Djomegne, Landry; Kenne, Cyrille Hierarchical exact controllability of a parabolic equation with boundary controls. (English) Zbl 07940993 J. Math. Anal. Appl. 542, No. 2, Article ID 128799, 28 p. (2025). MSC: 35K20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Claret, Sue; Lemoine, Jérôme; Münch, Arnaud On the exact boundary controllability of semilinear wave equations. (English) Zbl 1543.35109 SIAM J. Control Optim. 62, No. 4, 1953-1976 (2024). MSC: 35L71 35L20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wang, Libin; Teh, Zhuo Lin Exact boundary controllability of nodal profile for the system of one-dimensional adiabatic flow. (English) Zbl 1537.93098 Syst. Control Lett. 184, Article ID 105718, 6 p. (2024). MSC: 93B05 93C20 93D20 × Cite Format Result Cite Review PDF Full Text: DOI
Cîndea, Nicolae; Micu, Sorin; Rovenţa, Ionel; Tudor, Mihai An approximation method for exact controls of vibrating systems with numerical viscosity. (English) Zbl 1541.65093 ESAIM, Control Optim. Calc. Var. 30, Paper No. 33, 27 p. (2024). MSC: 65M60 65M06 65N30 35L10 93B05 93C25 93D15 74K10 74H45 35Q74 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Libin; Zhang, Mingming Simultaneous exact boundary controllability of final state and nodal profile for quasilinear hyperbolic systems. (English) Zbl 1533.93073 Appl. Math. Optim. 89, No. 2, Paper No. 43, 19 p. (2024). MSC: 93B05 93C20 35L50 × Cite Format Result Cite Review PDF Full Text: DOI
Monsurrò, S.; Nandakumaran, A. K.; Perugia, C. A note on the exact boundary controllability for an imperfect transmission problem. (English) Zbl 1536.35202 Ric. Mat. 73, No. 1, 547-564 (2024). MSC: 35L20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Libin; Zhang, Yutao Exact boundary controllability of nodal profile for nonautonomous quasilinear hyperbolic systems. (English) Zbl 1532.35296 J. Dyn. Control Syst. 30, No. 1, Paper No. 6, 18 p. (2024). MSC: 35L50 35L60 37B55 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Bottois, Arthur; Lemoine, Jérôme; Münch, Arnaud Constructive exact controls for semi-linear wave equations. (English) Zbl 1532.35305 Ann. Math. Sci. Appl. 8, No. 3, 629-675 (2023). MSC: 35L71 35L20 49M15 93B05 93E24 × Cite Format Result Cite Review PDF Full Text: DOI
Huaman, Dany Nina; Nuñez-Chávez, Miguel R.; Límaco, J.; Carvalho, Pitágoras P. Local null controllability for the thermistor problem. (English) Zbl 1535.35187 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 236, Article ID 113330, 34 p. (2023). MSC: 35Q93 93B05 93C10 93C20 35J25 35K20 35M13 78A25 78A55 65M60 65H10 65M12 × Cite Format Result Cite Review PDF Full Text: DOI
Zu, Chengxia; Li, Tatsien; Rao, Bopeng Exact internal controllability and synchronization for a coupled system of wave equations. (English) Zbl 1530.93039 Chin. Ann. Math., Ser. B 44, No. 5, 641-662 (2023). MSC: 93B05 93C20 35L53 × Cite Format Result Cite Review PDF Full Text: DOI
Mercado, Alberto; Morales, Roberto Exact controllability for a Schrödinger equation with dynamic boundary conditions. (English) Zbl 1527.35330 SIAM J. Control Optim. 61, No. 6, 3501-3525 (2023). MSC: 35Q41 93B05 93B07 93C05 93C20 35M13 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bárcena-Petisco, Jon Asier; Fernández-Cara, Enrique; Souza, Diego A. Exact controllability to the trajectories of the one-phase Stefan problem. (English) Zbl 1526.35328 J. Differ. Equations 376, 126-153 (2023). MSC: 35R35 35K20 80A22 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Milla Miranda, M.; Louredo, Aldo T. Boundary exact controllability for the longitudinal vibrations of a bar in memoriam to Professor Luiz Adauto Medeiros. (English) Zbl 1522.93038 Evol. Equ. Control Theory 12, No. 6, 1527-1541 (2023). MSC: 93B05 93C20 74H45 × Cite Format Result Cite Review PDF Full Text: DOI
Bai, Jinyan; Chai, Shugen Exact controllability of wave equations with interior degeneracy and one-sided boundary control. (English) Zbl 1521.93011 J. Syst. Sci. Complex. 36, No. 2, 656-671 (2023). MSC: 93B05 93C20 35L80 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Yu, Lei The exact boundary controllability of nodal profile for entropy solutions to 1-D quasilinear hyperbolic systems of conservation laws with linearly degenerate negative (resp., positive) characteristic fields. (English) Zbl 1522.35329 SIAM J. Control Optim. 61, No. 5, 2761-2776 (2023). MSC: 35L60 35B05 35L50 35L65 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Liu, Yu-Xiang Exact boundary controllability of the structural acoustic model with variable coefficients. (English) Zbl 1521.35114 Appl. Anal. 102, No. 9, 2524-2539 (2023). MSC: 35L57 93B05 93B07 93B27 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Rao, Bopeng Exactly synchronizable state and approximate controllability for a coupled system of wave equations with locally distributed controls. (English) Zbl 1519.93033 SIAM J. Control Optim. 61, No. 3, 1460-1471 (2023). MSC: 93B05 93C20 35L53 × Cite Format Result Cite Review PDF Full Text: DOI
Lemoine, Jérôme; Münch, Arnaud Constructive exact control of semilinear 1D heat equations. (English) Zbl 1517.35126 Math. Control Relat. Fields 13, No. 1, 382-414 (2023). MSC: 35K58 35K20 93B05 93E24 49M15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Adimurthi; Ghoshal, Shyam Sundar Exact and optimal controllability for scalar conservation laws with discontinuous flux. (English) Zbl 1517.35233 Commun. Contemp. Math. 25, No. 6, Article ID 2250024, 54 p. (2023). MSC: 35R11 35F21 35L04 35L65 35L67 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chowdhury, Shirshendu; Dutta, Rajib; Majumdar, Subrata Boundary controllability and stabilizability of a coupled first-order hyperbolic-elliptic system. (English) Zbl 1517.35098 Evol. Equ. Control Theory 12, No. 3, 907-943 (2023). MSC: 35G46 93B05 93B07 93B52 93C20 93D15 × Cite Format Result Cite Review PDF Full Text: DOI
Quintero, José R. On the exact controllability for the benney-luke equation in a bounded domain. (English) Zbl 1512.35484 Evol. Equ. Control Theory 12, No. 3, 823-845 (2023). MSC: 35Q35 93B05 93B07 93B60 × Cite Format Result Cite Review PDF Full Text: DOI
Gugat, Martin; Habermann, Jens; Hintermüller, Michael; Huber, Olivier Constrained exact boundary controllability of a semilinear model for pipeline gas flow. (English) Zbl 1518.93018 Eur. J. Appl. Math. 34, No. 3, 532-553 (2023). Reviewer: Jin Liang (Shanghai) MSC: 93B05 93C10 93C20 93C95 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Ke; Wang, Libin Exact boundary controllability of nodal profile for quasilinear hyperbolic systems and its asymptotic stability. (English) Zbl 1511.35237 SIAM J. Control Optim. 61, No. 1, 1-21 (2023). MSC: 35L50 35L60 37B55 93B05 93D20 × Cite Format Result Cite Review PDF Full Text: DOI
Lu, Xing; Li, Tatsien Exact boundary synchronization by groups for a kind of system of wave equations coupled with velocities. (English) Zbl 1508.93040 Chin. Ann. Math., Ser. B 44, No. 1, 17-34 (2023). MSC: 93B05 93C20 35L53 37N35 × Cite Format Result Cite Review PDF Full Text: DOI
Bhandari, Kuntal; Lemoine, Jérôme; Münch, Arnaud Exact boundary controllability of 1D semilinear wave equations through a constructive approach. (English) Zbl 1515.93033 Math. Control Signals Syst. 35, No. 1, 77-123 (2023). Reviewer: Liping Chen (Hefei) MSC: 93B05 93C20 35L71 × Cite Format Result Cite Review PDF Full Text: DOI HAL
Capistrano-Filho, Roberto de A.; Cavalcante, Márcio; Gallego, Fernando A. Controllability for Schrödinger type system with mixed dispersion on compact star graphs. (English) Zbl 1504.35423 Evol. Equ. Control Theory 12, No. 1, 1-19 (2023). MSC: 35Q41 35Q55 31A30 35G30 35R02 93B05 93B07 93C20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Allal, Brahim; Moumni, Alhabib; Salhi, Jawad Boundary controllability for a degenerate and singular wave equation. (English) Zbl 1534.93191 Math. Methods Appl. Sci. 45, No. 17, 11526-11544 (2022). MSC: 93C20 93B05 35L05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kogut, Peter I.; Kupenko, Olga P.; Leugering, Günter On boundary exact controllability of one-dimensional wave equations with weak and strong interior degeneration. (English) Zbl 1530.35142 Math. Methods Appl. Sci. 45, No. 2, 770-792 (2022). MSC: 35L20 35L80 49J20 49J45 93B05 93C73 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chaumont-Frelet, T.; Grote, M. J.; Lanteri, S.; Tang, J. H. A controllability method for Maxwell’s equations. (English) Zbl 1504.65250 SIAM J. Sci. Comput. 44, No. 6, A3700-A3727 (2022). Reviewer: Xiaodi Zhang (Zhengzhou) MSC: 65N30 65K10 78A45 93B05 35B10 78M10 35Q60 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Jin, Yanpeng; Fu, Ying Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. (English) Zbl 1500.35198 Commun. Pure Appl. Anal. 21, No. 8, 2775-2797 (2022). MSC: 35K35 35B60 35K58 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Ervedoza, Sylvain; Lissy, Pierre; Privat, Yannick Desensitizing control for the heat equation with respect to domain variations. (Contrôle désensibilisant pour l’équation de la chaleur par rapport à des variations du domaine.) (English. French summary) Zbl 1517.35232 J. Éc. Polytech., Math. 9, 1397-1429 (2022). MSC: 35Q93 35Q79 35K05 35K20 35D30 47H10 49K20 49Q10 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Monsurrò, S.; Nandakumaran, A. K.; Perugia, C. Exact internal controllability for a problem with imperfect interface. (English) Zbl 1497.35316 Appl. Math. Optim. 85, No. 3, Paper No. 40, 33 p. (2022). MSC: 35L53 35Q93 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Astashova, I. V.; Lashin, D. A.; Filinovskiy, A. V. On the extremum control problem with pointwise observation for a parabolic equation. (English. Russian original) Zbl 1496.35224 Dokl. Math. 105, No. 3, 158-161 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 504, 28-31 (2022). MSC: 35K20 35Q93 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Yang, Fengyan Exact boundary null controllability for a coupled system of plate equations with variable coefficients. (English) Zbl 1498.93057 Evol. Equ. Control Theory 11, No. 4, 1071-1086 (2022). MSC: 93B05 93B27 93C20 35G35 74K20 × Cite Format Result Cite Review PDF Full Text: DOI
Leugering, Günter; Micu, Sorin; Rovenţa, Ionel; Wang, Yue Controllability properties of a hyperbolic system with dynamic boundary conditions. (English) Zbl 1497.93018 J. Evol. Equ. 22, No. 3, Paper No. 65, 36 p. (2022). MSC: 93B05 93C20 35L51 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Lu, Xing Exact boundary synchronization for a kind of first order hyperbolic system. (English) Zbl 1492.93021 ESAIM, Control Optim. Calc. Var. 28, Paper No. 34, 27 p. (2022). MSC: 93B05 93C20 35L40 × Cite Format Result Cite Review PDF Full Text: DOI
Lu, Xing; Li, Tatsien Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – the HUM method. (English) Zbl 1487.93014 Chin. Ann. Math., Ser. B 43, No. 1, 1-16 (2022). MSC: 93B05 93C20 35L50 × Cite Format Result Cite Review PDF Full Text: DOI
Bottois, Arthur Pointwise moving control for the \(1\)-D wave equation. (English) Zbl 1485.93059 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 33-57 (2022). MSC: 93B05 93C20 35L05 65N30 × Cite Format Result Cite Review PDF Full Text: DOI
Avdonin, Sergei; Zhao, Yuanyuan Exact controllability of the wave equation on graphs. (English) Zbl 1486.35401 Appl. Math. Optim. 85, No. 2, Paper No. 1, 44 p. (2022). MSC: 35R02 35L05 35L20 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Nunes, R. S. O. Support of solutions of the linear Klein-Gordon equation and exact boundary controllability in non-cylindrical domains. (English) Zbl 1480.35293 J. Math. Anal. Appl. 508, No. 1, Article ID 125859, 15 p. (2022). MSC: 35L20 35B40 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Límaco, J.; Nuñez-Chávez, Miguel R.; Huaman, Dany Nina Exact controllability for nonlocal and nonlinear hyperbolic PDEs. (English) Zbl 1476.35135 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112569, 24 p. (2022). MSC: 35L20 35R09 93B05 93C10 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Rissel, Manuel; Wang, Ya-Guang Global exact controllability of ideal incompressible magnetohydrodynamic flows through a planar duct. (English) Zbl 1494.93020 ESAIM, Control Optim. Calc. Var. 27, Paper No. 103, 24 p. (2021). MSC: 93B05 76E25 93C20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wang, Yue; Li, Tatsien Exact boundary controllability of partial nodal profile for network of strings. (English) Zbl 1478.93068 Nonlinear Anal., Real World Appl. 62, Article ID 103383, 32 p. (2021). MSC: 93B05 93C20 35L50 35L20 35L60 × Cite Format Result Cite Review PDF Full Text: DOI
Leugering, Günter; Rodriguez, Charlotte; Wang, Yue Nodal profile control for networks of geometrically exact beams. (English. French summary) Zbl 1478.35201 J. Math. Pures Appl. (9) 155, 111-139 (2021). MSC: 35Q74 35L50 35R02 93B05 93C20 74K10 35A01 35A02 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Lu, Xing; Li, Tatsien Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – the constructive method. (English) Zbl 1476.93081 Chin. Ann. Math., Ser. B 42, No. 5, 643-676 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 93B05 93C20 35L50 × Cite Format Result Cite Review PDF Full Text: DOI
Jbalia, Aymen; Khelifi, Abdessatar On the identification of the heat conductivity distribution from partial dynamic boundary measurements. (English) Zbl 1475.35414 Appl. Anal. 100, No. 13, 2735-2748 (2021). MSC: 35R30 35K05 35K20 80A23 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Vergara-Hermosilla, G.; Leugering, G.; Wang, Y. Boundary controllability of a system modelling a partially immersed obstacle. (English) Zbl 1473.35358 ESAIM, Control Optim. Calc. Var. 27, Paper No. 80, 15 p. (2021). MSC: 35L50 35L65 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Bayen, Alexandre; Coron, Jean-Michel; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas Boundary controllability and asymptotic stabilization of a nonlocal traffic flow model. (English) Zbl 1471.35197 Vietnam J. Math. 49, No. 3, 957-985 (2021). MSC: 35L65 35L02 35L04 35L60 76A30 93C20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Lu, Xing; Rao, Bopeng Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls. (English) Zbl 1470.93026 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S7, 29 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93B07 93C20 35L05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Abdelli, Mouna; Castro, Carlos Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation. (English) Zbl 1481.65194 ESAIM, Control Optim. Calc. Var. 27, Paper No. 64, 26 p. (2021). MSC: 65M70 35L05 65K10 49J05 49J50 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gerbi, Stéphane; Kassem, Chiraz; Mortada, Amina; Wehbe, Ali Exact controllability and stabilization of locally coupled wave equations: theoretical results. (English) Zbl 1467.35216 Z. Anal. Anwend. 40, No. 1, 67-96 (2021). MSC: 35L53 35B40 93B05 93D15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Li, Tatsien; Zhuang, Kaili A cut-off method to realize the exact boundary controllability of nodal profile for Saint-Venant systems on general networks with loops. (English. French summary) Zbl 1467.35214 J. Math. Pures Appl. (9) 151, 1-27 (2021). MSC: 35L50 35L60 35R02 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Gugat, Martin On the turnpike property with interior decay for optimal control problems. (English) Zbl 1467.93149 Math. Control Signals Syst. 33, No. 2, 237-258 (2021). MSC: 93C15 93C20 93B05 49K15 49K20 × Cite Format Result Cite Review PDF Full Text: DOI
Nunes, Ruikson S. O. Exact boundary controllability for the wave equation with moving boundary domains in a star-shaped hole. (English) Zbl 1467.35364 Electron. J. Differ. Equ. 2021, Paper No. 49, 12 p. (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35R37 35L05 35L20 35B40 93B05 49J20 × Cite Format Result Cite Review PDF Full Text: Link
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 1509.35156 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L53 35B40 35B45 93B05 49J20 × Cite Format Result Cite Review PDF Full Text: DOI
Nunes, Ruikson S. O. On the exact boundary control for the linear Klein-Gordon equation in non-cylindrical domains. (English) Zbl 1525.93022 TEMA, Tend. Mat. Apl. Comput. 21, No. 2, 371-380 (2020). MSC: 93B05 93C20 35L20 × Cite Format Result Cite Review PDF Full Text: DOI
Lasri, Marieme; Bounit, Hamid; Hadd, Said On exact controllability of linear perturbed boundary systems: a semigroup approach. (English) Zbl 1476.93080 IMA J. Math. Control Inf. 37, No. 4, 1548-1573 (2020). Reviewer: Yong-Kui Chang (Xi’an) MSC: 93B05 93C73 93C25 93C05 × Cite Format Result Cite Review PDF Full Text: DOI
El Akri, Abdeladim; Maniar, Lahcen Uniform indirect boundary controllability of semi-discrete 1-\(d\) coupled wave equations. (English) Zbl 1465.93018 Math. Control Relat. Fields 10, No. 4, 669-698 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35L05 65M06 × Cite Format Result Cite Review PDF Full Text: DOI
Lei, Zhen; Li, Tatsien; Rao, Bopeng On the synchronizable system. (English) Zbl 1459.35278 Chin. Ann. Math., Ser. B 41, No. 6, 821-828 (2020). MSC: 35L53 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Akil, Mohammad; Chitour, Yacine; Ghader, Mouhammad; Wehbe, Ali Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. (English) Zbl 1452.35205 Asymptotic Anal. 119, No. 3-4, 221-280 (2020). MSC: 35Q74 35B35 93B05 35R11 26A33 × Cite Format Result Cite Review PDF Full Text: DOI
Santos, Manoel J.; Raposo, Carlos A.; Rodrigues, Leonardo R. S. Boundary exact controllability for a porous elastic Timoshenko system. (English) Zbl 1538.93021 Appl. Math., Praha 65, No. 4, 343-354 (2020). Reviewer: Gen Qi Xu (Tianjin) MSC: 93C20 93B05 74K10 × Cite Format Result Cite Review PDF Full Text: DOI
Warma, Mahamadi; Zamorano, Sebastián Analysis of the controllability from the exterior of strong damping nonlocal wave equations. (English) Zbl 1446.35258 ESAIM, Control Optim. Calc. Var. 26, Paper No. 42, 34 p. (2020). MSC: 35R11 35S05 35L20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Nunes, Ruikson S. O.; Bastos, Waldemar D.; Pitot, João Manoel S. Energy decay and control for a system of strings elastically connected in parallel. (English) Zbl 1445.35072 Math. Methods Appl. Sci. 43, No. 3, 1230-1242 (2020). MSC: 35B40 35L52 35L53 93B05 49J20 74K05 × Cite Format Result Cite Review PDF Full Text: DOI
Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions. (English) Zbl 1448.93030 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047-1073 (2020). MSC: 93B05 35K20 35K59 93C20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Kassab, K. Null controllability of semi-linear fourth order parabolic equations. (English) Zbl 1439.35216 J. Math. Pures Appl. (9) 136, 279-312 (2020). MSC: 35K35 93B05 93B07 93C20 × Cite Format Result Cite Review PDF Full Text: DOI HAL
Wang, Yan-yan Induced generalized exact boundary synchronizations for a coupled system of wave equations. (English) Zbl 1449.93008 Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 113-126 (2020). MSC: 93B05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Ton, Bui An Exact controllability of a strongly nonlinear wave equation with boundary controls. (English) Zbl 1470.35226 Adv. Math. Sci. Appl. 28, No. 2, 213-234 (2019). MSC: 35L20 35L71 93B05 × Cite Format Result Cite Review PDF
Gugat, Martin Exact controllability of a string to rest with a moving boundary. (English) Zbl 1453.93017 Control Cybern. 48, No. 1, 69-87 (2019). MSC: 93B05 93C20 74K05 × Cite Format Result Cite Review PDF
Li, Tatsien Exact boundary controllability of nodal profile for hyperbolic systems. (English) Zbl 1463.93017 J. Math. Res. Appl. 39, No. 6, 554-562 (2019). MSC: 93B05 93C20 35L50 93D20 × Cite Format Result Cite Review PDF Full Text: DOI
Astashova, I. V.; Filinovskiy, A. V. On properties of minimizers of a control problem with time-distributed functional related to parabolic equations. (English) Zbl 1442.35176 Opusc. Math. 39, No. 5, 595-609 (2019). MSC: 35K20 35Q93 35Q79 49J20 × Cite Format Result Cite Review PDF Full Text: DOI
Astashova, I. V.; Lashin, D. A.; Filinovskiĭ, A. V. Control with point observation for a parabolic problem with convection. (English. Russian original) Zbl 1436.35221 Trans. Mosc. Math. Soc. 2019, 221-234 (2019); translation from Tr. Mosk. Mat. O.-va 80, No. 2, 259-274 (2019). MSC: 35K20 35Q93 49J20 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Leugering, Günter; Li, Tatsien; Wang, Yue 1-d wave equations coupled via viscoelastic springs and masses: boundary controllability of a quasilinear and exponential stabilizability of a linear model. (English) Zbl 1428.35235 Alabau-Boussouira, Fatiha (ed.) et al., Trends in control theory and partial differential equations. Cham: Springer. Springer INdAM Ser. 32, 139-156 (2019). MSC: 35L72 93B05 35L53 74K05 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Rao, Bopeng Exact boundary controllability for one-dimensional quasilinear hyperbolic systems. (English) Zbl 1429.35003 Coron, Jean-Michel (ed.) et al., One-dimensional hyperbolic conservation laws and their applications. Lecture notes for the LIASFMA Shanghai summer school, Shanghai, China, August 16–27, 2015. Hackensack, NJ: World Scientific; Beijing: Higher Education Press. Ser. Contemp. Appl. Math. CAM 21, 1-86 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35-02 93B05 93C20 35L50 35L60 × Cite Format Result Cite Review PDF Full Text: DOI
Destuynder, Philippe; Fabre, Caroline On the controllability of racing sailing boats with foils. (English) Zbl 1421.35272 Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1635-1668 (2019). MSC: 35Q35 35C07 65M15 35M12 65T60 93B05 76E09 15A18 93B52 × Cite Format Result Cite Review PDF Full Text: DOI
Grote, Marcus J.; Tang, Jet Hoe On controllability methods for the Helmholtz equation. (English) Zbl 1419.65060 J. Comput. Appl. Math. 358, 306-326 (2019). MSC: 65M60 93C20 49J20 93B05 35J05 × Cite Format Result Cite Review PDF Full Text: DOI Link
Zhang, Yu-Long; Wang, Jun-Min Exact controllability of a micro beam with boundary bending moment. (English) Zbl 1416.93036 Int. J. Control 92, No. 6, 1335-1343 (2019). MSC: 93B05 93B07 70Q05 × Cite Format Result Cite Review PDF Full Text: DOI
Aouadi, Moncef; Kassraoui, Jihed Exact observability and controllability for a nonsimple elastic rod. (English) Zbl 1416.93025 Appl. Anal. 98, No. 9, 1705-1723 (2019). MSC: 93B05 93B07 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Kumar, Surendra; Rastogi, Shard The solvability and controllability of semilinear coupled wave equation. (English) Zbl 1415.35202 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019). MSC: 35L71 35L53 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Coron, Jean-Michel; Nguyen, Hoai-Minh Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. (English) Zbl 1418.35259 SIAM J. Control Optim. 57, No. 2, 1127-1156 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35L50 93C20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lu, Xing Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems. (English) Zbl 1437.35460 Chin. Ann. Math., Ser. B 40, No. 1, 79-96 (2019). MSC: 35L50 35L60 93B05 93B07 × Cite Format Result Cite Review PDF Full Text: DOI
Faella, Luisa; Monsurrò, Sara; Perugia, Carmen Exact controllability for evolutionary imperfect transmission problems. (English. French summary) Zbl 1406.35031 J. Math. Pures Appl. (9) 122, 235-271 (2019). MSC: 35B27 35Q93 93B05 35L20 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Wang, Yue Exact boundary controllability on a planar tree-like network of vibrating strings with dynamical boundary conditions. (English) Zbl 1424.35241 J. Math. Study 51, No. 3, 227-252 (2018). MSC: 35L05 35L72 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Astashova, Irina; Filinovskiy, Alexey V. On the dense controllability for the parabolic problem with time-distributed functional. (English) Zbl 1495.93014 Tatra Mt. Math. Publ. 71, 9-25 (2018). MSC: 93B05 93C20 35K20 49J20 49N10 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Yu, Lei Local exact boundary controllability of entropy solutions to linearly degenerate quasilinear hyperbolic systems of conservation laws. (English) Zbl 1403.93042 ESAIM, Control Optim. Calc. Var. 24, No. 2, 793-810 (2018). MSC: 93B05 35L60 93C05 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Romanov, I. V.; Shamaev, A. S. Some problems of distributed and boundary control for systems with integral aftereffect. (English. Russian original) Zbl 1516.35441 J. Math. Sci., New York 234, No. 4, 470-484 (2018); translation from Tr. Semin. Im. I. G. Petrovskogo 31, 134-157 (2016). MSC: 35R09 35K20 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Christophe Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control. (English) Zbl 1395.35141 SIAM J. Control Optim. 56, No. 4, 3092-3127 (2018). MSC: 35L53 93B05 93C10 × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Lixin Exact controllability for a kind of linear hyperbolic systems with vertical characteristics. (English) Zbl 1403.35161 Math. Methods Appl. Sci. 41, No. 11, 4337-4346 (2018). Reviewer: Andrei Perjan (Chişinău) MSC: 35L50 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Martin, Philippe; Rosier, Lionel; Rouchon, Pierre Controllability of the 1D Schrödinger equation using flatness. (English) Zbl 1387.93044 Automatica 91, 208-216 (2018). MSC: 93B05 93C20 35Q41 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhang, Yu-Long; Wang, Jun-Min Moment approach to the boundary exact controllability of an active constrained layer beam. (English) Zbl 1387.93047 J. Math. Anal. Appl. 465, No. 1, 643-657 (2018). MSC: 93B05 93C20 74K10 35Q93 35L05 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Lu, Xing; Rao, Bopeng Exact boundary synchronization for a coupled system of wave equations with Neumann boundary controls. (English) Zbl 1391.93039 Chin. Ann. Math., Ser. B 39, No. 2, 233-252 (2018). MSC: 93B05 93B07 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Negrescu, Alexandru On the controllability of the Neumann problem for the wave equation. (English) Zbl 1513.35352 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 79, No. 2, 53-58 (2017). MSC: 35L05 35Q93 × Cite Format Result Cite Review PDF
Zhuo, Zhang The exact controllability of Euler-Bernoulli beam systems with small delays in the boundary feedback controls. (English) Zbl 1412.35096 J. Nonlinear Sci. Appl. 10, No. 5, 2778-2787 (2017). MSC: 35J30 35J35 × Cite Format Result Cite Review PDF Full Text: DOI
Zhuang, Kaili Exact internal controllability of nodal profile for first order quasilinear hyperbolic systems. (English) Zbl 1377.35194 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 165, 18-32 (2017). MSC: 35L50 93B05 × Cite Format Result Cite Review PDF Full Text: DOI
Caicedo, Miguel Andres; Capistrano Filho, Roberto; Zhang, Bing-Yu Neumann boundary controllability of the Korteweg-de Vries equation on a bounded domain. (English) Zbl 1382.35255 SIAM J. Control Optim. 55, No. 6, 3503-3532 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 93B05 93D15 37K10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wang, Yue; Leugering, Günter; Li, Tatsien Exact boundary controllability for 1-D quasilinear wave equations with dynamical boundary conditions. (English) Zbl 1391.35283 Math. Methods Appl. Sci. 40, No. 10, 3808-3820 (2017). Reviewer: Yuanyuan Ke (Beijing) MSC: 35L72 93B05 35L20 × Cite Format Result Cite Review PDF Full Text: DOI
Shubov, Marianna A. Spectral analysis of a non-selfadjoint operator generated by an energy harvesting model and application to an exact controllability problem. (English) Zbl 1366.35189 Asymptotic Anal. 102, No. 3-4, 119-156 (2017). MSC: 35Q74 35P10 35L35 35P20 74F15 47A75 93B05 74N10 × Cite Format Result Cite Review PDF Full Text: DOI
Alabau-Boussouira, Fatiha; Cannarsa, Piermarco; Leugering, Günter Control and stabilization of degenerate wave equations. (English) Zbl 1373.35185 SIAM J. Control Optim. 55, No. 3, 2052-2087 (2017). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35L20 35L05 35L80 93B05 93B07 93B52 93D15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gu, Qilong; Leugering, Günter; Li, Tatsien Exact boundary controllability on a tree-like network of nonlinear planar Timoshenko beams. (English) Zbl 1401.35287 Chin. Ann. Math., Ser. B 38, No. 3, 711-740 (2017). Reviewer: Yuanyuan Ke (Beijing) MSC: 35Q74 93B05 35L70 74K10 93C20 49J40 × Cite Format Result Cite Review PDF Full Text: DOI
Li, Tatsien; Rao, Bopeng Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. (English) Zbl 1364.93068 Chin. Ann. Math., Ser. B 38, No. 2, 473-488 (2017). MSC: 93B05 93B07 93C20 35L53 × Cite Format Result Cite Review PDF Full Text: DOI
Capistrano-Filho, Roberto A.; Gallego, Fernando A.; Pazoto, Ademir F. Boundary controllability of a nonlinear coupled system of two Korteweg-de Vries equations with critical size restrictions on the spatial domain. (English) Zbl 1360.93091 Math. Control Signals Syst. 29, No. 1, Paper No. 6, 37 p. (2017). MSC: 93B05 93C20 35Q53 93C10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv