×

Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization. (English) Zbl 1378.81174

Summary: In this paper we combine concepts from Riemannian optimization [P. A. Absil et al., Optimization algorithms on matrix manifolds. Princeton, NJ: Princeton University Press (2008; Zbl 1147.65043)] and the theory of Sobolev gradients [J. W. Neuberger, Sobolev gradients and differential equations. 2nd ed. Dordrecht: Springer (2010; Zbl 1203.35004)] to derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy functional with rotation. The conservation of the number of particles in the system constrains the minimizers to lie on a manifold corresponding to the unit \(L^2\) norm. The idea developed here is to transform the original constrained optimization problem into an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an \(H^1\) inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest descent method is derived based on projected gradients and retraction of an intermediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is derived at the continuous level based on the “optimize-then-discretize” paradigm instead of the usual “discretize-then-optimize” approach, as this ensures robustness of the method when adaptive mesh refinement is performed in computations. We evaluate various design choices inherent in the formulation of the method and conclude with recommendations concerning selection of the best options. Numerical tests carried out in the finite-element setting based on Lagrangian piecewise quadratic space discretization demonstrate that the proposed RCG method outperforms the simple gradient descent RG method in terms of rate of convergence. While on simple problems a Newton-type method implemented in the Ipopt library exhibits a faster convergence than the RCG approach, the two methods perform similarly on more complex problems requiring the use of mesh adaptation. At the same time the RCG approach has far fewer tunable parameters. Finally, the RCG method is extensively tested by computing complicated vortex configurations in rotating Bose-Einstein condensates, a task made challenging by large values of the nonlinear interaction constant and the rotation rate as well as by strongly anisotropic trapping potentials.

MSC:

81V70 Many-body theory; quantum Hall effect
35Q55 NLS equations (nonlinear Schrödinger equations)
82D05 Statistical mechanics of gases
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics
39A12 Discrete version of topics in analysis
65J15 Numerical solutions to equations with nonlinear operators
46N40 Applications of functional analysis in numerical analysis
90C53 Methods of quasi-Newton type
90C30 Nonlinear programming
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, {\it Optimization Algorithms on Matrix Manifolds}, Princeton University Press, 2008. · Zbl 1147.65043
[2] R. A. Adams and J. F. Fournier, {\it Sobolev Spaces}, Elsevier, 2005. · Zbl 0385.46024
[3] A. Aftalion, {\it Vortices in Bose-Einstein Condensates}, Birkhäuser, 2006. · Zbl 1129.82004
[4] A. Aftalion and I. Danaila, {\it Three-dimensional vortex configurations in a rotating Bose-Einstein condensate}, Phys. Rev. A, 68 (2003), 023603.
[5] A. Aftalion and I. Danaila, {\it Giant vortices in combined harmonic and quartic traps}, Phys. Rev. A, 69 (2004), 033608.
[6] A. Aftalion and Q. Du, {\it Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime}, Phys. Rev. A, 64 (2001), 063603.
[7] F. Alouges, {\it A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case}, SIAM J. Numer. Anal., 34 (1997), pp. 1708-1726, . · Zbl 0886.35010
[8] F. Alouges and C. Audouze, {\it Gradient flows, and application to the Hartree-Fock functional}, Numer. Methods Partial Differential Equations, 25 (2009), pp. 380-400. · Zbl 1166.65039
[9] X. Antoine, C. Besse, and W. Bao, {\it Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations}, Comput. Phys. Comm., 184 (2013), pp. 2621-2633. · Zbl 1344.35130
[10] X. Antoine, C. Besse, R. Duboscq, and V. Rispoli, {\it Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations}, Comput. Phys. Comm., 219 (2017), pp. 70-78. · Zbl 1411.81026
[11] X. Antoine and R. Duboscq, {\it Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates}, J. Comput. Phys., 258 (2014), pp. 509-523. · Zbl 1349.82027
[12] X. Antoine, A. Levitt, and Q. Tang, {\it Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method}, J. Comput. Phys., 343 (2017), pp. 92-109. · Zbl 1380.81496
[13] W. Bao, {\it Ground states and dynamics of rotating Bose-Einstein condensates}, in Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2006, pp. 215-255.
[14] W. Bao, {\it Mathematical models and numerical methods for Bose-Einstein condensation}, in Proc. of the International Congress of Mathematicians (Seoul 2014), vol. IV, 2014, pp. 971-996. · Zbl 1373.35283
[15] W. Bao and Y. Cai, {\it Mathematical theory and numerical methods for Bose-Einstein condensation}, Kinetic Related Models, 6 (2013), pp. 1-135. · Zbl 1266.82009
[16] W. Bao and Q. Du, {\it Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow}, SIAM J. Sci. Comput., 25 (2004), pp. 1674-1697, . · Zbl 1061.82025
[17] W. Bao and J. Shen, {\it A generalized Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates}, J. Comput. Phys., 227 (2008), pp. 9778-9793. · Zbl 1149.76039
[18] W. Bao and W. Tang, {\it Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional}, J. Comput. Phys., 187 (2003), pp. 230-254. · Zbl 1028.82500
[19] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, {\it Manopt, a MATLAB toolbox for optimization on manifolds}, J. Mach. Learn. Res., 15 (2014), pp. 1455-1459. · Zbl 1319.90003
[20] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, {\it Fast rotation of a Bose-Einstein condensate}, Phys. Rev. Lett., 92 (2004), 050403.
[21] M. Caliari and S. Rainer, {\it GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations}, Comput. Phys. Comm., 184 (2013), pp. 812-823. · Zbl 1302.35004
[22] R. Caplan, {\it NLSEmagic: Nonlinear Schrödinger equation multi-dimensional MATLAB-based GPU-accelerated integrators using compact high-order schemes}, Comput. Phys. Comm., 184 (2013), pp. 1250-1271.
[23] M. Castro-Diaz, F. Hecht, and B. Mohammadi, {\it Anisotropic grid adaptation for inviscid and viscous flows simulations}, Int. J. Comput. Fluid Dyn., 25 (2000), pp. 475-491. · Zbl 0902.76057
[24] S.-L. Chang, C.-S. Chien, and B.-W. Jeng, {\it Computing wave functions of nonlinear Schrödinger equations: A time-independent approach}, J. Comput. Phys., 226 (2007), pp. 104-130. · Zbl 1129.65077
[25] E. Charalampidis, P. Kevrekidis, and P. Farrell, {\it Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation}, Comm. Nonlinear Sci. Numer. Simul., 54 (2018), pp. 482-499. · Zbl 1510.35291
[26] P. G. Ciarlet, {\it The Finite Element Method for Elliptic Problems}, Stud. Math. Appl., North-Holland, 1978. Reprinted as Classics Appl. Math. 40, SIAM, 2002, . · Zbl 0383.65058
[27] I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S. Tung, and E. A. Cornell, {\it Experimental studies of equilibrium vortex properties in a Bose-condensed gas}, Phys. Rev. A, 70 (2004), 063607.
[28] I. Danaila, {\it Three-dimensional vortex structure of a fast rotating Bose-Einstein condensate with harmonic-plus-quartic confinement}, Phys. Rev. A, 72 (2005), 013605.
[29] I. Danaila and F. Hecht, {\it A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates}, J. Comput. Phys., 229 (2010), pp. 6946-6960. · Zbl 1198.82035
[30] I. Danaila and P. Kazemi, {\it A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation}, SIAM J. Sci. Comput., 32 (2010), pp. 2447-2467, . · Zbl 1216.35006
[31] C. M. Dion and E. Cancès, {\it Ground state of the time-independent Gross-Pitaevskii equation}, Comput. Phys. Comm., 177 (2007), pp. 787-798. · Zbl 1196.81017
[32] I. Faragò and J. Karàtson, {\it Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications}, NOVA Science Publishers, 2002. · Zbl 1030.65117
[33] A. L. Fetter, {\it Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial potentials}, Phys. Rev. A, 64 (2001), 063608.
[34] J. J. García-Ripoll and V. M. Pérez-García, {\it Optimizing Schrödinger functionals using Sobolev gradients: Application to quantum mechanics and nonlinear optics}, SIAM J. Sci. Comput., 23 (2001), pp. 1316-1334, . · Zbl 0999.65058
[35] M. D. Gunzburger, {\it Perspectives in Flow Control and Optimization}, Adv. Des. Control 5, SIAM, 2003, . · Zbl 1088.93001
[36] F. Hecht, {\it New developments in Freefem++}, J. Numer. Math., 20 (2012), pp. 251-266. · Zbl 1266.68090
[37] F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuke, {\it FreeFem++ Manual}, , 2007.
[38] U. Hohenester, {\it OCTBEC: A MATLAB toolbox for optimal quantum control of Bose-Einstein condensates}, Comput. Phys. Comm., 185 (2014), pp. 194-216.
[39] K. Kasamatsu, M. Tsubota, and M. Ueda, {\it Giant hole and circular superflow in a fast rotating Bose-Einstein condensate}, Phys. Rev. A, 66 (2002), 053606.
[40] P. Kazemi and M. Eckart, {\it Minimizing the Gross-Pitaevskii energy functional with the Sobolev gradient–analytical and numerical results}, Int. J. Comput. Methods, 7 (2009), pp. 453-476. · Zbl 1267.81294
[41] E. H. Lieb and R. Seiringer, {\it Derivation of the Gross-Pitaevskii equation for rotating Bose gases}, Comm. Math. Phys., 264 (2006), pp. 505-537. · Zbl 1233.82004
[42] D. Luenberger, {\it Optimization by Vector Space Methods}, John Wiley and Sons, 1969. · Zbl 0176.12701
[43] B. Merlet and T. N. Nguyen, {\it Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds}, Differential Integral Equations, 26 (2013), pp. 571-602. · Zbl 1299.65162
[44] J. W. Neuberger, {\it Sobolev Gradients and Differential Equations}, Lecture Notes in Math. 1670, Springer, 1997. 2nd edition published 2010. · Zbl 0935.35002
[45] A. W. J. Nocedal, A. Wächter, and R. A. Waltz, {\it Adaptive barrier update strategies for nonlinear interior methods}, SIAM J. Optim., 19 (2008), pp. 1674-1693, . · Zbl 1176.49036
[46] J. Nocedal and S. Wright, {\it Numerical Optimization}, Springer, 2002. · Zbl 1104.65059
[47] M. Ö. Oktel, {\it Vortex lattice of a Bose-Einstein condensate in a rotating anisotropic trap}, Phys. Rev. A, 69 (2004), 023618.
[48] M. Pierre, {\it Newton and conjugate gradient for harmonic maps from the disc into the sphere}, ESAIM Control Optim. Calc. Var., 10 (2004), pp. 142-167. · Zbl 1076.65062
[49] L. P. Pitaevskii and S. Stringari, {\it Bose-Einstein Condensation}, Clarendon Press, 2003. · Zbl 1110.82002
[50] W. H. Press, B. P. Flanner, S. A. Teukolsky, and W. T. Vetterling, {\it Numerical Recipes: The Art of Scientific Computations}, Cambridge University Press, 1986. · Zbl 0587.65003
[51] W. Ring and B. Wirth, {\it Optimization methods on Riemannian manifolds and their application to shape space}, SIAM J. Optim., 22 (2012), pp. 596-627, . · Zbl 1250.90111
[52] P. J. Roache, {\it Verification and Validation in Computational Science and Engineering}, Hermosa Publishers, 1998.
[53] D. E. Sheehy and L. Radzihovsky, {\it Vortices in spatially inhomogeneous superfluids}, Phys. Rev. A, 70 (2004), 063620.
[54] S. T. Smith, {\it Optimization techniques on Riemannian manifolds}, Fields Inst. Comm., 3 (1994). · Zbl 0816.49032
[55] S. Stringari, {\it Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas}, Phys. Rev. Lett., 82 (1999), pp. 4371-4375.
[56] M. Tsubota, {\it Quantized vortices in superfluid helium and Bose-Einstein condensates}, J. Phys. Conf. Ser., 31 (2006), pp. 88-94.
[57] G. Vergez, I. Danaila, S. Auliac, and F. Hecht, {\it A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation}, Comput. Phys. Comm., 209 (2016), pp. 144-162. · Zbl 1380.65389
[58] A. Wächter, {\it An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering}, Ph.D. thesis, Carnegie Mellon University, 2002.
[59] A. Wächter and L. T. Biegler, {\it On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming}, Math. Programming, 106 (2006), pp. 25-57. · Zbl 1134.90542
[60] X. Wu, Z. Wen, and W. Bao, {\it A regularized Newton method for computing ground states of Bose-Einstein condensates}, J. Sci. Comput., 73 (2017), pp. 303-329. · Zbl 1433.82025
[61] R. Zeng and Y. Zhang, {\it Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates}, Comput. Phys. Comm., 180 (2009), pp. 854-860. · Zbl 1198.82007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.