 1418.51007 J. Geom. 110, No. 2, Paper No. 32, 14 p. (2019). MSC: 51M09 51M15 51F20 51F25 PDF BibTeX XML Cite \textit{B. Et-Taoui}, J. Geom. 110, No. 2, Paper No. 32, 14 p. (2019; Zbl 1418.51007) Full Text: DOI
Herrera, Blas Algebraic equations of all involucre conics in the configuration of the \(c\)-inscribed equilateral triangles of a triangle. (English) Zbl 1395.51010 Forum Geom. 18, 223-238 (2018). MSC: 51J15 PDF BibTeX XML Cite \textit{B. Herrera}, Forum Geom. 18, 223--238 (2018; Zbl 1395.51010) Full Text: Link
Vickers, Glenn T. Equilateral Jacobi triangles. (English) Zbl 1366.51006 Forum Geom. 17, 101-113 (2017). MSC: 51M04 PDF BibTeX XML Cite \textit{G. T. Vickers}, Forum Geom. 17, 101--113 (2017; Zbl 1366.51006) Full Text: Link
Hung, Tran Quang Another simple construction of the golden section with equilateral triangles. (English) Zbl 1362.51027 Forum Geom. 17, 47-48 (2017). MSC: 51M15 51M04 PDF BibTeX XML Cite \textit{T. Q. Hung}, Forum Geom. 17, 47--48 (2017; Zbl 1362.51027) Full Text: Link
Ionascu, Eugen J. New parametrization of \(A^2 + B^2 + C^2 = 3D^2\) and Lagrange’s four-square theorem. (New parametrization of \(A^2 + B^2 + C^2 = 3D^2\) and Langrange’s four-square theorem.) (English) Zbl 1389.52016 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 62, No. 2, Part 3, 823-833 (2016). MSC: 52C07 05A15 11D09 PDF BibTeX XML Cite \textit{E. J. Ionascu}, An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 62, No. 2, Part 3, 823--833 (2016; Zbl 1389.52016) Full Text: arXiv
Dao, Thanh Oai Some golden sections in the equilateral and right isosceles triangles. (English) Zbl 1347.51005 Forum Geom. 16, 269-273 (2016). Reviewer: Antonio M. Oller (Zaragoza) MSC: 51M04 PDF BibTeX XML Cite \textit{T. O. Dao}, Forum Geom. 16, 269--273 (2016; Zbl 1347.51005) Full Text: Link
Nicollier, Grégoire Some theorems on polygons with one-line spectral proofs. (English) Zbl 1329.51012 Forum Geom. 15, 267-273 (2015). MSC: 51M05 PDF BibTeX XML Cite \textit{G. Nicollier}, Forum Geom. 15, 267--273 (2015; Zbl 1329.51012) Full Text: Link
Ionascu, Eugen J. Equilateral triangles in \(\mathbb Z^4\). (English) Zbl 1323.52009 Vietnam J. Math. 43, No. 3, 525-539 (2015). MSC: 52C07 05A15 68R05 PDF BibTeX XML Cite \textit{E. J. Ionascu}, Vietnam J. Math. 43, No. 3, 525--539 (2015; Zbl 1323.52009) Full Text: DOI arXiv
Oai, Dao Thanh Equilateral triangles and Kiepert perspectors in complex numbers. (English) Zbl 1315.51011 Forum Geom. 15, 105-114 (2015). MSC: 51M04 PDF BibTeX XML Cite \textit{D. T. Oai}, Forum Geom. 15, 105--114 (2015; Zbl 1315.51011) Full Text: Link
Ritchey, Sarah Points on a circle with integer distances to vertices of an inscribed equilateral triangle. (English) Zbl 1360.51010 Pi Mu Epsilon J. 14, No. 1, 39-42 (2014). MSC: 51M04 11D09 PDF BibTeX XML Cite \textit{S. Ritchey}, Pi Mu Epsilon J. 14, No. 1, 39--42 (2014; Zbl 1360.51010)
Conway, John A characterization of the equilateral triangles and some consequences. (English) Zbl 1311.51011 Math. Intell. 36, No. 2, 1-2 (2014). Reviewer: Wolfgang Globke (Adelaide) MSC: 51M04 PDF BibTeX XML Cite \textit{J. Conway}, Math. Intell. 36, No. 2, 1--2 (2014; Zbl 1311.51011) Full Text: DOI
Nielsen, Colleen; Powers, Christa Intersecting equilateral triangles. (English) Zbl 1282.51012 Forum Geom. 13, 219-225 (2013). MSC: 51M04 51M05 PDF BibTeX XML Cite \textit{C. Nielsen} and \textit{C. Powers}, Forum Geom. 13, 219--225 (2013; Zbl 1282.51012) Full Text: Link
Ionascu, Eugen J. Regular octahedra in \(\{0,1,\dots,n\}^3\). (English) Zbl 1277.52015 Fasc. Math. 48, 49-59 (2012). Reviewer: Mihai Cipu (Bucureşti) MSC: 52C07 05A15 11D09 68R05 PDF BibTeX XML Cite \textit{E. J. Ionascu}, Fasc. Math. 48, 49--59 (2012; Zbl 1277.52015)
Vartziotis, Dimitris; Huggenberger, Simon Iterative geometric triangle transformations. (English) Zbl 1262.51013 Elem. Math. 67, No. 2, 68-83 (2012). Reviewer: Agota H. Temesvári (Pécs) MSC: 51M05 51M04 PDF BibTeX XML Cite \textit{D. Vartziotis} and \textit{S. Huggenberger}, Elem. Math. 67, No. 2, 68--83 (2012; Zbl 1262.51013) Full Text: DOI
Shirali, Shailesh A. Triangles with one angle equal to 60 degrees. (English) Zbl 1383.51028 Math. Gaz. 95, No. 533, 227-234 (2011). MSC: 51M04 PDF BibTeX XML Cite \textit{S. A. Shirali}, Math. Gaz. 95, No. 533, 227--234 (2011; Zbl 1383.51028) Full Text: DOI
Krčadinac, Vedran Napoleon’s quasigroups. (English) Zbl 1285.20066 Math. Slovaca 61, No. 6, 885-894 (2011). Reviewer: Zdenka Kolar-Begović (Osijek) MSC: 20N05 51A25 51M04 PDF BibTeX XML Cite \textit{V. Krčadinac}, Math. Slovaca 61, No. 6, 885--894 (2011; Zbl 1285.20066) Full Text: DOI
Pop, Vasile Combinatorics problems on a triangular board. (English) Zbl 1200.05040 J. Sci. Arts 9, No. 2, 165-172 (2009). MSC: 05B15 PDF BibTeX XML Cite \textit{V. Pop}, J. Sci. Arts 9, No. 2, 165--172 (2009; Zbl 1200.05040)
Ionascu, Eugen J. A characterization of regular tetrahedra in \(\mathbb Z^3\). (English) Zbl 1216.11036 J. Number Theory 129, No. 5, 1066-1074 (2009). MSC: 11D09 11D04 51M04 11M20 PDF BibTeX XML Cite \textit{E. J. Ionascu}, J. Number Theory 129, No. 5, 1066--1074 (2009; Zbl 1216.11036) Full Text: DOI arXiv
Blagojević, Pavle V. M.; Blagojević, Aleksandra S. Dimitrijević; McCleary, John Equilateral triangles on a Jordan curve and a generalization of a theorem of Dold. (English) Zbl 1153.53004 Topology Appl. 156, No. 1, 16-23 (2008). MSC: 53A04 55R80 55N91 05B30 PDF BibTeX XML Cite \textit{P. V. M. Blagojević} et al., Topology Appl. 156, No. 1, 16--23 (2008; Zbl 1153.53004) Full Text: DOI
Ionascu, E. J. Counting all equilateral triangles in \(\{0,1,\dots ,n\}^3\). (English) Zbl 1164.11016 Acta Math. Univ. Comen., New Ser. 77, No. 1, 129-140 (2008). Reviewer: Florin Nicolae (Berlin) MSC: 11D09 11D04 51M04 51M20 PDF BibTeX XML Cite \textit{E. J. Ionascu}, Acta Math. Univ. Comen., New Ser. 77, No. 1, 129--140 (2008; Zbl 1164.11016) Full Text: EuDML EMIS
Averkov, Gennadiy On planar convex bodies of given Minkowskian thickness and least possible area. (English) Zbl 1077.52006 Arch. Math. 84, No. 2, 183-192 (2005). Reviewer: A. C. Thompson (Halifax) MSC: 52A21 52A10 52A38 PDF BibTeX XML Cite \textit{G. Averkov}, Arch. Math. 84, No. 2, 183--192 (2005; Zbl 1077.52006) Full Text: DOI
Sikorska, Justyna; Szostok, Tomasz On mappings preserving equilateral triangles. (English) Zbl 1053.51012 J. Geom. 80, No. 1-2, 209-218 (2004). Reviewer: Victor V. Pambuccian (Phoenix) MSC: 51M04 46C05 39B22 PDF BibTeX XML Cite \textit{J. Sikorska} and \textit{T. Szostok}, J. Geom. 80, No. 1--2, 209--218 (2004; Zbl 1053.51012)
Fabińska, Ewa; Lassak, Marek Large equilateral triangles inscribed in the unit disk of a Minkowski plane. (English) Zbl 1077.52007 Beitr. Algebra Geom. 45, No. 2, 517-525 (2004). Reviewer: Robert Dawson (Halifax) MSC: 52A21 52A10 PDF BibTeX XML Cite \textit{E. Fabińska} and \textit{M. Lassak}, Beitr. Algebra Geom. 45, No. 2, 517--525 (2004; Zbl 1077.52007) Full Text: EuDML EMIS
Fabińska, Ewa; Lassak, Marek Large equilateral triangle in positive or negative orientation inscribed in the Minkowski unit disk. (English) Zbl 1059.52004 Stud. Univ. Žilina, Math. Ser. 16, No. 1, 19-24 (2003). Reviewer: Carla Peri (Milano-Largo) MSC: 52A10 52A21 PDF BibTeX XML Cite \textit{E. Fabińska} and \textit{M. Lassak}, Stud. Univ. Žilina, Math. Ser. 16, No. 1, 19--24 (2003; Zbl 1059.52004)
Jerrard, Richard P.; Wetzel, John E. Equilateral triangles and triangles. (English) Zbl 1034.51006 Am. Math. Mon. 109, No. 10, 909-915 (2002). Reviewer: Herbert Hotje (Hannover) MSC: 51M04 PDF BibTeX XML Cite \textit{R. P. Jerrard} and \textit{J. E. Wetzel}, Am. Math. Mon. 109, No. 10, 909--915 (2002; Zbl 1034.51006) Full Text: DOI
Bier, Sabrina Equilaternal triangles intercepted by oriented parallelians. (English) Zbl 0986.51009 Forum Geom. 1, 25-32 (2001). MSC: 51M04 11A99 PDF BibTeX XML Cite \textit{S. Bier}, Forum Geom. 1, 25--32 (2001; Zbl 0986.51009) Full Text: Link
Drápal, Aleš Hamming distances of groups and quasi-groups. (English) Zbl 0986.20065 Discrete Math. 235, No. 1-3, 189-197 (2001). Reviewer: I.Corovei (Cluj-Napoca) MSC: 20N05 20N02 05B15 52B45 PDF BibTeX XML Cite \textit{A. Drápal}, Discrete Math. 235, No. 1--3, 189--197 (2001; Zbl 0986.20065) Full Text: DOI
Ábrego, B. M.; Fernández-Merchant, S. On the maximum number of equilateral triangles. I. (English) Zbl 0963.52007 Discrete Comput. Geom. 23, No. 1, 129-135 (2000). MSC: 52C10 PDF BibTeX XML Cite \textit{B. M. Ábrego} and \textit{S. Fernández-Merchant}, Discrete Comput. Geom. 23, No. 1, 129--135 (2000; Zbl 0963.52007) Full Text: DOI
Anatassova, Vassia K.; Turner, J. C. On triangles and squares marked with goldpoints – studies of golden tiles. (English) Zbl 0959.11007 Howard, Fredric T. (ed.), Applications of Fibonacci numbers. Volume 8: Proceedings of the eighth international research conference on Fibonacci numbers and their applications, Rochester, NY, USA, June 22-26, 1998. Dordrecht: Kluwer Academic Publishers. 11-25 (1999). MSC: 11B37 11B39 51M04 PDF BibTeX XML Cite \textit{V. K. Anatassova} and \textit{J. C. Turner}, in: Applications of Fibonacci numbers. Volume 8: Proceedings of the eighth international research conference on Fibonacci numbers and their applications, Rochester, NY, USA, June 22--26, 1998. Dordrecht: Kluwer Academic Publishers. 11--25 (1999; Zbl 0959.11007)
Harborth, Heiko; Szabó, László; Ujváry-Menyhárt, Zoltán Smallest limited vertex-to-vertex snakes of unit triangles. (English) Zbl 0951.52016 Geom. Dedicata 78, No. 2, 171-181 (1999). Reviewer: W.Moser (Montreal) MSC: 52C15 52C10 PDF BibTeX XML Cite \textit{H. Harborth} et al., Geom. Dedicata 78, No. 2, 171--181 (1999; Zbl 0951.52016) Full Text: DOI
Čerin, Zvonko Hyperbolas, orthology, and antipedal triangles. (English) Zbl 0928.51012 Glas. Mat., III. Ser. 33, No. 2, 143-160 (1998). Reviewer: Richard Koch (München) MSC: 51N20 51M04 PDF BibTeX XML Cite \textit{Z. Čerin}, Glas. Mat., III. Ser. 33, No. 2, 143--160 (1998; Zbl 0928.51012)
Davis, Philip J. Mathematical encounters of the second kind. (English) Zbl 0971.00002 Boston: Birkhäuser. viii, 304 p. (1997). Reviewer: F.J.Papp (Ann Arbor) MSC: 00A05 00-01 PDF BibTeX XML Cite \textit{P. J. Davis}, Mathematical encounters of the second kind. Boston: Birkhäuser (1997; Zbl 0971.00002)
Payan, Charles Packing of equal disks in an equilateral triangle: On a conjecture of Erdős-Oler. (Empilement de cercles égaux dans un triangle équilatéral: A propos d’une conjecture d’Erdős-Oler.) (French) Zbl 0897.52003 Discrete Math. 165-166, 555-565 (1997). Reviewer: J.M.Wills (Siegen) MSC: 52C15 05B40 PDF BibTeX XML Cite \textit{C. Payan}, Discrete Math. 165--166, 555--565 (1997; Zbl 0897.52003) Full Text: DOI
Sesiano, J. The Kitāb al-Misāḥa of Abū Kāmil. (Le Kitāb al-Misāḥa d’Abū Kāmil.) (French) Zbl 0861.01007 Centaurus 38, No. 1, 1-21 (1996). Reviewer: G.A.Saliba (New York) MSC: 01A30 PDF BibTeX XML Cite \textit{J. Sesiano}, Centaurus 38, No. 1, 1--21 (1996; Zbl 0861.01007) Full Text: DOI
Guy, Richard K. My favorite elliptic curve: A tale of two types of triangles. (English) Zbl 0847.11031 Am. Math. Mon. 102, No. 9, 771-781 (1995). Reviewer: N.Tzanakis (Iraklion) MSC: 11G05 14G05 11D25 PDF BibTeX XML Cite \textit{R. K. Guy}, Am. Math. Mon. 102, No. 9, 771--781 (1995; Zbl 0847.11031) Full Text: DOI
Klaaßen, Bernhard Infinite perfect triangle dissections also for equilateral triangles. (Infinite perfekte Dreieckszerlegungen auch für gleichseitige Dreiecke.) (German) Zbl 0847.52019 Elem. Math. 50, No. 3, 116-121 (1995). Reviewer: R.Koch (München) MSC: 52C20 PDF BibTeX XML Cite \textit{B. Klaaßen}, Elem. Math. 50, No. 3, 116--121 (1995; Zbl 0847.52019) Full Text: EuDML
Jones, Christopher B. Periodic tilings with vertices of species number 3. (English, French) Zbl 0788.52018 Topologie Struct. 20, 49-54 (1993). Reviewer: A.H.Temesvári (Sopron) MSC: 52C20 51M20 PDF BibTeX XML Cite \textit{C. B. Jones}, Topologie Struct. 20, 49--54 (1993; Zbl 0788.52018)
Ostoja-Starzewski, M. Bounds on constitutive response for a class of random material microstructures. (English) Zbl 0728.73100 Comput. Struct. 37, No. 2, 163-167 (1990). MSC: 74S30 74A40 05C90 PDF BibTeX XML Cite \textit{M. Ostoja-Starzewski}, Comput. Struct. 37, No. 2, 163--167 (1990; Zbl 0728.73100) Full Text: DOI
Wetzel, John E. An elaboration on an example of H. G. Steiner. (English) Zbl 0708.51015 Math. Semesterber. 37, No. 1, 88-95 (1990). Reviewer: H.Heineken MSC: 51M15 PDF BibTeX XML Cite \textit{J. E. Wetzel}, Math. Semesterber. 37, No. 1, 88--95 (1990; Zbl 0708.51015)
State, Radu Generalizations and applications of a classical result in triangle geometry. (Romanian) Zbl 0714.51007 Gaz. Mat., Bucur. 94, No. 2, 56-63 (1989). Reviewer: D.Bra\^nzei MSC: 51M04 PDF BibTeX XML Cite \textit{R. State}, Gaz. Mat., Bucur. 94, No. 2, 56--63 (1989; Zbl 0714.51007)
Tavantzis, John; Ting, Lu The dynamics of three vortices revisited. (English) Zbl 0657.76026 Phys. Fluids 31, No. 6, 1392-1409 (1988). Reviewer: J.Burbea MSC: 76B47 76E30 PDF BibTeX XML Cite \textit{J. Tavantzis} and \textit{L. Ting}, Phys. Fluids 31, No. 6, 1392--1409 (1988; Zbl 0657.76026) Full Text: DOI
Bezdek, A.; Bezdek, K. Über einige dünnste Kreisüberdeckungen konvexer Bereiche durch endliche Anzahl von kongruenten Kreisen. (German) Zbl 0583.52003 Beitr. Algebra Geom. 19, 159-168 (1985). Reviewer: J.Schaer MSC: 52C17 PDF BibTeX XML Cite \textit{A. Bezdek} and \textit{K. Bezdek}, Beitr. Algebra Geom. 19, 159--168 (1985; Zbl 0583.52003) Full Text: EuDML
Yokoyama, Masaaki Automated computer simulation of two-dimensional elastostatic problems by the finite element method. (English) Zbl 0577.73068 Int. J. Numer. Methods Eng. 21, 2273-2287 (1985). MSC: 74S05 74-04 65Yxx 74S99 65C20 68W99 PDF BibTeX XML Cite \textit{M. Yokoyama}, Int. J. Numer. Methods Eng. 21, 2273--2287 (1985; Zbl 0577.73068) Full Text: DOI
Malkevitch, Joseph Tiling convex polygons with equilateral triangles and squares. (English) Zbl 0575.52007 Discrete geometry and convexity, Proc. Conf., New York 1982, Ann. N.Y. Acad. Sci. 440, 299-303 (1985). Reviewer: E.Molnár MSC: 52C17 PDF BibTeX XML
Gerver, Joseph L. The dissection of a polygon into nearly equilateral triangles. (English) Zbl 0547.05026 Geom. Dedicata 16, 93-106 (1984). MSC: 05B45 51M15 PDF BibTeX XML Cite \textit{J. L. Gerver}, Geom. Dedicata 16, 93--106 (1984; Zbl 0547.05026) Full Text: DOI
Harary, Frank; Melter, Robert The graphs with no equilateral triangles. (English) Zbl 0599.05051 Math. Stud. 43(1982), 425-427 (1975). MSC: 05C75 05C38 PDF BibTeX XML Cite \textit{F. Harary} and \textit{R. Melter}, Math. Stud. 43, 425--427 (1982; Zbl 0599.05051)
Purtov, V. A.; Pshenichnov, G. I. Optimal design of a spherical net-like shell with a fixed first eigenfrequency of axisymmetric oscillations. (English. Russian original) Zbl 0497.73105 J. Appl. Math. Mech. 45, 672-676 (1982); translation from Prikl. Mat. Mekh. 45, 895-901 (1981). MSC: 74P99 74H45 74K15 65K10 PDF BibTeX XML Cite \textit{V. A. Purtov} and \textit{G. I. Pshenichnov}, J. Appl. Math. Mech. 45, 672--676 (1981; Zbl 0497.73105); translation from Prikl. Mat. Mekh. 45, 895--901 (1981) Full Text: DOI
Ochonski, Stanislaw; Sluzalec, Andrzej Approximate constructions of a trihedral prism and pyramid section in an equilateral triangle. (Polish) Zbl 0502.51009 Zesz. Nauk., Geom. 11, 95-98 (1980). MSC: 51N05 51M15 PDF BibTeX XML Cite \textit{S. Ochonski} and \textit{A. Sluzalec}, Zesz. Nauk., Geom. 11, 95--98 (1980; Zbl 0502.51009)
Croft, H. T. Convex curves in which a triangle can revolve. (English) Zbl 0476.52003 Math. Proc. Camb. Philos. Soc. 88, 385-393 (1980). MSC: 52A10 52Bxx PDF BibTeX XML Cite \textit{H. T. Croft}, Math. Proc. Camb. Philos. Soc. 88, 385--393 (1980; Zbl 0476.52003) Full Text: DOI
Delandtsheer, Anne; Vanden Cruyce, Patricia Orbits of edge-to-edge tilings by equilateral triangles, squares and regular hexagons. (English) Zbl 0452.51020 J. Geom. 15, 119-139 (1980). MSC: 51M20 PDF BibTeX XML Cite \textit{A. Delandtsheer} and \textit{P. Vanden Cruyce}, J. Geom. 15, 119--139 (1980; Zbl 0452.51020) Full Text: DOI
Van der Laan, G.; Talman, A. J. J. An improvement of fixed point algorithms by using a good triangulation. (English) Zbl 0433.90089 Math. Program. 18, 274-285 (1980). MSC: 90C99 54H25 65K05 PDF BibTeX XML Cite \textit{G. Van der Laan} and \textit{A. J. J. Talman}, Math. Program. 18, 274--285 (1980; Zbl 0433.90089) Full Text: DOI
Meyerson, Mark D. Equilateral triangles and continuous curves. (English) Zbl 0372.57003 Fundam. Math. 110, 1-9 (1980). MSC: 57N05 51M99 57N50 51F99 PDF BibTeX XML Cite \textit{M. D. Meyerson}, Fundam. Math. 110, 1--9 (1980; Zbl 0372.57003) Full Text: DOI EuDML
Crilly, Tony Finite vector spaces from rotating triangles. (English) Zbl 0414.15001 Math. Mag. 52, 163-168 (1979). MSC: 15A03 15A18 51M20 12F05 PDF BibTeX XML Cite \textit{T. Crilly}, Math. Mag. 52, 163--168 (1979; Zbl 0414.15001) Full Text: DOI
Kirkman, T. P. Lösung der Aufgabe 4038. (Solution of question 4038.) (English) JFM 17.0521.01 Ed. Times 42, 108-109 (1885). Reviewer: Lampe, Prof. (Berlin) MSC: 51M15 51M20 PDF BibTeX XML
Günther, S. A paradox in elementary geometry. (Ein Paradoxon der Elementargeometrie.) (German) JFM 16.0481.02 Z. Realsch. IX. 597-604 (1884). Reviewer: Günter, Prof. (München) MSC: 51M04 51M15 51M20 53D50 PDF BibTeX XML
Hain, E. On the equilateral triangle. (Ueber das gleichseitige Dreieck.) (German) JFM 14.0458.03 Hoppe Arch. LXIX, 44-54 (1883). Reviewer: Maynz, Dr. (Ludwigslust) MSC: 51M04 51M15 51M20 PDF BibTeX XML Cite \textit{E. Hain}, Grunert Arch. 69, 44--54 (1883; JFM 14.0458.03)
von Wasserschleben. On the theory of equilateral triangle inscribed in a conic. (Zur Theorie des eingeschrieben gleichseitigen Dreiecks in den Kegelschnitten.) (German) JFM 07.0433.01 Grunert Arch. LVII, 302-316 (1875). Reviewer: Maynz, Dr. (Ludwigslust) MSC: 51N10 PDF BibTeX XML Cite \textit{von Wasserschleben}, Grunert Arch. 57, 302--316 (1875; JFM 07.0433.01)