Lu, Xing; Li, Tatsien Exact boundary synchronization by groups for a kind of system of wave equations coupled with velocities. (English) Zbl 07661821 Chin. Ann. Math., Ser. B 44, No. 1, 17-34 (2023). MSC: 93B05 93C20 35L53 37N35 PDF BibTeX XML Cite \textit{X. Lu} and \textit{T. Li}, Chin. Ann. Math., Ser. B 44, No. 1, 17--34 (2023; Zbl 07661821) Full Text: DOI OpenURL
Bournissou, Mégane Quadratic behaviors of the 1D linear Schrödinger equation with bilinear control. (English) Zbl 07653592 J. Differ. Equations 351, 324-360 (2023). MSC: 93B05 93C20 35Q41 81Q93 PDF BibTeX XML Cite \textit{M. Bournissou}, J. Differ. Equations 351, 324--360 (2023; Zbl 07653592) Full Text: DOI arXiv OpenURL
Bhandari, Kuntal; Lemoine, Jérôme; Münch, Arnaud Exact boundary controllability of 1D semilinear wave equations through a constructive approach. (English) Zbl 07653182 Math. Control Signals Syst. 35, No. 1, 77-123 (2023). MSC: 93B05 93C20 35L71 PDF BibTeX XML Cite \textit{K. Bhandari} et al., Math. Control Signals Syst. 35, No. 1, 77--123 (2023; Zbl 07653182) Full Text: DOI OpenURL
Capistrano-Filho, Roberto de A.; Cavalcante, Márcio; Gallego, Fernando A. Controllability for Schrödinger type system with mixed dispersion on compact star graphs. (English) Zbl 07629940 Evol. Equ. Control Theory 12, No. 1, 1-19 (2023). MSC: 35Q41 35Q55 31A30 35G30 35R02 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} et al., Evol. Equ. Control Theory 12, No. 1, 1--19 (2023; Zbl 07629940) Full Text: DOI arXiv OpenURL
Wang, Fei; Wang, Jun-Min; Wu, Xiao-Hui Exact controllability of the interconnected Schrödinger and wave equations with a boundary control at the wave equation. (English) Zbl 07624124 J. Math. Anal. Appl. 519, No. 2, Article ID 126831, 20 p. (2023). Reviewer: Liping Chen (Hefei) MSC: 93B05 93C20 35J10 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Math. Anal. Appl. 519, No. 2, Article ID 126831, 20 p. (2023; Zbl 07624124) Full Text: DOI OpenURL
Chaumont-Frelet, T.; Grote, M. J.; Lanteri, S.; Tang, J. H. A controllability method for Maxwell’s equations. (English) Zbl 07634647 SIAM J. Sci. Comput. 44, No. 6, A3700-A3727 (2022). Reviewer: Xiaodi Zhang (Zhengzhou) MSC: 65N30 65K10 78A45 93B05 35B10 78M10 35Q60 PDF BibTeX XML Cite \textit{T. Chaumont-Frelet} et al., SIAM J. Sci. Comput. 44, No. 6, A3700--A3727 (2022; Zbl 07634647) Full Text: DOI arXiv OpenURL
Benaoued, Meriem; Bouagada, Djillali Minimum energy control of degenerate Cauchy problem with skew-Hermitian pencil. (English) Zbl 07624029 J. Appl. Anal. 28, No. 2, 251-261 (2022). MSC: 93C35 93B05 15B57 49J15 PDF BibTeX XML Cite \textit{M. Benaoued} and \textit{D. Bouagada}, J. Appl. Anal. 28, No. 2, 251--261 (2022; Zbl 07624029) Full Text: DOI OpenURL
Cabada, Dalia; Garcia, Katherine; Guevara, Cristi; Leiva, Hugo Controllability of time varying semilinear non-instantaneous impulsive systems with delay, and nonlocal conditions. (English) Zbl 1501.93016 Arch. Control Sci. 32, No. 2, 335-357 (2022). MSC: 93B05 93C27 93C10 93C43 PDF BibTeX XML Cite \textit{D. Cabada} et al., Arch. Control Sci. 32, No. 2, 335--357 (2022; Zbl 1501.93016) Full Text: DOI OpenURL
Al Jebawy, Hanin; El Badia, Abdellatif On an inverse photoacoustic tomography problem of small absorbers with inhomogeneous sound speed. (English) Zbl 1499.92043 IMA J. Appl. Math. 87, No. 4, 607-646 (2022). MSC: 92C55 35R30 93B05 PDF BibTeX XML Cite \textit{H. Al Jebawy} and \textit{A. El Badia}, IMA J. Appl. Math. 87, No. 4, 607--646 (2022; Zbl 1499.92043) Full Text: DOI OpenURL
Jin, Yanpeng; Fu, Ying Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. (English) Zbl 1500.35198 Commun. Pure Appl. Anal. 21, No. 8, 2775-2797 (2022). MSC: 35K35 35B60 35K58 93B05 93C20 PDF BibTeX XML Cite \textit{Y. Jin} and \textit{Y. Fu}, Commun. Pure Appl. Anal. 21, No. 8, 2775--2797 (2022; Zbl 1500.35198) Full Text: DOI OpenURL
Yu, Yongyi; Zhang, Ji-Feng Carleman estimates of refined stochastic beam equations and applications. (English) Zbl 1500.93012 SIAM J. Control Optim. 60, No. 5, 2947-2970 (2022). MSC: 93B05 93C15 93C20 93E03 60H30 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{J.-F. Zhang}, SIAM J. Control Optim. 60, No. 5, 2947--2970 (2022; Zbl 1500.93012) Full Text: DOI OpenURL
Malaguti, Luisa; Perrotta, Stefania; Taddei, Valentina \(L^p\)-exact controllability of partial differential equations with nonlocal terms. (English) Zbl 1500.93010 Evol. Equ. Control Theory 11, No. 5, 1533-1564 (2022). MSC: 93B05 93C20 93C25 PDF BibTeX XML Cite \textit{L. Malaguti} et al., Evol. Equ. Control Theory 11, No. 5, 1533--1564 (2022; Zbl 1500.93010) Full Text: DOI OpenURL
Ervedoza, Sylvain; Lissy, Pierre; Privat, Yannick Desensitizing control for the heat equation with respect to domain variations. (Contrôle désensibilisant pour l’équation de la chaleur par rapport à des variations du domaine.) (English. French summary) Zbl 07593364 J. Éc. Polytech., Math. 9, 1397-1429 (2022). MSC: 35Q93 35Q79 35K05 35K20 35D30 47H10 49K20 49Q10 93B05 93C20 PDF BibTeX XML Cite \textit{S. Ervedoza} et al., J. Éc. Polytech., Math. 9, 1397--1429 (2022; Zbl 07593364) Full Text: DOI OpenURL
Li, Qiongyuan; Shang, Peipei Controllability for a highly re-entrant manufacturing system with local and nonlocal velocity. (English) Zbl 1497.93019 Eur. J. Control 67, Article ID 100716, 12 p. (2022). MSC: 93B05 93C20 35L65 PDF BibTeX XML Cite \textit{Q. Li} and \textit{P. Shang}, Eur. J. Control 67, Article ID 100716, 12 p. (2022; Zbl 1497.93019) Full Text: DOI OpenURL
Dashkovskiy, Sergey; Zaitsev, Vasilii Assignment of the upper Bohl exponent for linear periodic control systems in Hilbert spaces. (English) Zbl 1497.93101 Eur. J. Control 67, Article ID 100703, 10 p. (2022). MSC: 93C25 93B05 93C05 93B52 PDF BibTeX XML Cite \textit{S. Dashkovskiy} and \textit{V. Zaitsev}, Eur. J. Control 67, Article ID 100703, 10 p. (2022; Zbl 1497.93101) Full Text: DOI OpenURL
Monsurrò, S.; Nandakumaran, A. K.; Perugia, C. Exact internal controllability for a problem with imperfect interface. (English) Zbl 1497.35316 Appl. Math. Optim. 85, No. 3, Paper No. 40, 33 p. (2022). MSC: 35L53 35Q93 93B05 PDF BibTeX XML Cite \textit{S. Monsurrò} et al., Appl. Math. Optim. 85, No. 3, Paper No. 40, 33 p. (2022; Zbl 1497.35316) Full Text: DOI arXiv OpenURL
Astashova, I. V.; Lashin, D. A.; Filinovskiy, A. V. On the extremum control problem with pointwise observation for a parabolic equation. (English. Russian original) Zbl 1496.35224 Dokl. Math. 105, No. 3, 158-161 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 504, 28-31 (2022). MSC: 35K20 35Q93 93B05 PDF BibTeX XML Cite \textit{I. V. Astashova} et al., Dokl. Math. 105, No. 3, 158--161 (2022; Zbl 1496.35224); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 504, 28--31 (2022) Full Text: DOI OpenURL
Yang, Fengyan Exact boundary null controllability for a coupled system of plate equations with variable coefficients. (English) Zbl 1498.93057 Evol. Equ. Control Theory 11, No. 4, 1071-1086 (2022). MSC: 93B05 93B27 93C20 35G35 74K20 PDF BibTeX XML Cite \textit{F. Yang}, Evol. Equ. Control Theory 11, No. 4, 1071--1086 (2022; Zbl 1498.93057) Full Text: DOI OpenURL
Fernández-Cara, Enrique Numerical solution of multi-objective optimal control and hierarchic controllability problems. (English) Zbl 1495.49015 Trélat, Emmanuel (ed.) et al., Numerical control. Part A. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 23, 165-199 (2022). MSC: 49K20 35K58 93A13 93B05 90C29 PDF BibTeX XML Cite \textit{E. Fernández-Cara}, Handb. Numer. Anal. 23, 165--199 (2022; Zbl 1495.49015) Full Text: Link OpenURL
Gugat, Martin; Herty, Michael Modeling, control, and numerics of gas networks. (English) Zbl 1495.49036 Trélat, Emmanuel (ed.) et al., Numerical control. Part A. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 23, 59-86 (2022). MSC: 49S05 49M05 35L65 76N15 82C40 49K40 PDF BibTeX XML Cite \textit{M. Gugat} and \textit{M. Herty}, Handb. Numer. Anal. 23, 59--86 (2022; Zbl 1495.49036) Full Text: arXiv Link OpenURL
Andreianov, Boris; Ghoshal, Shyam Sundar; Koumatos, Konstantinos Lack of controllability of the viscous Burgers equation. I: the \(\mathrm{L}^{\infty}\) setting. (English) Zbl 1497.93012 J. Evol. Equ. 22, No. 3, Paper No. 70, 24 p. (2022). MSC: 93B05 35L65 35D30 47J35 PDF BibTeX XML Cite \textit{B. Andreianov} et al., J. Evol. Equ. 22, No. 3, Paper No. 70, 24 p. (2022; Zbl 1497.93012) Full Text: DOI OpenURL
Leugering, Günter; Micu, Sorin; Rovenţa, Ionel; Wang, Yue Controllability properties of a hyperbolic system with dynamic boundary conditions. (English) Zbl 1497.93018 J. Evol. Equ. 22, No. 3, Paper No. 65, 36 p. (2022). MSC: 93B05 93C20 35L51 PDF BibTeX XML Cite \textit{G. Leugering} et al., J. Evol. Equ. 22, No. 3, Paper No. 65, 36 p. (2022; Zbl 1497.93018) Full Text: DOI OpenURL
Li, Tatsien; Lu, Xing Exact boundary synchronization for a kind of first order hyperbolic system. (English) Zbl 1492.93021 ESAIM, Control Optim. Calc. Var. 28, Paper No. 34, 27 p. (2022). MSC: 93B05 93C20 35L40 PDF BibTeX XML Cite \textit{T. Li} and \textit{X. Lu}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 34, 27 p. (2022; Zbl 1492.93021) Full Text: DOI OpenURL
Alabau-Boussouira, Fatiha; Cannarsa, Piermarco; Urbani, Cristina Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control. (English) Zbl 07535514 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 38, 32 p. (2022). MSC: 35Q93 93C25 93C10 93B05 35K90 PDF BibTeX XML Cite \textit{F. Alabau-Boussouira} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 4, Paper No. 38, 32 p. (2022; Zbl 07535514) Full Text: DOI arXiv OpenURL
Wang, Lijuan; Yan, Qishu Exact synchronization and asymptotic synchronization for linear ODEs. (English) Zbl 1500.34046 Sci. China, Math. 65, No. 6, 1163-1178 (2022). Reviewer: Jiu-Gang Dong (Dalian) MSC: 34D06 34H05 93C05 93B05 34A30 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Q. Yan}, Sci. China, Math. 65, No. 6, 1163--1178 (2022; Zbl 1500.34046) Full Text: DOI OpenURL
Yang, Shuning; Zhao, Xiangqing Exact boundary controllability of fifth-order KdV equation posed on the periodic domain. (English) Zbl 1499.93017 J. Partial Differ. Equations 35, No. 2, 163-172 (2022). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{S. Yang} and \textit{X. Zhao}, J. Partial Differ. Equations 35, No. 2, 163--172 (2022; Zbl 1499.93017) Full Text: DOI OpenURL
Quintero, José R.; Montes, Alex M. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. (English) Zbl 1490.93016 Evol. Equ. Control Theory 11, No. 3, 681-709 (2022). MSC: 93B05 93D05 93C20 35Q35 PDF BibTeX XML Cite \textit{J. R. Quintero} and \textit{A. M. Montes}, Evol. Equ. Control Theory 11, No. 3, 681--709 (2022; Zbl 1490.93016) Full Text: DOI OpenURL
Lu, Xing; Li, Tatsien Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – the HUM method. (English) Zbl 1487.93014 Chin. Ann. Math., Ser. B 43, No. 1, 1-16 (2022). MSC: 93B05 93C20 35L50 PDF BibTeX XML Cite \textit{X. Lu} and \textit{T. Li}, Chin. Ann. Math., Ser. B 43, No. 1, 1--16 (2022; Zbl 1487.93014) Full Text: DOI OpenURL
Bottois, Arthur Pointwise moving control for the \(1\)-D wave equation. (English) Zbl 1485.93059 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 33-57 (2022). MSC: 93B05 93C20 35L05 65N30 PDF BibTeX XML Cite \textit{A. Bottois}, Radon Ser. Comput. Appl. Math. 29, 33--57 (2022; Zbl 1485.93059) Full Text: DOI OpenURL
Wehbe, Ali; Koumaiha, Marwa; Toufaily, Layla Boundary observability and exact controllability of strongly coupled wave equations. (English) Zbl 1494.93023 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1269-1305 (2022). Reviewer: Jin Liang (Shanghai) MSC: 93B05 93B07 93C20 35L05 93B60 35P15 PDF BibTeX XML Cite \textit{A. Wehbe} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1269--1305 (2022; Zbl 1494.93023) Full Text: DOI OpenURL
Avdonin, Sergei; Zhao, Yuanyuan Exact controllability of the wave equation on graphs. (English) Zbl 1486.35401 Appl. Math. Optim. 85, No. 2, Paper No. 1, 44 p. (2022). MSC: 35R02 35L05 35L20 93B05 93C20 PDF BibTeX XML Cite \textit{S. Avdonin} and \textit{Y. Zhao}, Appl. Math. Optim. 85, No. 2, Paper No. 1, 44 p. (2022; Zbl 1486.35401) Full Text: DOI OpenURL
Kumar, Ankit; Jeet, Kamal; Vats, Ramesh Kumar Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. (English) Zbl 1483.34104 Evol. Equ. Control Theory 11, No. 2, 605-619 (2022). MSC: 34K30 34K37 35R11 45G10 93B05 PDF BibTeX XML Cite \textit{A. Kumar} et al., Evol. Equ. Control Theory 11, No. 2, 605--619 (2022; Zbl 1483.34104) Full Text: DOI OpenURL
Li, Lin Lin; Ferreira, Cláudia Pio; Ainseba, Bedreddine Local exact controllability of an age structured problem modelling phenotypic plasticity in mosquito behaviour. (English) Zbl 07488795 Appl. Math. Comput. 423, Article ID 127025, 19 p. (2022). MSC: 92Dxx 93Bxx 93Cxx PDF BibTeX XML Cite \textit{L. L. Li} et al., Appl. Math. Comput. 423, Article ID 127025, 19 p. (2022; Zbl 07488795) Full Text: DOI OpenURL
Kukavica, Igor; Novack, Matthew; Vicol, Vlad Exact boundary controllability for the ideal magneto-hydrodynamic equations. (English) Zbl 07487004 J. Differ. Equations 318, 94-112 (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q31 76W05 76B55 93C20 93B05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Differ. Equations 318, 94--112 (2022; Zbl 07487004) Full Text: DOI arXiv OpenURL
Nunes, R. S. O. Support of solutions of the linear Klein-Gordon equation and exact boundary controllability in non-cylindrical domains. (English) Zbl 1480.35293 J. Math. Anal. Appl. 508, No. 1, Article ID 125859, 15 p. (2022). MSC: 35L20 35B40 93B05 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, J. Math. Anal. Appl. 508, No. 1, Article ID 125859, 15 p. (2022; Zbl 1480.35293) Full Text: DOI OpenURL
Límaco, J.; Nuñez-Chávez, Miguel R.; Huaman, Dany Nina Exact controllability for nonlocal and nonlinear hyperbolic PDEs. (English) Zbl 1476.35135 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112569, 24 p. (2022). MSC: 35L20 35R09 93B05 93C10 93C20 PDF BibTeX XML Cite \textit{J. Límaco} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112569, 24 p. (2022; Zbl 1476.35135) Full Text: DOI OpenURL
Rissel, Manuel; Wang, Ya-Guang Global exact controllability of ideal incompressible magnetohydrodynamic flows through a planar duct. (English) Zbl 1494.93020 ESAIM, Control Optim. Calc. Var. 27, Paper No. 103, 24 p. (2021). MSC: 93B05 76E25 93C20 PDF BibTeX XML Cite \textit{M. Rissel} and \textit{Y.-G. Wang}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 103, 24 p. (2021; Zbl 1494.93020) Full Text: DOI arXiv OpenURL
Rabah, Rabah On exact controllability and complete stabilizability for linear systems. (English) Zbl 1499.93014 Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 4-23 (2021). MSC: 93B05 93D05 93C25 93C35 93C43 93C05 PDF BibTeX XML Cite \textit{R. Rabah}, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 4--23 (2021; Zbl 1499.93014) Full Text: DOI OpenURL
Duca, Alessandro Controllability of bilinear quantum systems in explicit times via explicit control fields. (English) Zbl 1477.35202 Int. J. Control 94, No. 3, 724-734 (2021). MSC: 35Q41 93C20 93B05 PDF BibTeX XML Cite \textit{A. Duca}, Int. J. Control 94, No. 3, 724--734 (2021; Zbl 1477.35202) Full Text: DOI arXiv OpenURL
Ancona, Fabio; Nguyen, Khai T. On the global controllability of scalar conservation laws with boundary and source controls. (English) Zbl 1479.35561 SIAM J. Control Optim. 59, No. 6, 4314-4338 (2021). MSC: 35L65 93B05 93C20 PDF BibTeX XML Cite \textit{F. Ancona} and \textit{K. T. Nguyen}, SIAM J. Control Optim. 59, No. 6, 4314--4338 (2021; Zbl 1479.35561) Full Text: DOI arXiv OpenURL
Wang, Yue; Li, Tatsien Exact boundary controllability of partial nodal profile for network of strings. (English) Zbl 1478.93068 Nonlinear Anal., Real World Appl. 62, Article ID 103383, 32 p. (2021). MSC: 93B05 93C20 35L50 35L20 35L60 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{T. Li}, Nonlinear Anal., Real World Appl. 62, Article ID 103383, 32 p. (2021; Zbl 1478.93068) Full Text: DOI OpenURL
Leugering, Günter; Rodriguez, Charlotte; Wang, Yue Nodal profile control for networks of geometrically exact beams. (English. French summary) Zbl 1478.35201 J. Math. Pures Appl. (9) 155, 111-139 (2021). MSC: 35Q74 35L50 35R02 93B05 93C20 74K10 35A01 35A02 PDF BibTeX XML Cite \textit{G. Leugering} et al., J. Math. Pures Appl. (9) 155, 111--139 (2021; Zbl 1478.35201) Full Text: DOI arXiv OpenURL
Goreac, Dan; Munteanu, Ionut Improved stability for linear SPDEs using mixed boundary/internal controls. (English) Zbl 1478.93711 Syst. Control Lett. 156, Article ID 105024, 8 p. (2021). MSC: 93E15 93D20 93B05 93C20 60H15 PDF BibTeX XML Cite \textit{D. Goreac} and \textit{I. Munteanu}, Syst. Control Lett. 156, Article ID 105024, 8 p. (2021; Zbl 1478.93711) Full Text: DOI Link OpenURL
Lu, Xing; Li, Tatsien Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – the constructive method. (English) Zbl 1476.93081 Chin. Ann. Math., Ser. B 42, No. 5, 643-676 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 93B05 93C20 35L50 PDF BibTeX XML Cite \textit{X. Lu} and \textit{T. Li}, Chin. Ann. Math., Ser. B 42, No. 5, 643--676 (2021; Zbl 1476.93081) Full Text: DOI OpenURL
Jbalia, Aymen; Khelifi, Abdessatar On the identification of the heat conductivity distribution from partial dynamic boundary measurements. (English) Zbl 1475.35414 Appl. Anal. 100, No. 13, 2735-2748 (2021). MSC: 35R30 35K05 35K20 80A23 93B05 PDF BibTeX XML Cite \textit{A. Jbalia} and \textit{A. Khelifi}, Appl. Anal. 100, No. 13, 2735--2748 (2021; Zbl 1475.35414) Full Text: DOI arXiv OpenURL
Yan, Zuomao; Zhou, Yong-Hui Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators. (English) Zbl 07412525 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 559-579 (2021). MSC: 34A37 60H15 26A33 93B05 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{Y.-H. Zhou}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 559--579 (2021; Zbl 07412525) Full Text: DOI OpenURL
Vergara-Hermosilla, G.; Leugering, G.; Wang, Y. Boundary controllability of a system modelling a partially immersed obstacle. (English) Zbl 1473.35358 ESAIM, Control Optim. Calc. Var. 27, Paper No. 80, 15 p. (2021). MSC: 35L50 35L65 93B05 93C20 PDF BibTeX XML Cite \textit{G. Vergara-Hermosilla} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 80, 15 p. (2021; Zbl 1473.35358) Full Text: DOI OpenURL
Araújo, Raul K. C.; Fernández-Cara, Enrique; Souza, Diego A. On the uniform controllability for a family of non-viscous and viscous Burgers-\(\alpha\) systems. (English) Zbl 1480.93034 ESAIM, Control Optim. Calc. Var. 27, Paper No. 78, 26 p. (2021). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 93B05 35Q35 35G25 PDF BibTeX XML Cite \textit{R. K. C. Araújo} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 78, 26 p. (2021; Zbl 1480.93034) Full Text: DOI OpenURL
Lampart, Jonas A remark on the attainable set of the Schrödinger equation. (English) Zbl 1473.35610 Evol. Equ. Control Theory 10, No. 3, 461-469 (2021). MSC: 35Q93 35Q41 PDF BibTeX XML Cite \textit{J. Lampart}, Evol. Equ. Control Theory 10, No. 3, 461--469 (2021; Zbl 1473.35610) Full Text: DOI arXiv OpenURL
Jilavyan, Samvel H.; Grigoryan, Edmon R.; Khurshudyan, Asatur Zh. Heating control of a finite rod with a mobile source. (English) Zbl 1470.93025 Arch. Control Sci. 31, No. 2, 417-430 (2021). MSC: 93B05 93C20 80A99 PDF BibTeX XML Cite \textit{S. H. Jilavyan} et al., Arch. Control Sci. 31, No. 2, 417--430 (2021; Zbl 1470.93025) Full Text: DOI OpenURL
Djordjevic, Jasmina; Konjik, Sanja; Mitrović, Darko; Novak, Andrej Global controllability for quasilinear nonnegative definite system of ODEs and SDEs. (English) Zbl 1470.93022 J. Optim. Theory Appl. 190, No. 1, 316-338 (2021). MSC: 93B05 93C15 93E03 60H10 93C10 92D25 PDF BibTeX XML Cite \textit{J. Djordjevic} et al., J. Optim. Theory Appl. 190, No. 1, 316--338 (2021; Zbl 1470.93022) Full Text: DOI arXiv OpenURL
Bayen, Alexandre; Coron, Jean-Michel; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas Boundary controllability and asymptotic stabilization of a nonlocal traffic flow model. (English) Zbl 1471.35197 Vietnam J. Math. 49, No. 3, 957-985 (2021). MSC: 35L65 35L02 35L04 35L60 76A30 93C20 93B05 PDF BibTeX XML Cite \textit{A. Bayen} et al., Vietnam J. Math. 49, No. 3, 957--985 (2021; Zbl 1471.35197) Full Text: DOI OpenURL
Capistrano-Filho, Roberto A.; Cavalcante, Márcio Stabilization and control for the biharmonic Schrödinger equation. (English) Zbl 1476.35229 Appl. Math. Optim. 84, No. 1, 103-144 (2021). MSC: 35Q55 93B05 93D15 31A30 35B65 35B20 PDF BibTeX XML Cite \textit{R. A. Capistrano-Filho} and \textit{M. Cavalcante}, Appl. Math. Optim. 84, No. 1, 103--144 (2021; Zbl 1476.35229) Full Text: DOI arXiv OpenURL
Bashirov, Agamirza E. On exact controllability of semilinear systems. (English) Zbl 1470.93021 Math. Methods Appl. Sci. 44, No. 9, 7455-7462 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 93B05 93C10 93C25 PDF BibTeX XML Cite \textit{A. E. Bashirov}, Math. Methods Appl. Sci. 44, No. 9, 7455--7462 (2021; Zbl 1470.93021) Full Text: DOI OpenURL
Li, Tatsien; Lu, Xing; Rao, Bopeng Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls. (English) Zbl 1470.93026 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S7, 29 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93B07 93C20 35L05 PDF BibTeX XML Cite \textit{T. Li} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. S7, 29 p. (2021; Zbl 1470.93026) Full Text: DOI arXiv OpenURL
Abdelli, Mouna; Castro, Carlos Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation. (English) Zbl 1481.65194 ESAIM, Control Optim. Calc. Var. 27, Paper No. 64, 26 p. (2021). MSC: 65M70 35L05 65K10 49J05 49J50 93B05 PDF BibTeX XML Cite \textit{M. Abdelli} and \textit{C. Castro}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 64, 26 p. (2021; Zbl 1481.65194) Full Text: DOI arXiv OpenURL
Wang, Lijuan; Yan, Qishu Minimal time control of exact synchronization for parabolic systems. (English) Zbl 1467.49019 ESAIM, Control Optim. Calc. Var. 27, Paper No. 42, 29 p. (2021). MSC: 49K20 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Q. Yan}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 42, 29 p. (2021; Zbl 1467.49019) Full Text: DOI arXiv OpenURL
Yu, Zhiyong Controllability Gramian and Kalman rank condition for mean-field control systems. (English) Zbl 1482.93087 ESAIM, Control Optim. Calc. Var. 27, Paper No. 30, 28 p. (2021). MSC: 93B05 60H10 93E20 PDF BibTeX XML Cite \textit{Z. Yu}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 30, 28 p. (2021; Zbl 1482.93087) Full Text: DOI OpenURL
Gerbi, Stéphane; Kassem, Chiraz; Mortada, Amina; Wehbe, Ali Exact controllability and stabilization of locally coupled wave equations: theoretical results. (English) Zbl 1467.35216 Z. Anal. Anwend. 40, No. 1, 67-96 (2021). MSC: 35L53 35B40 93B05 93D15 PDF BibTeX XML Cite \textit{S. Gerbi} et al., Z. Anal. Anwend. 40, No. 1, 67--96 (2021; Zbl 1467.35216) Full Text: DOI arXiv OpenURL
Li, Tatsien; Zhuang, Kaili A cut-off method to realize the exact boundary controllability of nodal profile for Saint-Venant systems on general networks with loops. (English. French summary) Zbl 1467.35214 J. Math. Pures Appl. (9) 151, 1-27 (2021). MSC: 35L50 35L60 35R02 93B05 93C20 PDF BibTeX XML Cite \textit{T. Li} and \textit{K. Zhuang}, J. Math. Pures Appl. (9) 151, 1--27 (2021; Zbl 1467.35214) Full Text: DOI OpenURL
Gugat, Martin On the turnpike property with interior decay for optimal control problems. (English) Zbl 1467.93149 Math. Control Signals Syst. 33, No. 2, 237-258 (2021). MSC: 93C15 93C20 93B05 49K15 49K20 PDF BibTeX XML Cite \textit{M. Gugat}, Math. Control Signals Syst. 33, No. 2, 237--258 (2021; Zbl 1467.93149) Full Text: DOI OpenURL
Nunes, Ruikson S. O. Exact boundary controllability for the wave equation with moving boundary domains in a star-shaped hole. (English) Zbl 1467.35364 Electron. J. Differ. Equ. 2021, Paper No. 49, 12 p. (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35R37 35L05 35L20 35B40 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Electron. J. Differ. Equ. 2021, Paper No. 49, 12 p. (2021; Zbl 1467.35364) Full Text: Link OpenURL
Barkhayev, Pavel; Rabah, Rabah; Sklyar, Grigory Conditions of exact null controllability and the problem of complete stabilizability for time-delay systems. (English) Zbl 1470.93020 Sklyar, Grigory (ed.) et al., Stabilization of distributed parameter systems: design methods and applications. Selected papers based on the presentations of the mini-symposium at ICIAM 2019, Valencia, Spain, July 15–19, 2019. Cham: Springer. SEMA SIMAI Springer Ser. ICIAM 2019 SEMA SIMAI Springer Ser. 2, 1-15 (2021). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 93B05 93D05 93C43 PDF BibTeX XML Cite \textit{P. Barkhayev} et al., SEMA SIMAI Springer Ser. ICIAM 2019 SEMA SIMAI Springer Ser. 2, 1--15 (2021; Zbl 1470.93020) Full Text: DOI arXiv OpenURL
Martin, Jérémy; Pravda-Starov, Karel Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations. (English) Zbl 1461.93039 J. Evol. Equ. 21, No. 1, 1059-1087 (2021). MSC: 93B05 93B27 93C20 35J10 26A33 PDF BibTeX XML Cite \textit{J. Martin} and \textit{K. Pravda-Starov}, J. Evol. Equ. 21, No. 1, 1059--1087 (2021; Zbl 1461.93039) Full Text: DOI arXiv OpenURL
Capistrano-Filho, Roberto de A.; Gomes, Milena Monique de S. Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces. (English) Zbl 1466.35310 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 207, Article ID 112267, 24 p. (2021). MSC: 35Q53 93B05 35A01 35A02 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} and \textit{M. M. de S. Gomes}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 207, Article ID 112267, 24 p. (2021; Zbl 1466.35310) Full Text: DOI arXiv OpenURL
Duca, Alessandro Bilinear quantum systems on compact graphs: well-posedness and global exact controllability. (English) Zbl 1461.93033 Automatica 123, Article ID 109324, 13 p. (2021). MSC: 93B05 93B70 81Q93 PDF BibTeX XML Cite \textit{A. Duca}, Automatica 123, Article ID 109324, 13 p. (2021; Zbl 1461.93033) Full Text: DOI arXiv OpenURL
Gu, Jiawen; Zhou, Deqin Local controllability and stability of the periodic fifth-order KdV equation with a nonlinear dispersive term. (English) Zbl 1459.93028 J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93D23 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Gu} and \textit{D. Zhou}, J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021; Zbl 1459.93028) Full Text: DOI OpenURL
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI OpenURL
Ouzahra, Mohamed Finite-time control for the bilinear heat equation. (English) Zbl 1455.93178 Eur. J. Control 57, 284-293 (2021). MSC: 93D40 93B05 93C20 35K05 PDF BibTeX XML Cite \textit{M. Ouzahra}, Eur. J. Control 57, 284--293 (2021; Zbl 1455.93178) Full Text: DOI OpenURL
Agresti, Antonio; Andreucci, Daniele; Loreti, Paola Observability for the wave equation with variable support in the Dirichlet and Neumann cases. (English) Zbl 07627186 Gusikhin, Oleg (ed.) et al., Informatics in control, automation and robotics. 15th international conference, ICINCO 2018, Porto, Portugal, July 29–31, 2018, Revised selected papers. Cham: Springer. Lect. Notes Electr. Eng. 613, 51-75 (2020). MSC: 93B07 93C20 35L05 PDF BibTeX XML Cite \textit{A. Agresti} et al., Lect. Notes Electr. Eng. 613, 51--75 (2020; Zbl 07627186) Full Text: DOI OpenURL
Lasri, Marieme; Bounit, Hamid; Hadd, Said On exact controllability of linear perturbed boundary systems: a semigroup approach. (English) Zbl 1476.93080 IMA J. Math. Control Inf. 37, No. 4, 1548-1573 (2020). Reviewer: Yong-Kui Chang (Xi’an) MSC: 93B05 93C73 93C25 93C05 PDF BibTeX XML Cite \textit{M. Lasri} et al., IMA J. Math. Control Inf. 37, No. 4, 1548--1573 (2020; Zbl 1476.93080) Full Text: DOI OpenURL
El Akri, Abdeladim; Maniar, Lahcen Uniform indirect boundary controllability of semi-discrete 1-\(d\) coupled wave equations. (English) Zbl 1465.93018 Math. Control Relat. Fields 10, No. 4, 669-698 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35L05 65M06 PDF BibTeX XML Cite \textit{A. El Akri} and \textit{L. Maniar}, Math. Control Relat. Fields 10, No. 4, 669--698 (2020; Zbl 1465.93018) Full Text: DOI OpenURL
Lei, Zhen; Li, Tatsien; Rao, Bopeng On the synchronizable system. (English) Zbl 1459.35278 Chin. Ann. Math., Ser. B 41, No. 6, 821-828 (2020). MSC: 35L53 93B05 93C20 PDF BibTeX XML Cite \textit{Z. Lei} et al., Chin. Ann. Math., Ser. B 41, No. 6, 821--828 (2020; Zbl 1459.35278) Full Text: DOI OpenURL
Ge, Zhaoqiang; Ge, Xiaochi Controllability of singular distributed parameter systems in the sense of mild solution. (English) Zbl 1455.93012 J. Syst. Sci. Complex. 33, No. 5, 1485-1496 (2020). MSC: 93B05 93C25 PDF BibTeX XML Cite \textit{Z. Ge} and \textit{X. Ge}, J. Syst. Sci. Complex. 33, No. 5, 1485--1496 (2020; Zbl 1455.93012) Full Text: DOI OpenURL
Duca, Alessandro Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability. (English) Zbl 1470.35296 SIAM J. Control Optim. 58, No. 6, 3092-3129 (2020). MSC: 35Q41 93C20 93B05 81Q15 PDF BibTeX XML Cite \textit{A. Duca}, SIAM J. Control Optim. 58, No. 6, 3092--3129 (2020; Zbl 1470.35296) Full Text: DOI arXiv OpenURL
Akil, Mohammad; Chitour, Yacine; Ghader, Mouhammad; Wehbe, Ali Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. (English) Zbl 1452.35205 Asymptotic Anal. 119, No. 3-4, 221-280 (2020). MSC: 35Q74 35B35 93B05 35R11 26A33 PDF BibTeX XML Cite \textit{M. Akil} et al., Asymptotic Anal. 119, No. 3--4, 221--280 (2020; Zbl 1452.35205) Full Text: DOI OpenURL
Khernane, A. Numerical approximation of the exact control for the vibrating rod with improvement of the final error by particle swarm optimization. (English) Zbl 1453.93020 Nonlinear Dyn. Syst. Theory 20, No. 2, 179-190 (2020). MSC: 93B05 74K10 90C59 PDF BibTeX XML Cite \textit{A. Khernane}, Nonlinear Dyn. Syst. Theory 20, No. 2, 179--190 (2020; Zbl 1453.93020) Full Text: Link OpenURL
Chen, Mo; Rosier, Lionel Exact controllability of the linear Zakharov-Kuznetsov equation. (English) Zbl 1454.37073 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889-3916 (2020). MSC: 37K99 37N35 93B05 35Q93 35Q53 PDF BibTeX XML Cite \textit{M. Chen} and \textit{L. Rosier}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889--3916 (2020; Zbl 1454.37073) Full Text: DOI arXiv OpenURL
Wang, Yanqing; Zhou, Xiuxiang Exact controllability of stochastic differential equations with memory. (English) Zbl 1451.93037 Syst. Control Lett. 142, Article ID 104732, 9 p. (2020). MSC: 93B05 93C15 34F05 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Zhou}, Syst. Control Lett. 142, Article ID 104732, 9 p. (2020; Zbl 1451.93037) Full Text: DOI OpenURL
Santos, Manoel J.; Raposo, Carlos A.; Rodrigues, Leonardo R. S. Boundary exact controllability for a porous elastic Timoshenko system. (English) Zbl 07250666 Appl. Math., Praha 65, No. 4, 343-354 (2020). MSC: 93C20 93B05 PDF BibTeX XML Cite \textit{M. J. Santos} et al., Appl. Math., Praha 65, No. 4, 343--354 (2020; Zbl 07250666) Full Text: DOI OpenURL
He, Yong Switching controls for linear stochastic differential systems. (English) Zbl 1453.93018 Math. Control Relat. Fields 10, No. 2, 443-454 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C15 93E03 93C05 PDF BibTeX XML Cite \textit{Y. He}, Math. Control Relat. Fields 10, No. 2, 443--454 (2020; Zbl 1453.93018) Full Text: DOI OpenURL
Warma, Mahamadi; Zamorano, Sebastián Analysis of the controllability from the exterior of strong damping nonlocal wave equations. (English) Zbl 1446.35258 ESAIM, Control Optim. Calc. Var. 26, Paper No. 42, 34 p. (2020). MSC: 35R11 35S05 35L20 93B05 PDF BibTeX XML Cite \textit{M. Warma} and \textit{S. Zamorano}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 42, 34 p. (2020; Zbl 1446.35258) Full Text: DOI arXiv OpenURL
Nunes, Ruikson S. O.; Bastos, Waldemar D.; Pitot, João Manoel S. Energy decay and control for a system of strings elastically connected in parallel. (English) Zbl 1445.35072 Math. Methods Appl. Sci. 43, No. 3, 1230-1242 (2020). MSC: 35B40 35L52 35L53 93B05 49J20 74K05 PDF BibTeX XML Cite \textit{R. S. O. Nunes} et al., Math. Methods Appl. Sci. 43, No. 3, 1230--1242 (2020; Zbl 1445.35072) Full Text: DOI OpenURL
Duca, Alessandro Simultaneous global exact controllability in projection of infinite 1D bilinear Schrödinger equations. (English) Zbl 1451.93022 Dyn. Partial Differ. Equ. 17, No. 3, 275-306 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35Q41 81Q15 PDF BibTeX XML Cite \textit{A. Duca}, Dyn. Partial Differ. Equ. 17, No. 3, 275--306 (2020; Zbl 1451.93022) Full Text: DOI arXiv OpenURL
Mohan, Manil T. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. (English) Zbl 1436.76008 Evol. Equ. Control Theory 9, No. 2, 301-339 (2020). MSC: 76D06 35Q35 76D03 76M10 93B05 93D23 PDF BibTeX XML Cite \textit{M. T. Mohan}, Evol. Equ. Control Theory 9, No. 2, 301--339 (2020; Zbl 1436.76008) Full Text: DOI OpenURL
Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions. (English) Zbl 1448.93030 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047-1073 (2020). MSC: 93B05 35K20 35K59 93C20 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{L. Rosier}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047--1073 (2020; Zbl 1448.93030) Full Text: DOI arXiv HAL OpenURL
Li, Shenghao; Chen, Min; Zhang, Bingyu Controllability and stabilizability of a higher order wave equation on a periodic domain. (English) Zbl 1441.93031 SIAM J. Control Optim. 58, No. 2, 1121-1143 (2020). MSC: 93B05 93D15 93C20 35Q35 PDF BibTeX XML Cite \textit{S. Li} et al., SIAM J. Control Optim. 58, No. 2, 1121--1143 (2020; Zbl 1441.93031) Full Text: DOI OpenURL
Singh, Vikram; Pandey, Dwijendra N. Exact controllability of multi-term time-fractional differential system with sequencing techniques. (English) Zbl 1441.34016 Indian J. Pure Appl. Math. 51, No. 1, 105-120 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34G20 34H05 93B05 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Indian J. Pure Appl. Math. 51, No. 1, 105--120 (2020; Zbl 1441.34016) Full Text: DOI OpenURL
Kassab, K. Null controllability of semi-linear fourth order parabolic equations. (English) Zbl 1439.35216 J. Math. Pures Appl. (9) 136, 279-312 (2020). MSC: 35K35 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{K. Kassab}, J. Math. Pures Appl. (9) 136, 279--312 (2020; Zbl 1439.35216) Full Text: DOI Link OpenURL
Grote, Marcus J.; Nataf, Frédéric; Tang, Jet Hoe; Tournier, Pierre-Henri Parallel controllability methods for the Helmholtz equation. (English) Zbl 1439.35144 Comput. Methods Appl. Mech. Eng. 362, Article ID 112846, 23 p. (2020). MSC: 35J05 35P25 93B05 78A25 78M10 PDF BibTeX XML Cite \textit{M. J. Grote} et al., Comput. Methods Appl. Mech. Eng. 362, Article ID 112846, 23 p. (2020; Zbl 1439.35144) Full Text: DOI arXiv OpenURL
Wang, Yan-yan Induced generalized exact boundary synchronizations for a coupled system of wave equations. (English) Zbl 1449.93008 Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 113-126 (2020). MSC: 93B05 93C20 PDF BibTeX XML Cite \textit{Y.-y. Wang}, Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 113--126 (2020; Zbl 1449.93008) Full Text: DOI OpenURL
Astashova, I. V.; Filinovskiy, A. V. Controllability and exact controllability in a problem of heat transfer with convection and time distributed functional. (English. Russian original) Zbl 1436.93017 J. Math. Sci., New York 244, No. 2, 148-157 (2020); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 57-71 (2019). MSC: 93B05 93C20 93B03 35L05 PDF BibTeX XML Cite \textit{I. V. Astashova} and \textit{A. V. Filinovskiy}, J. Math. Sci., New York 244, No. 2, 148--157 (2020; Zbl 1436.93017); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 57--71 (2019) Full Text: DOI OpenURL
Gao, Peng Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. (English) Zbl 1433.93016 Evol. Equ. Control Theory 9, No. 1, 181-191 (2020). MSC: 93B05 93C20 35K55 PDF BibTeX XML Cite \textit{P. Gao}, Evol. Equ. Control Theory 9, No. 1, 181--191 (2020; Zbl 1433.93016) Full Text: DOI OpenURL
Chitour, Yacine; Mazanti, Guilherme; Sigalotti, Mario Approximate and exact controllability of linear difference equations. (Contrôlabilité approchée et exacte d’équations aux différences linéaires.) (English. French summary) Zbl 1425.39002 J. Éc. Polytech., Math. 7, 93-142 (2020). MSC: 39A06 93B05 93C65 PDF BibTeX XML Cite \textit{Y. Chitour} et al., J. Éc. Polytech., Math. 7, 93--142 (2020; Zbl 1425.39002) Full Text: DOI arXiv OpenURL
Ton, Bui An Exact controllability of a strongly nonlinear wave equation with boundary controls. (English) Zbl 1470.35226 Adv. Math. Sci. Appl. 28, No. 2, 213-234 (2019). MSC: 35L20 35L71 93B05 PDF BibTeX XML Cite \textit{B. A. Ton}, Adv. Math. Sci. Appl. 28, No. 2, 213--234 (2019; Zbl 1470.35226) OpenURL
Gugat, Martin Exact controllability of a string to rest with a moving boundary. (English) Zbl 1453.93017 Control Cybern. 48, No. 1, 69-87 (2019). MSC: 93B05 93C20 74K05 PDF BibTeX XML Cite \textit{M. Gugat}, Control Cybern. 48, No. 1, 69--87 (2019; Zbl 1453.93017) OpenURL
Li, Tatsien Exact boundary controllability of nodal profile for hyperbolic systems. (English) Zbl 1463.93017 J. Math. Res. Appl. 39, No. 6, 554-562 (2019). MSC: 93B05 93C20 35L50 93D20 PDF BibTeX XML Cite \textit{T. Li}, J. Math. Res. Appl. 39, No. 6, 554--562 (2019; Zbl 1463.93017) Full Text: DOI OpenURL
Prilepko, A. I. Control and observation problems in Banach spaces. Optimal control and maximum principle. Applications to ordinary differential equations in \(\mathbb{R}^n\). (English. Russian original) Zbl 1440.49030 Differ. Equ. 55, No. 12, 1630-1640 (2019); translation from Differ. Uravn. 55, No. 12, 1683-1692 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K27 49K15 49-02 49J21 49J27 49K21 93B05 93B07 93C25 PDF BibTeX XML Cite \textit{A. I. Prilepko}, Differ. Equ. 55, No. 12, 1630--1640 (2019; Zbl 1440.49030); translation from Differ. Uravn. 55, No. 12, 1683--1692 (2019) Full Text: DOI OpenURL
Capistrano-Filho, Roberto A.; Pazoto, Ademir F.; Rosier, Lionel Control of a Boussinesq system of KdV-KdV type on a bounded interval. (English) Zbl 1437.35607 ESAIM, Control Optim. Calc. Var. 25, Paper No. 58, 55 p. (2019). MSC: 35Q53 37K10 93B05 93D15 PDF BibTeX XML Cite \textit{R. A. Capistrano-Filho} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 58, 55 p. (2019; Zbl 1437.35607) Full Text: DOI arXiv OpenURL
Flores, Cynthia; Smith, Derek L. Control and stabilization of the periodic fifth order Korteweg-de Vries equation. (English) Zbl 1437.35610 ESAIM, Control Optim. Calc. Var. 25, Paper No. 38, 28 p. (2019). MSC: 35Q53 93B05 93D15 35B65 35B10 35B35 PDF BibTeX XML Cite \textit{C. Flores} and \textit{D. L. Smith}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 38, 28 p. (2019; Zbl 1437.35610) Full Text: DOI arXiv OpenURL