×

On the non-abelian Brumer-Stark conjecture and the equivariant Iwasawa main conjecture. (English) Zbl 1470.11280

Let \(L/K\) be a finite Galois CM-extension, that is, \(K\) is a totally real number field, \(L\) is a CM field and \(L/K\) is a finite Galois extension. Set \(G:=\mathrm{Gal}(L/K)\). Consider, for each finite set \(S\) containing all the archimedean places and the ramified places, the Stickelberger element \(\theta_S(L/K)\). Let \(\mu_L\) and \(\mathrm{cl}_L\) denote the set of roots of unity and the class group of \(L\), respectively. Suppose \(G\) is abelian. The Brumer’s conjecture asserts that \(\mathrm{Ann}_{{\mathbb Z}[G]}(\mu_L)\theta_S(L/K)\subseteq \mathrm{Ann}_{{\mathbb Z}[G]}(\mathrm{cl}_L)\).
The Brumer-Stark conjecture asserts that the class of a given ideal becomes principal in \(L\) and gives information about a generator of that ideal. The non-abelian Brumer and Brumer-Stark conjectures are presented in Section 3: Conjectures 3.2 and 3.6.
The main results, Theorem 5.2 and its Corollary 5.4, say that for an odd prime \(p\), the relevant case of the equivariant Iwasawa main conjecture for totally real fields implies the \(p\)-primary part of a dual version of the generalized non-abelian Brumer-Stark conjecture under the hypothesis that \(S\) contains the \(p\)-adic places of \(K\) and that a certain identity between complex and \(p\)-adic Artin \(L\)-functions at \(s=0\) holds. This result does not depend on the vanishing of the relevant Iwasawa \(\mu\)-invariant. Furthermore, in Section 10, in combination with previous results on the equivariant Iwasawa main conjecture, unconditional proofs of the non-abelian Brumer and Brumer-Stark conjectures are given in several new cases.
The proof of the main results is the content of Sections 6, 7 and 8.

MSC:

11R23 Iwasawa theory
11M41 Other Dirichlet series and zeta functions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barsky, D.: Fonctions zeta \[p\] p-adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math. Paris, pp. Exp. No. 16, 23 (1978) · Zbl 0406.12008
[2] Breuning, M., Burns, D.: Leading terms of Artin \[L\] L-functions at \[s=0\] s=0 and \[s=1\] s=1. Compos. Math. 143(6), 1427-1464 (2007) · Zbl 1135.11060
[3] Bray, H.G., Deskins, W.E., Johnson, D., Humphreys, J.F., Puttaswamaiah, B.M., Venzke, P., Walls, G.L.: Between Nilpotent and Solvable. Polygonal Publishing House, Washington, NJ (1982). (Edited and with a preface by Michael Weinstein)
[4] Burns, D., Greither, C.: On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math. 153(2), 303-359 (2003) · Zbl 1142.11076
[5] Burns, D.: On derivatives of \[p\] p-adic \[L\] L-series at \[p\] p = 0. J. Reine Angew. Math. (2018). https://doi.org/10.1515/crelle-2018-0020 · Zbl 1452.11074
[6] Burns, D.: On derivatives of Artin \[L\] L-series. Invent. Math. 186(2), 291-371 (2011) · Zbl 1239.11128
[7] Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The \[\rm GL_2\] GL2 main conjecture for elliptic curves without complex multiplication. Publ. Math. Inst. Hautes Études Sci. 101, 163-208 (2005) · Zbl 1108.11081
[8] Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta \[p\] p-adiques. Invent. Math. 51(1), 29-59 (1979) · Zbl 0408.12015
[9] Curtis, C.W., Reiner, I.: Methods of Representation Theory: With Applications to Finite Groups and Orders. Vol. I. Pure and Applied Mathematics. Wiley, New York (1981). (A Wiley-Interscience Publication) · Zbl 0469.20001
[10] Curtis, C.W., Reiner, I.: Methods of representation theory: With applications to finite groups and orders. Vol. II. Pure and Applied Mathematics. Wiley, New York (1987). (A Wiley-Interscience Publication) · Zbl 0616.20001
[11] Deligne, P.: Théorie de Hodge, III. Inst. Hautes Études Sci. Publ. Math. 44, 5-77 (1974) · Zbl 0237.14003
[12] Deligne, P., Ribet, K.A.: Values of abelian \[L\] L-functions at negative integers over totally real fields. Invent. Math. 59(3), 227-286 (1980) · Zbl 0434.12009
[13] Fukaya, T., Kato, K.: A formulation of conjectures on \[p\] p-adic zeta functions in noncommutative Iwasawa theory. In: Proceedings of the St. Petersburg Mathematical Society. Vol. XII (Providence, RI), Amer. Math. Soc. Transl. Ser. 2, vol. 219, Amer. Math. Soc., pp. 1-85 (2006) · Zbl 1238.11105
[14] Ferrero, B., Washington, L .C.: The Iwasawa invariant \[\mu_p\] μp vanishes for abelian number fields. Ann. Math. 109(2), 377-395 (1979) · Zbl 0443.12001
[15] Greither, C., Kurihara, M.: Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation. Math. Z. 260(4), 905-930 (2008) · Zbl 1159.11042
[16] Greither, C., Popescu, C.D.: The Galois module structure of \[\ell\] ℓ-adic realizations of Picard 1-motives and applications. Int. Math. Res. Not. 5, 986-1036 (2012) · Zbl 1254.11063
[17] Greither, C., Popescu, C.D.: An equivariant main conjecture in Iwasawa theory and applications. J. Algebraic Geom. 24(4), 629-692 (2015) · Zbl 1330.11070
[18] Greenberg, R.: On \[p\] p-adic Artin \[L\] L-functions. Nagoya Math. J. 89, 77-87 (1983) · Zbl 0513.12012
[19] Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas. Adv. Stud. Pure Math. vol. 3, North-Holland, Amsterdam, pp. 88-188 (1968)
[20] Gross, \[B. H.: p\] p-adic \[L\] L-series at \[s=0\] s=0, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 979-994 (1982) · Zbl 0507.12010
[21] Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics, vol. 4, 2nd edn. Springer, New York (1997) · Zbl 0863.18001
[22] Iwasawa, K.: On Z \[_l\] l-extensions of algebraic number fields. Ann. Math. 98(2), 246-326 (1973) · Zbl 0285.12008
[23] Johnston, H., Nickel, A.: Noncommutative Fitting invariants and improved annihilation results. J. Lond. Math. Soc. (2) 88(1), 137-160 (2013) · Zbl 1290.16016
[24] Johnston, H., Nickel, A.: On the equivariant Tamagawa number conjecture for Tate motives and unconditional annihilation results. Trans. Amer. Math. Soc. 368(9), 6539-6574 (2016) · Zbl 1339.11093
[25] Johnston, H., Nickel, A.: Hybrid Iwasawa algebras and the equivariant Iwasawa main conjecture. Amer. J. Math. 140(1), 245-276 (2018) · Zbl 1395.11122
[26] Kakde, M.: The main conjecture of Iwasawa theory for totally real fields. Invent. Math. 193(3), 539-626 (2013) · Zbl 1300.11112
[27] Milne, J.S.: Étale cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton, N.J. (1980) · Zbl 0433.14012
[28] Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge LLC, Charleston, SC (2006) · Zbl 1127.14001
[29] Nickel, A.: Non-commutative Fitting invariants and annihilation of class groups. J. Algebra 323(10), 2756-2778 (2010) · Zbl 1222.11132
[30] Nickel, A.: On non-abelian Stark-type conjectures. Ann. Inst. Fourier (Grenoble) 61(6), 2577-2608 (2011) · Zbl 1246.11176
[31] Nickel, A.: On the equivariant Tamagawa number conjecture in tame CM-extensions. Math. Z. 268(1-2), 1-35 (2011) · Zbl 1222.11133
[32] Nickel, A.: On the equivariant Tamagawa number conjecture in tame CM-extensions, II. Compos. Math. 147(4), 1179-1204 (2011) · Zbl 1276.11174
[33] Nickel, A.: Equivariant Iwasawa theory and non-abelian Stark-type conjectures. Proc. Lond. Math. Soc. (3) 106(6), 1223-1247 (2013) · Zbl 1273.11155
[34] Nickel, A.: Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture. J. Reine Angew. Math. 719, 101-132 (2016) · Zbl 1359.11088
[35] Nomura, J.: Integrality of Stickelberger elements attached to unramified extensions of imaginary quadratic fields. J. Number Theory 187, 332-343 (2018) · Zbl 1404.11131
[36] Nguyen Quang Do, T.: Conjecture Principale Équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa, J. Théor. Nombres Bordeaux 17, no. 2, 643-668 (2005) · Zbl 1098.11054
[37] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathemati-schen Wissenschaften, vol. 323, 2nd edn. Springer, Berlin (2008) · Zbl 1136.11001
[38] Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics, vol. 80, 2nd edn. Springer, New York (1996)
[39] Ritter, J., Weiss, A.: Toward equivariant Iwasawa theory. II. Indag. Math. (N.S.) 15(4), 549-572 (2004) · Zbl 1142.11369
[40] Ritter, J., Weiss, A.: On the “main conjecture” of equivariant Iwasawa theory. J. Amer. Math. Soc. 24(4), 1015-1050 (2011) · Zbl 1228.11165
[41] Ribes, L., Zalesskii, P.: Profinite Groups, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 40, Springer, Berlin (2010) · Zbl 1197.20022
[42] Schneider, P.: Iwasawa \[L\] L-functions of varieties over algebraic number fields. A first approach. Invent. Math. 71(2), 251-293 (1983) · Zbl 0511.14010
[43] Siegel, C .L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970, 15-56 (1970) · Zbl 0225.10031
[44] Sujatha, R.: Reductions of the main conjecture. Noncommutative Iwasawa main conjectures over totally real fields. Based on a workshop, Münster, Germany, April 25-30, 2011, pp. 23-50. Springer, Berlin (2013)
[45] Swan, R.G.: Algebraic \[KK\]-theory. Lecture Notes in Mathematics, vol. 76. Springer, Berlin (1968) · Zbl 0193.34601
[46] Tate, J.: Les conjectures de Stark sur les fonctions \[L\] L d’Artin en \[s=0\] s=0, Progress in Mathematics, vol. 47, Birkhäuser Boston Inc., Boston, MA, 1984, Lecture notes edited by Dominique Bernardi and Norbert Schappacher · Zbl 0545.12009
[47] Venjakob, O.: On the work of Ritter and Weiss in comparison with Kakde’s approach. In: Noncommutative Iwasawa Main Conjectures Over Totally Real Fields, Springer Proceedings in Mathematics and Statistics, Vol. 29, pp. 159-182. Springer, Heidelberg (2013) · Zbl 1270.11112
[48] Weintraub, S.H.: Representation Theory of Finite Groups: Algebra and Arithmetic. Graduate Studies in Mathematics, vol. 59. American Mathematical Society, Providence, RI (2003) · Zbl 1078.20009
[49] Weibel, C.A.: The \[KK\]-book: An Introduction to Algebraic \[KK\]-Theory. Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence, RI (2013) · Zbl 1273.19001
[50] Witte, M.: On a localisation sequence for the K-theory of skew power series rings. J. K-Theory 11(1), 125-154 (2013) · Zbl 1270.16035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.