Horobeţ, Emil The critical curvature degree of an algebraic variety. (English) Zbl 07740063 J. Symb. Comput. 121, Article ID 102259, 12 p. (2024). MSC: 14Qxx 65Dxx 14Pxx PDF BibTeX XML Cite \textit{E. Horobeţ}, J. Symb. Comput. 121, Article ID 102259, 12 p. (2024; Zbl 07740063) Full Text: DOI arXiv
Dragun, Ivana Božić; Koncul, Helena Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane. (English) Zbl 1521.51008 J. Geom. 114, No. 2, Paper No. 18, 17 p. (2023). Reviewer: Victor V. Pambuccian (Glendale) MSC: 51M10 51M99 51N25 PDF BibTeX XML Cite \textit{I. B. Dragun} and \textit{H. Koncul}, J. Geom. 114, No. 2, Paper No. 18, 17 p. (2023; Zbl 1521.51008) Full Text: DOI
Dragun, Ivana Božić Evolutes of conics in the pseudo-euclidean plane. (English) Zbl 07692698 Math. Pannonica (N.S.) 29, No. 1, 77-86 (2023). MSC: 51M15 51A45 51M99 51N25 PDF BibTeX XML Cite \textit{I. B. Dragun}, Math. Pannonica (N.S.) 29, No. 1, 77--86 (2023; Zbl 07692698) Full Text: DOI
Yao, Kaixin; Li, Meixuan; Li, Enze; Pei, Donghe Pedal and contrapedal curves of framed immersions in the Euclidean 3-space. (English) Zbl 1521.53003 Mediterr. J. Math. 20, No. 4, Paper No. 204, 13 p. (2023). Reviewer: Anton Gfrerrer (Graz) MSC: 53A04 53C42 57R45 PDF BibTeX XML Cite \textit{K. Yao} et al., Mediterr. J. Math. 20, No. 4, Paper No. 204, 13 p. (2023; Zbl 1521.53003) Full Text: DOI
Grant, Kyle; Mogilski, Wiktor A discrete four vertex theorem for hyperbolic polygons. (English) Zbl 1518.51011 Discrete Math. 346, No. 7, Article ID 113371, 7 p. (2023). Reviewer: Elizaveta Zamorzaeva (Chişinău) MSC: 51L15 PDF BibTeX XML Cite \textit{K. Grant} and \textit{W. Mogilski}, Discrete Math. 346, No. 7, Article ID 113371, 7 p. (2023; Zbl 1518.51011) Full Text: DOI arXiv
Adams, Henry; Coldren, Sophia; Willmot, Sean The persistent homology of cyclic graphs. (English) Zbl 07633849 Int. J. Comput. Geom. Appl. 32, No. 1-2, 1-37 (2022). MSC: 68U05 PDF BibTeX XML Cite \textit{H. Adams} et al., Int. J. Comput. Geom. Appl. 32, No. 1--2, 1--37 (2022; Zbl 07633849) Full Text: DOI arXiv
Waters, Thomas; Cherrie, Matthew The normal map as a vector field. (English) Zbl 1502.53007 Balkan J. Geom. Appl. 27, No. 2, 145-157 (2022). MSC: 53A04 55M25 PDF BibTeX XML Cite \textit{T. Waters} and \textit{M. Cherrie}, Balkan J. Geom. Appl. 27, No. 2, 145--157 (2022; Zbl 1502.53007) Full Text: arXiv Link
Zwierzyński, Michał The singular evolutoids set and the extended evolutoids front. (English) Zbl 1501.53004 Aequationes Math. 96, No. 4, 849-866 (2022). Reviewer: Ergin Bayram (Samsun) MSC: 53A04 53A05 57R45 58K05 PDF BibTeX XML Cite \textit{M. Zwierzyński}, Aequationes Math. 96, No. 4, 849--866 (2022; Zbl 1501.53004) Full Text: DOI arXiv
Kostin, A. V. Evolutes of meridians and asymptotics on pseudospheres. (English. Russian original) Zbl 1493.51013 J. Math. Sci., New York 263, No. 3, 371-378 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 169, 23-30 (2019). Reviewer: Victor V. Pambuccian (Glendale) MSC: 51M10 53C50 PDF BibTeX XML Cite \textit{A. V. Kostin}, J. Math. Sci., New York 263, No. 3, 371--378 (2022; Zbl 1493.51013); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 169, 23--30 (2019) Full Text: DOI
Reznik, Dan; Garcia, Ronaldo; Stachel, Hellmuth Area-invariant pedal-like curves derived from the ellipse. (English) Zbl 1497.53010 Beitr. Algebra Geom. 63, No. 2, 359-377 (2022). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 53A04 51M04 51N20 PDF BibTeX XML Cite \textit{D. Reznik} et al., Beitr. Algebra Geom. 63, No. 2, 359--377 (2022; Zbl 1497.53010) Full Text: DOI arXiv
Şenyurt, Süleyman; Ayvaci, Kebire Hilal; Canli, Davut Family of surfaces with a common special involute and evolute curves. (English) Zbl 1493.53008 Int. Electron. J. Geom. 15, No. 1, 160-174 (2022). MSC: 53A05 53A04 PDF BibTeX XML Cite \textit{S. Şenyurt} et al., Int. Electron. J. Geom. 15, No. 1, 160--174 (2022; Zbl 1493.53008) Full Text: DOI
Takahashi, Masatomo Equi-affine plane curves with singular points. (English) Zbl 1494.53013 J. Geom. 113, No. 1, Paper No. 16, 16 p. (2022). Reviewer: Huili Liu (Shenyang) MSC: 53A15 53A04 57R45 58K05 PDF BibTeX XML Cite \textit{M. Takahashi}, J. Geom. 113, No. 1, Paper No. 16, 16 p. (2022; Zbl 1494.53013) Full Text: DOI
Yilmaz, Beyhan Some curve pairs according to types of Bishop frame. (English) Zbl 1484.53020 AIMS Math. 6, No. 5, 4463-4473 (2021). MSC: 53A04 PDF BibTeX XML Cite \textit{B. Yilmaz}, AIMS Math. 6, No. 5, 4463--4473 (2021; Zbl 1484.53020) Full Text: DOI
Solouma, E. M.; AL-Dayel, Ibrahim Harmonic evolute surface of tubular surfaces via \(\mathbb{B}\)-Darboux frame in Euclidean 3-space. (English) Zbl 1484.53024 Adv. Math. Phys. 2021, Article ID 5269655, 7 p. (2021). MSC: 53A05 PDF BibTeX XML Cite \textit{E. M. Solouma} and \textit{I. AL-Dayel}, Adv. Math. Phys. 2021, Article ID 5269655, 7 p. (2021; Zbl 1484.53024) Full Text: DOI
Allemann, Jonas; Hungerbühler, Norbert; Wasem, Micha Equilibria of plane convex bodies. (English) Zbl 1479.52004 J. Nonlinear Sci. 31, No. 5, Paper No. 86, 19 p. (2021). Reviewer: Robert Dawson (Halifax) MSC: 52A10 70E50 PDF BibTeX XML Cite \textit{J. Allemann} et al., J. Nonlinear Sci. 31, No. 5, Paper No. 86, 19 p. (2021; Zbl 1479.52004) Full Text: DOI arXiv
Zhang, Deyan The lower bounds of the mixed isoperimetric deficit. (English) Zbl 1471.52007 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 2863-2872 (2021). MSC: 52A40 52A10 52A38 PDF BibTeX XML Cite \textit{D. Zhang}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 2863--2872 (2021; Zbl 1471.52007) Full Text: DOI
López, Rafael; Milin Šipuš, Željka; Primorac Gajčić, Ljiljana; Protrka, Ivana Null scrolls with spacelike harmonic evolutes in Lorentz-Minkowski space. (English) Zbl 07368861 Result. Math. 76, No. 1, Paper No. 52, 22 p. (2021). MSC: 53A10 53B30 53C50 PDF BibTeX XML Cite \textit{R. López} et al., Result. Math. 76, No. 1, Paper No. 52, 22 p. (2021; Zbl 07368861) Full Text: DOI
Almaz, Fatma; Külahci, Mihriban Alyamaç Involute-evolute d-curves in Minkowski 3-space \(E_1^3\). (English) Zbl 1474.53045 Bol. Soc. Parana. Mat. (3) 39, No. 1, 147-156 (2021). MSC: 53A35 53C20 51B20 PDF BibTeX XML Cite \textit{F. Almaz} and \textit{M. A. Külahci}, Bol. Soc. Parana. Mat. (3) 39, No. 1, 147--156 (2021; Zbl 1474.53045) Full Text: Link
Koshkin, Sergiy; Rocha, Ivan Caustics of light rays and Euler’s angle of inclination. (English) Zbl 1468.53004 PUMP J. Undergrad. Res. 3, 205-225 (2020). Reviewer: Ergin Bayram (Samsun) MSC: 53A04 78A05 34K06 PDF BibTeX XML Cite \textit{S. Koshkin} and \textit{I. Rocha}, PUMP J. Undergrad. Res. 3, 205--225 (2020; Zbl 1468.53004) Full Text: Link
Garcia, Ronaldo; Reznik, Dan; Stachel, Hellmuth; Helman, Mark Steiner’s hat: a constant-area deltoid associated with the ellipse. (English) Zbl 1467.51011 KoG 24, 12-28 (2020). Reviewer: Robert W. van der Waall (Amsterdam) MSC: 51M04 51N20 65D18 51M25 PDF BibTeX XML Cite \textit{R. Garcia} et al., KoG 24, 12--28 (2020; Zbl 1467.51011) Full Text: DOI arXiv
Elsharkawy, Ayman Generalized involute and evolute curves of equiform spacelike curves with a timelike equiform principal normal in \(E_1^3\). (English) Zbl 1461.53007 J. Egypt. Math. Soc. 28, Paper No. 26, 10 p. (2020). MSC: 53A35 53A40 53B30 PDF BibTeX XML Cite \textit{A. Elsharkawy}, J. Egypt. Math. Soc. 28, Paper No. 26, 10 p. (2020; Zbl 1461.53007) Full Text: DOI
Tunçer, Yılmaz; Ünal, Serpil; Karacan, Murat Kemal Spherical indicatrices of involute of a space curve in Euclidean 3-space. (English) Zbl 1451.53007 Tamkang J. Math. 51, No. 2, 113-121 (2020). MSC: 53A04 53A55 PDF BibTeX XML Cite \textit{Y. Tunçer} et al., Tamkang J. Math. 51, No. 2, 113--121 (2020; Zbl 1451.53007) Full Text: DOI arXiv
Hanif, Muhammad; Önder, Mehmet Generalized quaternionic involute-evolute curves in the Euclidean four-space \(E^4\). (English) Zbl 1447.53010 Math. Methods Appl. Sci. 43, No. 7, 4769-4780 (2020). MSC: 53A04 53C26 PDF BibTeX XML Cite \textit{M. Hanif} and \textit{M. Önder}, Math. Methods Appl. Sci. 43, No. 7, 4769--4780 (2020; Zbl 1447.53010) Full Text: DOI
Cambraia Jr., Ady; Salarinoghabi, Mostafa; Trindade, Diego Envelope of intermediate lines of a plane curve. (English) Zbl 1442.53005 Result. Math. 75, No. 3, Paper No. 87, 18 p. (2020). Reviewer: Huili Liu (Shenyang) MSC: 53A15 PDF BibTeX XML Cite \textit{A. Cambraia Jr.} et al., Result. Math. 75, No. 3, Paper No. 87, 18 p. (2020; Zbl 1442.53005) Full Text: DOI arXiv
Honda, Shun’ichi; Takahashi, Masatomo Evolutes and focal surfaces of framed immersions in the Euclidean space. (English) Zbl 1437.53006 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 497-516 (2020). MSC: 53A04 53A05 57R45 58K05 PDF BibTeX XML Cite \textit{S. Honda} and \textit{M. Takahashi}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 497--516 (2020; Zbl 1437.53006) Full Text: DOI Link
Cambraia, Ady jun.; Lemos, Abílio On affine evolutoids. (English) Zbl 1476.53031 Quaest. Math. 43, No. 2, 193-202 (2020). Reviewer: Daniel Fox (Madrid) MSC: 53A15 PDF BibTeX XML Cite \textit{A. Cambraia jun.} and \textit{A. Lemos}, Quaest. Math. 43, No. 2, 193--202 (2020; Zbl 1476.53031) Full Text: DOI arXiv
Balestro, Vitor; Martini, Horst; Sakaki, Makoto Curvature types of planar curves for gauges. (English) Zbl 1452.46013 J. Geom. 111, No. 1, Paper No. 12, 12 p. (2020). MSC: 46B20 52A10 52A21 53A04 53A35 PDF BibTeX XML Cite \textit{V. Balestro} et al., J. Geom. 111, No. 1, Paper No. 12, 12 p. (2020; Zbl 1452.46013) Full Text: DOI arXiv
Şentürk, Gülsüm Yeliz; Yüce, Salim On the evolute offsets of ruled surfaces using the Darboux frame. (English) Zbl 1495.53017 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1256-1264 (2019). MSC: 53A05 53A25 PDF BibTeX XML Cite \textit{G. Y. Şentürk} and \textit{S. Yüce}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1256--1264 (2019; Zbl 1495.53017) Full Text: DOI
Yılmaz, Süha; Unluturk, Yasin On the spherical indicatrices of curves in Galilean 4-space. (English) Zbl 1454.53014 J. Indones. Math. Soc. 25, No. 2, 154-170 (2019). MSC: 53A35 53A40 53B25 PDF BibTeX XML Cite \textit{S. Yılmaz} and \textit{Y. Unluturk}, J. Indones. Math. Soc. 25, No. 2, 154--170 (2019; Zbl 1454.53014) Full Text: DOI
Izumiya, Shyuichi; Takeuchi, Nobuko Evolutoids and pedaloids of plane curves. (English) Zbl 1433.53005 Note Mat. 39, No. 2, 13-24 (2019). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{S. Izumiya} and \textit{N. Takeuchi}, Note Mat. 39, No. 2, 13--24 (2019; Zbl 1433.53005) Full Text: DOI
Balestro, Vitor; Martini, Horst; Shonoda, Emad Concepts of curvatures in normed planes. (English) Zbl 1432.52001 Expo. Math. 37, No. 4, 347-381 (2019). MSC: 52A10 26B15 46B20 51M25 51N25 52A21 53A04 53A35 PDF BibTeX XML Cite \textit{V. Balestro} et al., Expo. Math. 37, No. 4, 347--381 (2019; Zbl 1432.52001) Full Text: DOI arXiv
Li, Yanlin; Sun, Qing-you Evolutes of fronts in the Minkowski plane. (English) Zbl 1433.53019 Math. Methods Appl. Sci. 42, No. 16, 5416-5426 (2019). Reviewer: Niels Lubbes (Linz) MSC: 53A35 53B30 53A04 35A15 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Q.-y. Sun}, Math. Methods Appl. Sci. 42, No. 16, 5416--5426 (2019; Zbl 1433.53019) Full Text: DOI
Abdel-Aziz, H. S.; Saad, M. Khalifa; Abdel-Salam, A. A. On involute-evolute curve couple in the hyperbolic and de Sitter spaces. (English) Zbl 1430.53018 J. Egypt. Math. Soc. 27, Paper No. 25, 18 p. (2019). MSC: 53B25 53A25 53B30 PDF BibTeX XML Cite \textit{H. S. Abdel-Aziz} et al., J. Egypt. Math. Soc. 27, Paper No. 25, 18 p. (2019; Zbl 1430.53018) Full Text: DOI
López, Rafael; Šipuš, Željka Milin; Primorac Gajčić, Ljiljana; Protrka, Ivana Harmonic evolutes of \(B\)-scrolls with constant mean curvature in Lorentz-Minkowski space. (English) Zbl 1422.53011 Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950076, 15 p. (2019). MSC: 53A35 53A10 53B30 83A05 PDF BibTeX XML Cite \textit{R. López} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950076, 15 p. (2019; Zbl 1422.53011) Full Text: DOI
Waters, Thomas The conjugate locus on convex surfaces. (English) Zbl 1419.53005 Geom. Dedicata 200, 241-254 (2019). Reviewer: Benjamin McKay (Cork) MSC: 53A05 52A10 53C22 PDF BibTeX XML Cite \textit{T. Waters}, Geom. Dedicata 200, 241--254 (2019; Zbl 1419.53005) Full Text: DOI arXiv
Hanif, Muhammad; Hou, Zhong Hua A new approach to find a generalized evolute and involute curve in 4-dimensional Minkowski space-time. (English) Zbl 1406.53006 Palest. J. Math. 8, No. 1, 397-411 (2019). MSC: 53A35 53B25 53B30 PDF BibTeX XML Cite \textit{M. Hanif} and \textit{Z. H. Hou}, Palest. J. Math. 8, No. 1, 397--411 (2019; Zbl 1406.53006) Full Text: Link
Erisir, Tulay; Gungor, Mehmet Ali On the quaternionic curves in the semi-Euclidean space \(\mathbb{E}^4_2\). (English) Zbl 1474.53258 Casp. J. Math. Sci. 7, No. 1, 36-45 (2018). MSC: 53C40 53A35 53C50 PDF BibTeX XML Cite \textit{T. Erisir} and \textit{M. A. Gungor}, Casp. J. Math. Sci. 7, No. 1, 36--45 (2018; Zbl 1474.53258) Full Text: DOI
Hanif, Muhammad; Hou, Zhong Hua; Nisar, Kottakkaran Sooppy On special kinds of involute and evolute curves in 4-dimensional Minkowski space. (English) Zbl 1423.53005 Symmetry 10, No. 8, Paper No. 317, 14 p. (2018). MSC: 53A04 53A35 PDF BibTeX XML Cite \textit{M. Hanif} et al., Symmetry 10, No. 8, Paper No. 317, 14 p. (2018; Zbl 1423.53005) Full Text: DOI
Izumiya, S.; Romero Fuster, M. C.; Takahashi, M. Evolutes of curves in the Lorentz-Minkowski plane. (English) Zbl 1428.53020 Izumiya, Shyuichi (ed.) et al., Singularities in generic geometry. Proceedings of the 4th workshop on singularities in generic geometry and applications (Valencia IV), Kobe, Japan, June 3–6, 2015 and Kyoto, Japan, June 8–10, 2015. Tokyo: Mathematical Society of Japan (MSJ). Adv. Stud. Pure Math. 78, 313-330 (2018). Reviewer: Hans Havlicek (Wien) MSC: 53A35 53A04 PDF BibTeX XML Cite \textit{S. Izumiya} et al., Adv. Stud. Pure Math. 78, 313--330 (2018; Zbl 1428.53020)
Etayo, Fernando Geometric properties of rotation minimizing vector fields along curves in Riemannian manifolds. (English) Zbl 1424.53040 Turk. J. Math. 42, No. 1, 121-130 (2018). MSC: 53B20 53A04 53A05 53A35 PDF BibTeX XML Cite \textit{F. Etayo}, Turk. J. Math. 42, No. 1, 121--130 (2018; Zbl 1424.53040) Full Text: DOI arXiv
Körpinar, Talat; Baş, Selçuk On evolute curves in terms of inextensible flows of in \(\mathbb E^3\). (English) Zbl 1424.53031 Bol. Soc. Parana. Mat. (3) 36, No. 1, 117-124 (2018). MSC: 53A35 PDF BibTeX XML Cite \textit{T. Körpinar} and \textit{S. Baş}, Bol. Soc. Parana. Mat. (3) 36, No. 1, 117--124 (2018; Zbl 1424.53031) Full Text: Link
Abdel-Aziz, H. S.; Saad, M. Khalifa; Mohamed, S. A. On dual curves of \(DAW(k)\)-type and their evolutes. (English) Zbl 1412.53009 Int. J. Anal. Appl. 16, No. 5, 614-627 (2018). MSC: 53A05 53A17 53A25 PDF BibTeX XML Cite \textit{H. S. Abdel-Aziz} et al., Int. J. Anal. Appl. 16, No. 5, 614--627 (2018; Zbl 1412.53009) Full Text: Link
Craizer, Marcos; Teixeira, Ralph; Balestro, Vitor Discrete cycloids from convex symmetric polygons. (English) Zbl 1401.52027 Discrete Comput. Geom. 60, No. 4, 859-884 (2018). MSC: 52C05 39A06 39A14 39A23 PDF BibTeX XML Cite \textit{M. Craizer} et al., Discrete Comput. Geom. 60, No. 4, 859--884 (2018; Zbl 1401.52027) Full Text: DOI arXiv
Salarinoghabi, Mostafa On vertices and evolute of orthogonal projection of space curves. (English) Zbl 1379.53004 Topology Appl. 234, 269-284 (2018). MSC: 53A04 57R45 58K40 PDF BibTeX XML Cite \textit{M. Salarinoghabi}, Topology Appl. 234, 269--284 (2018; Zbl 1379.53004) Full Text: DOI
Cufí, Julià; Gallego, Eduardo; Reventós, Agustí A note on Hurwitz’s inequality. (English) Zbl 1378.52008 J. Math. Anal. Appl. 458, No. 1, 436-451 (2018). MSC: 52A40 52A10 PDF BibTeX XML Cite \textit{J. Cufí} et al., J. Math. Anal. Appl. 458, No. 1, 436--451 (2018; Zbl 1378.52008) Full Text: DOI arXiv
Fuchs, Dmitry; Tabachnikov, Serge Iterating evolutes of spacial polygons and of spacial curves. (English) Zbl 1422.53005 Mosc. Math. J. 17, No. 4, 667-689 (2017). Reviewer: Laurian Ioan Piscoran (Baia Mare) MSC: 53A04 PDF BibTeX XML Cite \textit{D. Fuchs} and \textit{S. Tabachnikov}, Mosc. Math. J. 17, No. 4, 667--689 (2017; Zbl 1422.53005) Full Text: arXiv Link
Miao, Jiajing; Liu, Haiming Singularities for evolutes of spherical curves in Heisenberg group. (Chinese. English summary) Zbl 1399.53003 Math. Pract. Theory 47, No. 21, 284-290 (2017). MSC: 53A04 58K40 PDF BibTeX XML Cite \textit{J. Miao} and \textit{H. Liu}, Math. Pract. Theory 47, No. 21, 284--290 (2017; Zbl 1399.53003)
Simsek, Hakan; Özdemir, Mustafa Shape curvatures of the Lorentzian plane curves. (English) Zbl 1392.53023 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66, No. 2, 276-288 (2017). MSC: 53A35 53B25 53B30 PDF BibTeX XML Cite \textit{H. Simsek} and \textit{M. Özdemir}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66, No. 2, 276--288 (2017; Zbl 1392.53023) Full Text: DOI
Bilici, Mustafa On the invariants of ruled surfaces generated by the dual involute Frenet trihedron. (English) Zbl 1397.53016 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66, No. 2, 62-70 (2017). Reviewer: N. K. Stephanidis (Thessaloniki) MSC: 53A17 53A25 PDF BibTeX XML Cite \textit{M. Bilici}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66, No. 2, 62--70 (2017; Zbl 1397.53016) Full Text: DOI
Cambraia, Ady jun.; Craizer, Marcos Envelope of mid-planes of a surface and some classical notions of affine differential geometry. (English) Zbl 1396.53012 Result. Math. 72, No. 4, 1865-1880 (2017). Reviewer: Friedrich Manhart (Wien) MSC: 53A15 PDF BibTeX XML Cite \textit{A. Cambraia jun.} and \textit{M. Craizer}, Result. Math. 72, No. 4, 1865--1880 (2017; Zbl 1396.53012) Full Text: DOI arXiv Link
Craizer, Marcos; Pesco, Sinesio Affine geometry of equal-volume polygons in 3-space. (English) Zbl 1379.65012 Comput. Aided Geom. Des. 57, 44-56 (2017). MSC: 65D18 PDF BibTeX XML Cite \textit{M. Craizer} and \textit{S. Pesco}, Comput. Aided Geom. Des. 57, 44--56 (2017; Zbl 1379.65012) Full Text: DOI arXiv
Abdel-Baky, Rashad A. Evolutes of hyperbolic dual spherical curve in dual Lorentzian 3-space. (English) Zbl 1386.53002 Int. J. Anal. Appl. 15, No. 2, 114-124 (2017). MSC: 53A04 53A05 53A17 PDF BibTeX XML Cite \textit{R. A. Abdel-Baky}, Int. J. Anal. Appl. 15, No. 2, 114--124 (2017; Zbl 1386.53002) Full Text: Link
Arnold, Maxim; Fuchs, Dmitry; Izmestiev, Ivan; Tabachnikov, Serge; Tsukerman, Emmanuel Iterating evolutes and involutes. (English) Zbl 1381.51007 Discrete Comput. Geom. 58, No. 1, 80-143 (2017). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 51M05 51L15 53A04 52C99 37D40 PDF BibTeX XML Cite \textit{M. Arnold} et al., Discrete Comput. Geom. 58, No. 1, 80--143 (2017; Zbl 1381.51007) Full Text: DOI arXiv
Yoon, Dae Won On the evolute offsets of ruled surfaces in Minkowski 3-space. (English) Zbl 1424.53046 Turk. J. Math. 40, No. 3, 594-604 (2016). MSC: 53B30 53C50 PDF BibTeX XML Cite \textit{D. W. Yoon}, Turk. J. Math. 40, No. 3, 594--604 (2016; Zbl 1424.53046) Full Text: DOI
Odehnal, Boris On algebraic minimal surfaces. (English) Zbl 1368.53007 KoG 20, 61-78 (2016). MSC: 53A10 53C42 49Q05 14J26 PDF BibTeX XML Cite \textit{B. Odehnal}, KoG 20, 61--78 (2016; Zbl 1368.53007)
Cufí, Julià; Reventós, Agustí A lower bound for the isoperimetric deficit. (English) Zbl 1368.52004 Elem. Math. 71, No. 4, 156-167 (2016). Reviewer: Pietro De Poi (Udine) MSC: 52A40 51M16 51M25 52A10 PDF BibTeX XML Cite \textit{J. Cufí} and \textit{A. Reventós}, Elem. Math. 71, No. 4, 156--167 (2016; Zbl 1368.52004) Full Text: DOI arXiv
Craizer, Marcos; Martini, Horst Involutes of polygons of constant width in Minkowski planes. (English) Zbl 1354.52003 Ars Math. Contemp. 11, No. 1, 107-125 (2016). MSC: 52A10 52A21 53A15 53A40 51B20 PDF BibTeX XML Cite \textit{M. Craizer} and \textit{H. Martini}, Ars Math. Contemp. 11, No. 1, 107--125 (2016; Zbl 1354.52003) Full Text: DOI arXiv
Kılıçoǧlu, Şeyda Some results on Frenet ruled surfaces along the evolute-involute curves, based on normal vector fields in \(E^3\). (English) Zbl 1345.53004 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 17th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 5–10, 2015. Sofia: Avangard Prima. 296-308 (2016). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{Ş. Kılıçoǧlu}, in: Proceedings of the 17th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 5--10, 2015. Sofia: Avangard Prima. 296--308 (2016; Zbl 1345.53004) Full Text: Euclid
Chen, Liang; Takahashi, Masatomo Dualities and evolutes of fronts in hyperbolic and de Sitter space. (English) Zbl 1333.53077 J. Math. Anal. Appl. 437, No. 1, 133-159 (2016). MSC: 53C40 53A04 PDF BibTeX XML Cite \textit{L. Chen} and \textit{M. Takahashi}, J. Math. Anal. Appl. 437, No. 1, 133--159 (2016; Zbl 1333.53077) Full Text: DOI Link
Masal, Melek; Azak, Ayşe Zeynep Frenet apparatus of the curves and some special curves in the Euclidean 5-space \(E^5\). (English) Zbl 1389.53003 Eur. J. Pure Appl. Math. 8, No. 2, 255-270 (2015). MSC: 53A04 14H50 PDF BibTeX XML Cite \textit{M. Masal} and \textit{A. Z. Azak}, Eur. J. Pure Appl. Math. 8, No. 2, 255--270 (2015; Zbl 1389.53003) Full Text: Link
Ekici, Cumali; Tozak, Hatice On the involutes for dual split quaternionic curves. (English) Zbl 1336.53008 Konuralp J. Math. 3, No. 2, 190-201 (2015). MSC: 53A05 53A04 53A17 53A25 PDF BibTeX XML Cite \textit{C. Ekici} and \textit{H. Tozak}, Konuralp J. Math. 3, No. 2, 190--201 (2015; Zbl 1336.53008)
Uzunolu, Beyhan; Yayli, Yusuf; Gk, Ismail Locus of the centers of Meusnier spheres in Euclidean 3-space. (English) Zbl 1335.53004 Univers. J. Math. Math. Sci. 7, No. 1, 51-66 (2015). MSC: 53A04 53A55 PDF BibTeX XML Cite \textit{B. Uzunolu} et al., Univers. J. Math. Math. Sci. 7, No. 1, 51--66 (2015; Zbl 1335.53004) Full Text: DOI
Cui, Xiupeng; Pei, Donghe; Yu, Haiou Evolutes of null torus fronts. (English) Zbl 1331.53007 J. Nonlinear Sci. Appl. 8, No. 5, 866-876 (2015). MSC: 53A04 PDF BibTeX XML Cite \textit{X. Cui} et al., J. Nonlinear Sci. Appl. 8, No. 5, 866--876 (2015; Zbl 1331.53007) Full Text: DOI Link
Yu, Haiou; Pei, Donghe; Cui, Xiupeng Evolutes of fronts on Euclidean 2-sphere. (English) Zbl 1331.53008 J. Nonlinear Sci. Appl. 8, No. 5, 678-686 (2015). MSC: 53A04 PDF BibTeX XML Cite \textit{H. Yu} et al., J. Nonlinear Sci. Appl. 8, No. 5, 678--686 (2015; Zbl 1331.53008) Full Text: DOI Link
Khimshiashvili, G.; Panina, G.; Siersma, D. Equilibria of point charges on convex curves. (English) Zbl 1368.70005 J. Geom. Phys. 98, 110-117 (2015). MSC: 70C20 53A04 31A15 51M15 PDF BibTeX XML Cite \textit{G. Khimshiashvili} et al., J. Geom. Phys. 98, 110--117 (2015; Zbl 1368.70005) Full Text: DOI arXiv
Arslan, Kadri; Bulca, Betul; Bayram, Bengu Kilic; Öztürk, Gunay Normal transport surfaces in Euclidean 4-space \(\mathbb E^4\). (English) Zbl 1331.53011 Differ. Geom. Dyn. Syst. 17, 13-23 (2015). MSC: 53A07 PDF BibTeX XML Cite \textit{K. Arslan} et al., Differ. Geom. Dyn. Syst. 17, 13--23 (2015; Zbl 1331.53011) Full Text: arXiv Link
Martinez-Maure, Yves Plane Lorentzian and Fuchsian hedgehogs. (English) Zbl 1327.52012 Can. Math. Bull. 58, No. 3, 561-574 (2015). MSC: 52A40 52A55 53A04 53B30 PDF BibTeX XML Cite \textit{Y. Martinez-Maure}, Can. Math. Bull. 58, No. 3, 561--574 (2015; Zbl 1327.52012) Full Text: DOI
Demers, Éric; Guibault, François; Tribes, Christophe Symbolic computation of equi-affine evolute for plane B-spline curves. (English) Zbl 1360.65062 Boissonnat, Jean-Daniel (ed.) et al., Curves and surfaces. 8th international conference, Paris, France, June 12–18, 2014. Revised selected papers. Cham: Springer (ISBN 978-3-319-22803-7/pbk; 978-3-319-22804-4/ebook). Lecture Notes in Computer Science 9213, 169-180 (2015). MSC: 65D17 65D07 PDF BibTeX XML Cite \textit{É. Demers} et al., Lect. Notes Comput. Sci. 9213, 169--180 (2015; Zbl 1360.65062) Full Text: DOI
Fukunaga, Tomonori; Takahashi, Masatomo Evolutes and involutes of frontals in the Euclidean plane. (English) Zbl 1323.58027 Demonstr. Math. 48, No. 2, 147-166 (2015). MSC: 58K05 53A04 57R45 PDF BibTeX XML Cite \textit{T. Fukunaga} and \textit{M. Takahashi}, Demonstr. Math. 48, No. 2, 147--166 (2015; Zbl 1323.58027) Full Text: DOI
Mena Matos, Helena; Carrapa, Teresa The tautochrome, the evolute and Huygens’s pendulum clock. (Portuguese) Zbl 1391.01010 Gaz. Mat., Lisb. 173, 42-48 (2014). Reviewer: V. N. Saliĭ (Saratov) MSC: 01A45 53A04 70E15 PDF BibTeX XML Cite \textit{H. Mena Matos} and \textit{T. Carrapa}, Gaz. Mat., Lisb. 173, 42--48 (2014; Zbl 1391.01010)
Babaarslan, Murat; Yayli, Yusuf Time-like constant slope surfaces and space-like Bertrand curves in Minkowski 3-space. (English) Zbl 1314.53025 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 84, No. 4, 535-540 (2014). MSC: 53A35 51B20 53Z05 65D17 PDF BibTeX XML Cite \textit{M. Babaarslan} and \textit{Y. Yayli}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 84, No. 4, 535--540 (2014; Zbl 1314.53025) Full Text: DOI arXiv
Fukunaga, T.; Takahashi, Masatomo Evolutes of fronts in the Euclidean plane. (English) Zbl 1308.53005 J. Singul. 10, 92-107 (2014). MSC: 53A04 57R45 58K05 PDF BibTeX XML Cite \textit{T. Fukunaga} and \textit{M. Takahashi}, J. Singul. 10, 92--107 (2014; Zbl 1308.53005) Full Text: DOI Link
Gounai, Hiro; Umehara, Masaaki Caustics of convex curves. (English) Zbl 1321.53006 J. Knot Theory Ramifications 23, No. 10, Article ID 1450050, 28 p. (2014). Reviewer: Raúl Oset Sinha (València) MSC: 53A04 58K15 57R17 PDF BibTeX XML Cite \textit{H. Gounai} and \textit{M. Umehara}, J. Knot Theory Ramifications 23, No. 10, Article ID 1450050, 28 p. (2014; Zbl 1321.53006) Full Text: DOI
Craizer, Marcos Iteration of involutes of constant width curves in the Minkowski plane. (English) Zbl 1305.52006 Beitr. Algebra Geom. 55, No. 2, 479-496 (2014). Reviewer: Rolf Schneider (Freiburg i. Br.) MSC: 52A10 52A21 53A15 PDF BibTeX XML Cite \textit{M. Craizer}, Beitr. Algebra Geom. 55, No. 2, 479--496 (2014; Zbl 1305.52006) Full Text: DOI arXiv
Šipuš, Željka Milin; Volenec, Vladimir The harmonic evolute of a surface in Minkowski 3-space. (English) Zbl 1310.53014 Math. Commun. 19, No. 1, 43-55 (2014). Reviewer: Stefka Hineva (Sofia) MSC: 53A35 53B25 53B30 PDF BibTeX XML Cite \textit{Ž. M. Šipuš} and \textit{V. Volenec}, Math. Commun. 19, No. 1, 43--55 (2014; Zbl 1310.53014) Full Text: Link
Bektaş, Özcan; Yüce, Salim Special involute-evolute partner \(D\)-curves in \(E^3\). (English) Zbl 1389.53001 Eur. J. Pure Appl. Math. 6, No. 1, 20-29 (2013). MSC: 53A04 PDF BibTeX XML Cite \textit{Ö. Bektaş} and \textit{S. Yüce}, Eur. J. Pure Appl. Math. 6, No. 1, 20--29 (2013; Zbl 1389.53001) Full Text: arXiv Link
Bakurová, Viktória; Božek, Miloš Notes on evolutes in the Minkowski plane. (English) Zbl 1348.51011 G, Slov. Čas. Geom. Graf. 10, No. 19, 5-12 (2013). MSC: 51N25 51B20 PDF BibTeX XML Cite \textit{V. Bakurová} and \textit{M. Božek}, G, Slov. Čas. Geom. Graf. 10, No. 19, 5--12 (2013; Zbl 1348.51011)
Craizer, Marcos; Teixeira, Ralph C.; da Silva, Moacyr A. H. B. Polygons with parallel opposite sides. (English) Zbl 1282.52001 Discrete Comput. Geom. 50, No. 2, 474-490 (2013). Reviewer: Gabriela Cristescu (Arad) MSC: 52A10 53A15 PDF BibTeX XML Cite \textit{M. Craizer} et al., Discrete Comput. Geom. 50, No. 2, 474--490 (2013; Zbl 1282.52001) Full Text: DOI arXiv
Ghys, Étienne; Tabachnikov, Sergei; Timorin, Vladlen Osculating curves: around the Tait-Kneser theorem. (English) Zbl 1294.53003 Math. Intell. 35, No. 1, 61-66 (2013). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53A04 PDF BibTeX XML Cite \textit{É. Ghys} et al., Math. Intell. 35, No. 1, 61--66 (2013; Zbl 1294.53003) Full Text: DOI arXiv
Sato, Takami Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz-Minkowski space. (English) Zbl 1269.53023 J. Geom. 103, No. 2, 319-331 (2012). Reviewer: Adrian Sandovici (Piatra Neamt) MSC: 53B25 53B30 53A35 PDF BibTeX XML Cite \textit{T. Sato}, J. Geom. 103, No. 2, 319--331 (2012; Zbl 1269.53023) Full Text: DOI
Craizer, Marcos; Teixeira, Ralph C.; da Silva, Moacyr A. H. B. Affine properties of convex equal-area polygons. (English) Zbl 1255.52001 Discrete Comput. Geom. 48, No. 3, 580-595 (2012). Reviewer: Alina Stancu (Lowell) MSC: 52A10 52A38 PDF BibTeX XML Cite \textit{M. Craizer} et al., Discrete Comput. Geom. 48, No. 3, 580--595 (2012; Zbl 1255.52001) Full Text: DOI arXiv
Saloom, Amani; Tari, Farid Curves in the Minkowski plane and their contact with pseudo-circles. (English) Zbl 1267.53011 Geom. Dedicata 159, 109-124 (2012). Reviewer: Anton Gfrerrer (Graz) MSC: 53A35 58K05 53D12 PDF BibTeX XML Cite \textit{A. Saloom} and \textit{F. Tari}, Geom. Dedicata 159, 109--124 (2012; Zbl 1267.53011) Full Text: DOI
Bilici, M.; Çalişkan, M. Some new notes on the involutes of the timelike curves in Minkowski 3-space. (English) Zbl 1243.53022 Int. J. Contemp. Math. Sci. 6, No. 41-44, 2019-2030 (2011). MSC: 53B30 53A04 PDF BibTeX XML Cite \textit{M. Bilici} and \textit{M. Çalişkan}, Int. J. Contemp. Math. Sci. 6, No. 41--44, 2019--2030 (2011; Zbl 1243.53022) Full Text: Link
Lekner, John Level curves for the sum of the squares of the normals to an ellipse. (English) Zbl 1247.51017 J. Geom. 102, No. 1-2, 115-122 (2011). Reviewer: Rolf Riesinger (Wien) MSC: 51N20 51M25 PDF BibTeX XML Cite \textit{J. Lekner}, J. Geom. 102, No. 1--2, 115--122 (2011; Zbl 1247.51017) Full Text: DOI
Balgetir Öztekin, Handan; Ergüt, Mahmut On curves in the lightlike cone. (English) Zbl 1241.53001 TWMS J. Pure Appl. Math. 2, No. 2, 221-227 (2011). MSC: 53A04 53B30 53A17 34A30 PDF BibTeX XML Cite \textit{H. Balgetir Öztekin} and \textit{M. Ergüt}, TWMS J. Pure Appl. Math. 2, No. 2, 221--227 (2011; Zbl 1241.53001)
Kaya, Semra; Güven, İlkay; Hacisalihoğlu, H. Hilmi On Möbius transformations and their spherical invariants. (English) Zbl 1230.53015 Adv. Appl. Math. Sci. 8, No. 1, 1-7 (2011). MSC: 53A30 53A04 30D05 PDF BibTeX XML Cite \textit{S. Kaya} et al., Adv. Appl. Math. Sci. 8, No. 1, 1--7 (2011; Zbl 1230.53015)
Izumiya, Shyuichi; Takahashi, Masatomo; Tari, Farid Folding maps on spacelike and timelike surfaces and duality. (English) Zbl 1201.53020 Osaka J. Math. 47, No. 3, 839-862 (2010). MSC: 53B25 58C30 57R45 53B30 PDF BibTeX XML Cite \textit{S. Izumiya} et al., Osaka J. Math. 47, No. 3, 839--862 (2010; Zbl 1201.53020) Full Text: Euclid
Kasap, E.; Yuce, S.; Kuruoglu, N. The involute-evolute offsets of ruled surfaces. (English) Zbl 1215.53009 Iran. J. Sci. Technol., Trans. A, Sci. 33, No. 2, 195-201 (2009). MSC: 53A05 68U05 PDF BibTeX XML Cite \textit{E. Kasap} et al., Iran. J. Sci. Technol., Trans. A, Sci. 33, No. 2, 195--201 (2009; Zbl 1215.53009)
Özyilmaz, Emin; Yilmaz, Süha Involute-evolute curve couples in the Euclidean 4-space. (English) Zbl 1206.53009 Int. J. Open Probl. Comput. Sci. Math., IJOPCM 2, No. 2, 168-174 (2009). MSC: 53A07 53A04 PDF BibTeX XML Cite \textit{E. Özyilmaz} and \textit{S. Yilmaz}, Int. J. Open Probl. Comput. Sci. Math., IJOPCM 2, No. 2, 168--174 (2009; Zbl 1206.53009) Full Text: EuDML EMIS
Bilici, Mustafa; Çalişkan, M. On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space. (English) Zbl 1186.53002 Int. Math. Forum 4, No. 29-32, 1497-1509 (2009). MSC: 53A04 53B30 PDF BibTeX XML Cite \textit{M. Bilici} and \textit{M. Çalişkan}, Int. Math. Forum 4, No. 29--32, 1497--1509 (2009; Zbl 1186.53002) Full Text: Link
Hamann, Marco A note on ovals and their evolutoides. (English) Zbl 1188.53003 Beitr. Algebra Geom. 50, No. 2, 433-441 (2009). Reviewer: Johannes Böhm (Jena) MSC: 53A04 51M04 51N20 PDF BibTeX XML Cite \textit{M. Hamann}, Beitr. Algebra Geom. 50, No. 2, 433--441 (2009; Zbl 1188.53003) Full Text: EuDML EMIS
Ait-Haddou, Rachid; Herzog, Walter; Biard, Luc Pythagorean-hodograph ovals of constant width. (English) Zbl 1172.65317 Comput. Aided Geom. Des. 25, No. 4-5, 258-273 (2008). MSC: 65D17 53A04 PDF BibTeX XML Cite \textit{R. Ait-Haddou} et al., Comput. Aided Geom. Des. 25, No. 4--5, 258--273 (2008; Zbl 1172.65317) Full Text: DOI
Gottschalk, Jürgen A short history of the cog wheel and Euler’s contribution on its development. (Kurze geschichtliche Entwicklung des Zahnrades und Eulers Einfluss auf die Entwicklung der Verzahnung.) (German) Zbl 1178.01015 Mitt. Math. Ges. Hamb. 27, 23-47 (2008). Reviewer: Teun Koetsier (Amsterdam) MSC: 01A50 01A70 01A80 01A35 PDF BibTeX XML Cite \textit{J. Gottschalk}, Mitt. Math. Ges. Hamb. 27, 23--47 (2008; Zbl 1178.01015)
Leichtweiss, Kurt Polar curves in the non-Euclidean geometry. (English) Zbl 1148.53010 Result. Math. 52, No. 1-2, 143-160 (2008). Reviewer: Athanase Papadopoulos (Strasbourg) MSC: 53A35 52A55 PDF BibTeX XML Cite \textit{K. Leichtweiss}, Result. Math. 52, No. 1--2, 143--160 (2008; Zbl 1148.53010) Full Text: DOI
Montesinos-Amilibia, Angel Transformations between surfaces in \(\mathbb{R}^4\) with flat normal and/or tangent bundles. (English) Zbl 1147.53009 Rev. Mat. Iberoam. 24, No. 1, 71-90 (2008). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 53A07 37K35 PDF BibTeX XML Cite \textit{A. Montesinos-Amilibia}, Rev. Mat. Iberoam. 24, No. 1, 71--90 (2008; Zbl 1147.53009) Full Text: DOI arXiv Euclid EuDML
Chen, Xianming; Riesenfeld, Richard F.; Cohen, Elaine Complexity reduction for symbolic computation with rational B-splines. (English) Zbl 1142.68571 Int. J. Shape Model. 13, No. 1, 25-49 (2007). MSC: 68U07 68U05 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. J. Shape Model. 13, No. 1, 25--49 (2007; Zbl 1142.68571) Full Text: DOI
Escudero, Carlos A.; Reventós, Agustí An interesting property of the evolute. (English) Zbl 1144.53007 Am. Math. Mon. 114, No. 7, 623-628 (2007). Reviewer: Johann Lang (Graz) MSC: 53A04 PDF BibTeX XML Cite \textit{C. A. Escudero} and \textit{A. Reventós}, Am. Math. Mon. 114, No. 7, 623--628 (2007; Zbl 1144.53007) Full Text: DOI
Bukcu, Bahaddin; Karacan, Murat Kemal On the involute and evolute curves of the timelike curve in Minkowski 3-space. (English) Zbl 1138.53019 Demonstr. Math. 40, No. 3, 721-732 (2007). Reviewer: Christos Baikoussis (Ioannina) MSC: 53A40 53B30 PDF BibTeX XML Cite \textit{B. Bukcu} and \textit{M. K. Karacan}, Demonstr. Math. 40, No. 3, 721--732 (2007; Zbl 1138.53019) Full Text: DOI
Izumiya, Shyuichi Differential geometry from the view point of Lagrangian or Legendrian singularity theory. (English) Zbl 1144.53010 Chéniot, Denis (ed.) et al., Singularity theory. Proceedings of the 2005 Marseille singularity school and conference, CIRM, Marseille, France, January 24–February 25, 2005. Dedicated to Jean-Paul Brasselet on his 60th birthday. Singapore: World Scientific (ISBN 978-981-270-410-8/hbk). 241-275 (2007). Reviewer: Udo Hertrich-Jeromin (Bath) MSC: 53A05 53-02 53A07 58K05 58K40 PDF BibTeX XML Cite \textit{S. Izumiya}, in: Singularity theory. Proceedings of the 2005 Marseille singularity school and conference, CIRM, Marseille, France, January 24--February 25, 2005. Dedicated to Jean-Paul Brasselet on his 60th birthday. Singapore: World Scientific. 241--275 (2007; Zbl 1144.53010)
Cheshkova, M. A.; Shaposhnikova, O. E. Evolutes of a translation surface in \(E^4\). (Russian. English summary) Zbl 1374.53014 Izv. Altaĭ. Gos. Univ., Ser. Mat. Inform. Fiz. 2005, No. 1, 35-36 (2005). MSC: 53A05 PDF BibTeX XML Cite \textit{M. A. Cheshkova} and \textit{O. E. Shaposhnikova}, Izv. Altaĭ. Gos. Univ., Ser. Mat. Inform. Fiz. 2005, No. 1, 35--36 (2005; Zbl 1374.53014)