Gu, Jiawen; Zhou, Deqin Local controllability and stability of the periodic fifth-order KdV equation with a nonlinear dispersive term. (English) Zbl 07309706 J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021). MSC: 93B05 93D23 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Gu} and \textit{D. Zhou}, J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021; Zbl 07309706) Full Text: DOI
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L52 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI
Ouzahra, Mohamed Finite-time control for the bilinear heat equation. (English) Zbl 07299607 Eur. J. Control 57, 284-293 (2021). MSC: 93D40 93B05 93C20 35K05 PDF BibTeX XML Cite \textit{M. Ouzahra}, Eur. J. Control 57, 284--293 (2021; Zbl 07299607) Full Text: DOI
Lei, Zhen; Li, Tatsien; Rao, Bopeng On the synchronizable system. (English) Zbl 07316417 Chin. Ann. Math., Ser. B 41, No. 6, 821-828 (2020). MSC: 35L05 35L53 93B05 93C20 PDF BibTeX XML Cite \textit{Z. Lei} et al., Chin. Ann. Math., Ser. B 41, No. 6, 821--828 (2020; Zbl 07316417) Full Text: DOI
Ge, Zhaoqiang; Ge, Xiaochi Controllability of singular distributed parameter systems in the sense of mild solution. (English) Zbl 07300300 J. Syst. Sci. Complex. 33, No. 5, 1485-1496 (2020). MSC: 93B05 93C25 PDF BibTeX XML Cite \textit{Z. Ge} and \textit{X. Ge}, J. Syst. Sci. Complex. 33, No. 5, 1485--1496 (2020; Zbl 07300300) Full Text: DOI
Duca, Alessandro Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability. (English) Zbl 07277850 SIAM J. Control Optim. 58, No. 6, 3092-3129 (2020). MSC: 35Q41 93C20 93B05 81Q15 PDF BibTeX XML Cite \textit{A. Duca}, SIAM J. Control Optim. 58, No. 6, 3092--3129 (2020; Zbl 07277850) Full Text: DOI
Akil, Mohammad; Chitour, Yacine; Ghader, Mouhammad; Wehbe, Ali Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. (English) Zbl 1452.35205 Asymptotic Anal. 119, No. 3-4, 221-280 (2020). MSC: 35Q74 35B35 93B05 35R11 26A33 PDF BibTeX XML Cite \textit{M. Akil} et al., Asymptotic Anal. 119, No. 3--4, 221--280 (2020; Zbl 1452.35205) Full Text: DOI
Khernane, A. Numerical approximation of the exact control for the vibrating rod with improvement of the final error by particle swarm optimization. (English) Zbl 1453.93020 Nonlinear Dyn. Syst. Theory 20, No. 2, 179-190 (2020). MSC: 93B05 74K10 90C59 PDF BibTeX XML Cite \textit{A. Khernane}, Nonlinear Dyn. Syst. Theory 20, No. 2, 179--190 (2020; Zbl 1453.93020) Full Text: Link
Chen, Mo; Rosier, Lionel Exact controllability of the linear Zakharov-Kuznetsov equation. (English) Zbl 07272906 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889-3916 (2020). MSC: 37K99 37N35 93B05 35Q93 35Q53 PDF BibTeX XML Cite \textit{M. Chen} and \textit{L. Rosier}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889--3916 (2020; Zbl 07272906) Full Text: DOI
Wang, Yanqing; Zhou, Xiuxiang Exact controllability of stochastic differential equations with memory. (English) Zbl 1451.93037 Syst. Control Lett. 142, Article ID 104732, 9 p. (2020). MSC: 93B05 93C15 34F05 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Zhou}, Syst. Control Lett. 142, Article ID 104732, 9 p. (2020; Zbl 1451.93037) Full Text: DOI
Santos, Manoel J.; Raposo, Carlos A.; Rodrigues, Leonardo R. S. Boundary exact controllability for a porous elastic Timoshenko system. (English) Zbl 07250666 Appl. Math., Praha 65, No. 4, 343-354 (2020). MSC: 93C20 93B05 PDF BibTeX XML Cite \textit{M. J. Santos} et al., Appl. Math., Praha 65, No. 4, 343--354 (2020; Zbl 07250666) Full Text: DOI
He, Yong Switching controls for linear stochastic differential systems. (English) Zbl 1453.93018 Math. Control Relat. Fields 10, No. 2, 443-454 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C15 93E03 93C05 PDF BibTeX XML Cite \textit{Y. He}, Math. Control Relat. Fields 10, No. 2, 443--454 (2020; Zbl 1453.93018) Full Text: DOI
Warma, Mahamadi; Zamorano, Sebastián Analysis of the controllability from the exterior of strong damping nonlocal wave equations. (English) Zbl 1446.35258 ESAIM, Control Optim. Calc. Var. 26, Paper No. 42, 34 p. (2020). MSC: 35R11 35S05 35L20 93B05 PDF BibTeX XML Cite \textit{M. Warma} and \textit{S. Zamorano}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 42, 34 p. (2020; Zbl 1446.35258) Full Text: DOI
Nunes, Ruikson S. O.; Bastos, Waldemar D.; Pitot, João Manoel S. Energy decay and control for a system of strings elastically connected in parallel. (English) Zbl 1445.35072 Math. Methods Appl. Sci. 43, No. 3, 1230-1242 (2020). MSC: 35B40 35L52 35L53 93B05 49J20 74K05 PDF BibTeX XML Cite \textit{R. S. O. Nunes} et al., Math. Methods Appl. Sci. 43, No. 3, 1230--1242 (2020; Zbl 1445.35072) Full Text: DOI
Duca, Alessandro Simultaneous global exact controllability in projection of infinite 1D bilinear Schrödinger equations. (English) Zbl 1451.93022 Dyn. Partial Differ. Equ. 17, No. 3, 275-306 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35Q41 81Q15 PDF BibTeX XML Cite \textit{A. Duca}, Dyn. Partial Differ. Equ. 17, No. 3, 275--306 (2020; Zbl 1451.93022) Full Text: DOI
Mohan, Manil T. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. (English) Zbl 1436.76008 Evol. Equ. Control Theory 9, No. 2, 301-339 (2020). MSC: 76D06 35Q35 76D03 76M10 93B05 93D23 PDF BibTeX XML Cite \textit{M. T. Mohan}, Evol. Equ. Control Theory 9, No. 2, 301--339 (2020; Zbl 1436.76008) Full Text: DOI
Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions. (English) Zbl 1448.93030 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047-1073 (2020). MSC: 93B05 35K20 35K59 93C20 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{L. Rosier}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047--1073 (2020; Zbl 1448.93030) Full Text: DOI
Li, Shenghao; Chen, Min; Zhang, Bingyu Controllability and stabilizability of a higher order wave equation on a periodic domain. (English) Zbl 1441.93031 SIAM J. Control Optim. 58, No. 2, 1121-1143 (2020). MSC: 93B05 93D15 93C20 35Q35 PDF BibTeX XML Cite \textit{S. Li} et al., SIAM J. Control Optim. 58, No. 2, 1121--1143 (2020; Zbl 1441.93031) Full Text: DOI
Singh, Vikram; Pandey, Dwijendra N. Exact controllability of multi-term time-fractional differential system with sequencing techniques. (English) Zbl 1441.34016 Indian J. Pure Appl. Math. 51, No. 1, 105-120 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34G20 34H05 93B05 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Indian J. Pure Appl. Math. 51, No. 1, 105--120 (2020; Zbl 1441.34016) Full Text: DOI
Kassab, K. Null controllability of semi-linear fourth order parabolic equations. (English) Zbl 1439.35216 J. Math. Pures Appl. (9) 136, 279-312 (2020). MSC: 35K35 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{K. Kassab}, J. Math. Pures Appl. (9) 136, 279--312 (2020; Zbl 1439.35216) Full Text: DOI
Grote, Marcus J.; Nataf, Frédéric; Tang, Jet Hoe; Tournier, Pierre-Henri Parallel controllability methods for the Helmholtz equation. (English) Zbl 1439.35144 Comput. Methods Appl. Mech. Eng. 362, Article ID 112846, 23 p. (2020). MSC: 35J05 35P25 93B05 78A25 78M10 PDF BibTeX XML Cite \textit{M. J. Grote} et al., Comput. Methods Appl. Mech. Eng. 362, Article ID 112846, 23 p. (2020; Zbl 1439.35144) Full Text: DOI
Wang, Yan-yan Induced generalized exact boundary synchronizations for a coupled system of wave equations. (English) Zbl 1449.93008 Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 113-126 (2020). MSC: 93B05 93C20 PDF BibTeX XML Cite \textit{Y.-y. Wang}, Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 113--126 (2020; Zbl 1449.93008) Full Text: DOI
Astashova, I. V.; Filinovskiy, A. V. Controllability and exact controllability in a problem of heat transfer with convection and time distributed functional. (English. Russian original) Zbl 1436.93017 J. Math. Sci., New York 244, No. 2, 148-157 (2020); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 57-71 (2019). MSC: 93B05 93C20 93B03 35L05 PDF BibTeX XML Cite \textit{I. V. Astashova} and \textit{A. V. Filinovskiy}, J. Math. Sci., New York 244, No. 2, 148--157 (2020; Zbl 1436.93017); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 57--71 (2019) Full Text: DOI
Gao, Peng Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. (English) Zbl 1433.93016 Evol. Equ. Control Theory 9, No. 1, 181-191 (2020). MSC: 93B05 93C20 35K55 PDF BibTeX XML Cite \textit{P. Gao}, Evol. Equ. Control Theory 9, No. 1, 181--191 (2020; Zbl 1433.93016) Full Text: DOI
Chitour, Yacine; Mazanti, Guilherme; Sigalotti, Mario Approximate and exact controllability of linear difference equations. (Contrôlabilité approchée et exacte d’équations aux différences linéaires.) (English. French summary) Zbl 1425.39002 J. Éc. Polytech., Math. 7, 93-142 (2020). MSC: 39A06 93B05 93C65 PDF BibTeX XML Cite \textit{Y. Chitour} et al., J. Éc. Polytech., Math. 7, 93--142 (2020; Zbl 1425.39002) Full Text: DOI
Gugat, Martin Exact controllability of a string to rest with a moving boundary. (English) Zbl 1453.93017 Control Cybern. 48, No. 1, 69-87 (2019). MSC: 93B05 93C20 74K05 PDF BibTeX XML Cite \textit{M. Gugat}, Control Cybern. 48, No. 1, 69--87 (2019; Zbl 1453.93017)
Li, Tatsien Exact boundary controllability of nodal profile for hyperbolic systems. (English) Zbl 07233915 J. Math. Res. Appl. 39, No. 6, 554-562 (2019). MSC: 93B05 93C20 35L50 93D20 PDF BibTeX XML Cite \textit{T. Li}, J. Math. Res. Appl. 39, No. 6, 554--562 (2019; Zbl 07233915) Full Text: DOI
Prilepko, A. I. Control and observation problems in Banach spaces. Optimal control and maximum principle. Applications to ordinary differential equations in \(\mathbb{R}^n\). (English. Russian original) Zbl 1440.49030 Differ. Equ. 55, No. 12, 1630-1640 (2019); translation from Differ. Uravn. 55, No. 12, 1683-1692 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K27 49K15 49-02 49J21 49J27 49K21 93B05 93B07 93C25 PDF BibTeX XML Cite \textit{A. I. Prilepko}, Differ. Equ. 55, No. 12, 1630--1640 (2019; Zbl 1440.49030); translation from Differ. Uravn. 55, No. 12, 1683--1692 (2019) Full Text: DOI
Capistrano-Filho, Roberto A.; Pazoto, Ademir F.; Rosier, Lionel Control of a Boussinesq system of KdV-KdV type on a bounded interval. (English) Zbl 1437.35607 ESAIM, Control Optim. Calc. Var. 25, Paper No. 58, 55 p. (2019). MSC: 35Q53 37K10 93B05 93D15 PDF BibTeX XML Cite \textit{R. A. Capistrano-Filho} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 58, 55 p. (2019; Zbl 1437.35607) Full Text: DOI
Flores, Cynthia; Smith, Derek L. Control and stabilization of the periodic fifth order Korteweg-de Vries equation. (English) Zbl 1437.35610 ESAIM, Control Optim. Calc. Var. 25, Paper No. 38, 28 p. (2019). MSC: 35Q53 93B05 93D15 35B65 35B10 35B35 PDF BibTeX XML Cite \textit{C. Flores} and \textit{D. L. Smith}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 38, 28 p. (2019; Zbl 1437.35610) Full Text: DOI
Astashova, I. V.; Filinovskiy, A. V. On properties of minimizers of a control problem with time-distributed functional related to parabolic equations. (English) Zbl 1442.35176 Opusc. Math. 39, No. 5, 595-609 (2019). MSC: 35K20 35Q93 35Q79 49J20 PDF BibTeX XML Cite \textit{I. V. Astashova} and \textit{A. V. Filinovskiy}, Opusc. Math. 39, No. 5, 595--609 (2019; Zbl 1442.35176) Full Text: DOI
Astashova, I. V.; Lashin, D. A.; Filinovskiĭ, A. V. Control with point observation for a parabolic problem with convection. (English. Russian original) Zbl 1436.35221 Trans. Mosc. Math. Soc. 2019, 221-234 (2019); translation from Tr. Mosk. Mat. O.-va 80, No. 2, 259-274 (2019). MSC: 35K20 35Q93 49J20 93C20 PDF BibTeX XML Cite \textit{I. V. Astashova} et al., Trans. Mosc. Math. Soc. 2019, 221--234 (2019; Zbl 1436.35221); translation from Tr. Mosk. Mat. O.-va 80, No. 2, 259--274 (2019) Full Text: DOI
Khurshudyan, Asatur Zh. Distributed controllability of one-dimensional heat equation in unbounded domains: the Green’s function approach. (English) Zbl 1440.93033 Arch. Control Sci. 29, No. 1, 57-71 (2019). MSC: 93B05 93C20 35K05 PDF BibTeX XML Cite \textit{A. Zh. Khurshudyan}, Arch. Control Sci. 29, No. 1, 57--71 (2019; Zbl 1440.93033)
Chistyakov, I. A.; Tochilin, P. A. Approximate solution of the target control problem with a nonlinearity depending on one state variable. (English. Russian original) Zbl 1440.93026 Differ. Equ. 55, No. 11, 1518-1530 (2019); translation from Differ. Uravn. 55, No. 11, 1560-1571 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 93B05 93C15 93C10 93C85 93B52 PDF BibTeX XML Cite \textit{I. A. Chistyakov} and \textit{P. A. Tochilin}, Differ. Equ. 55, No. 11, 1518--1530 (2019; Zbl 1440.93026); translation from Differ. Uravn. 55, No. 11, 1560--1571 (2019) Full Text: DOI
Mishra, Indira Almost automorphy and Riccati equation. (English) Zbl 1433.49051 Differ. Equ. Dyn. Syst. 27, No. 4, 379-394 (2019). Reviewer: Savin Treanta (Bucharest) MSC: 49N10 34C27 37L05 93B52 PDF BibTeX XML Cite \textit{I. Mishra}, Differ. Equ. Dyn. Syst. 27, No. 4, 379--394 (2019; Zbl 1433.49051) Full Text: DOI arXiv
Avdonin, Sergei; Edward, Julian Controllability for a string with attached masses and Riesz bases for asymmetric spaces. (English) Zbl 1429.93035 Math. Control Relat. Fields 9, No. 3, 453-494 (2019). MSC: 93B05 93B03 93C25 70J99 PDF BibTeX XML Cite \textit{S. Avdonin} and \textit{J. Edward}, Math. Control Relat. Fields 9, No. 3, 453--494 (2019; Zbl 1429.93035) Full Text: DOI
Wang, Lijuan; Yan, Qishu Optimal control problem for exact synchronization of parabolic system. (English) Zbl 1427.93042 Math. Control Relat. Fields 9, No. 3, 411-424 (2019). MSC: 93B05 93C20 49K20 35B50 35K40 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Q. Yan}, Math. Control Relat. Fields 9, No. 3, 411--424 (2019; Zbl 1427.93042) Full Text: DOI
Ben Aissa, Akram; Abdelli, Mama Pointwise controllability as limit of internal controllability for the one dimensional Euler-Bernoulli equation. (English) Zbl 1438.93008 Afr. Mat. 30, No. 7-8, 1249-1266 (2019). MSC: 93B05 93C20 PDF BibTeX XML Cite \textit{A. Ben Aissa} and \textit{M. Abdelli}, Afr. Mat. 30, No. 7--8, 1249--1266 (2019; Zbl 1438.93008) Full Text: DOI
Leugering, Günter; Li, Tatsien; Wang, Yue 1-d wave equations coupled via viscoelastic springs and masses: boundary controllability of a quasilinear and exponential stabilizability of a linear model. (English) Zbl 1428.35235 Alabau-Boussouira, Fatiha (ed.) et al., Trends in control theory and partial differential equations. Cham: Springer. Springer INdAM Ser. 32, 139-156 (2019). MSC: 35L72 93B05 35L53 74K05 PDF BibTeX XML Cite \textit{G. Leugering} et al., Springer INdAM Ser. 32, 139--156 (2019; Zbl 1428.35235) Full Text: DOI
Ouzahra, Mohamed Controllability of the semilinear wave equation governed by a multiplicative control. (English) Zbl 1425.93046 Evol. Equ. Control Theory 8, No. 4, 669-686 (2019). MSC: 93B05 93C20 35L05 PDF BibTeX XML Cite \textit{M. Ouzahra}, Evol. Equ. Control Theory 8, No. 4, 669--686 (2019; Zbl 1425.93046) Full Text: DOI arXiv
Fu, Xiaoyu; Lü, Qi; Zhang, Xu Carleman estimates for second order partial differential operators and applications. A unified approach. (English) Zbl 1445.35006 SpringerBriefs in Mathematics. Cham: Springer (ISBN 978-3-030-29529-5/pbk; 978-3-030-29530-1/ebook). xi, 127 p. (2019). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 35-02 35Kxx 35Lxx 35Jxx 35Q93 35B60 35R30 93B05 PDF BibTeX XML Cite \textit{X. Fu} et al., Carleman estimates for second order partial differential operators and applications. A unified approach. Cham: Springer (2019; Zbl 1445.35006) Full Text: DOI
Zhou, Chenxia; Liu, Ruijuan Exact controllability of coupled degenerate wave equations. (Chinese. English summary) Zbl 1438.93016 J. Henan Univ. Sci. Technol., Nat. Sci. 40, No. 4, 81-88 (2019). MSC: 93B05 35L05 35L80 PDF BibTeX XML Cite \textit{C. Zhou} and \textit{R. Liu}, J. Henan Univ. Sci. Technol., Nat. Sci. 40, No. 4, 81--88 (2019; Zbl 1438.93016) Full Text: DOI
Fernández-Cara, Enrique; Límaco, J.; Nina-Huaman, Dany; Núñez-Chávez, Miguel R. Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities. (English) Zbl 1422.93015 Math. Control Signals Syst. 31, No. 3, 415-431 (2019). MSC: 93B05 93B07 93C20 35K55 PDF BibTeX XML Cite \textit{E. Fernández-Cara} et al., Math. Control Signals Syst. 31, No. 3, 415--431 (2019; Zbl 1422.93015) Full Text: DOI
Li, Tatsien; Rao, Bopeng Exact boundary controllability for one-dimensional quasilinear hyperbolic systems. (English) Zbl 1429.35003 Coron, Jean-Michel (ed.) et al., One-dimensional hyperbolic conservation laws and their applications. Lecture notes for the LIASFMA Shanghai summer school, Shanghai, China, August 16–27, 2015. Hackensack, NJ: World Scientific; Beijing: Higher Education Press. Ser. Contemp. Appl. Math. CAM 21, 1-86 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35-02 93B05 93C20 35L50 35L60 PDF BibTeX XML Cite \textit{T. Li} and \textit{B. Rao}, Ser. Contemp. Appl. Math. CAM 21, 1--86 (2019; Zbl 1429.35003) Full Text: DOI
Martin, Philippe; Rivas, Ivonne; Rosier, Lionel; Rouchon, Pierre Exact controllability of a linear Korteweg-de Vries equation by the flatness approach. (English) Zbl 07100190 SIAM J. Control Optim. 57, No. 4, 2467-2486 (2019). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{P. Martin} et al., SIAM J. Control Optim. 57, No. 4, 2467--2486 (2019; Zbl 07100190) Full Text: DOI Link
Destuynder, Philippe; Fabre, Caroline On the controllability of racing sailing boats with foils. (English) Zbl 1421.35272 Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1635-1668 (2019). MSC: 35Q35 35C07 65M15 35M12 65T60 93B05 76E09 15A18 93B52 PDF BibTeX XML Cite \textit{P. Destuynder} and \textit{C. Fabre}, Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1635--1668 (2019; Zbl 1421.35272) Full Text: DOI
García-Planas, María Isabel Minimal set of generators of controllability space for singular linear systems. (English) Zbl 1418.93028 García Guirao, Juan Luis (ed.) et al., Recent advances in differential equations and applications. Selected papers based on the presentations at the 25th congress on differential equations and applications and the 15th congress on applied mathematics, Cartagena, Spain, in June 26–30, 2017. Cham: Springer. SEMA SIMAI Springer Ser. 18, 195-210 (2019). MSC: 93B05 93C05 93B60 PDF BibTeX XML Cite \textit{M. I. García-Planas}, SEMA SIMAI Springer Ser. 18, 195--210 (2019; Zbl 1418.93028) Full Text: DOI
Prilepko, A. I. Controllability and optimal controllability for operator equations of the first kind in (B)-spaces: Examples for ODE in \(\mathbb{R}^n\). (English. Russian original) Zbl 1420.49008 Dokl. Math. 99, No. 2, 152-155 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 2, 153-157 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J27 49J21 49K30 49M05 93B05 93B07 93C05 93C25 49J15 PDF BibTeX XML Cite \textit{A. I. Prilepko}, Dokl. Math. 99, No. 2, 152--155 (2019; Zbl 1420.49008); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 2, 153--157 (2019) Full Text: DOI
Arora, Urvashi; Sukavanam, N. Controllability of fractional system of order \(\rho\in(1,2]\) with nonlinear term having integral contractor. (English) Zbl 1417.93065 IMA J. Math. Control Inf. 36, No. 1, 271-283 (2019). MSC: 93B05 93C15 26A33 93C10 PDF BibTeX XML Cite \textit{U. Arora} and \textit{N. Sukavanam}, IMA J. Math. Control Inf. 36, No. 1, 271--283 (2019; Zbl 1417.93065) Full Text: DOI
Grote, Marcus J.; Tang, Jet Hoe On controllability methods for the Helmholtz equation. (English) Zbl 1419.65060 J. Comput. Appl. Math. 358, 306-326 (2019). MSC: 65M60 93C20 49J20 93B05 35J05 PDF BibTeX XML Cite \textit{M. J. Grote} and \textit{J. H. Tang}, J. Comput. Appl. Math. 358, 306--326 (2019; Zbl 1419.65060) Full Text: DOI
Singh, Vikram Controllability of Hilfer fractional differential systems with non-dense domain. (English) Zbl 1421.34006 Numer. Funct. Anal. Optim. 40, No. 13, 1572-1592 (2019). MSC: 34A08 34G20 93B05 47N20 34H05 PDF BibTeX XML Cite \textit{V. Singh}, Numer. Funct. Anal. Optim. 40, No. 13, 1572--1592 (2019; Zbl 1421.34006) Full Text: DOI
Zhang, Yu-Long; Wang, Jun-Min Exact controllability of a micro beam with boundary bending moment. (English) Zbl 1416.93036 Int. J. Control 92, No. 6, 1335-1343 (2019). MSC: 93B05 93B07 70Q05 PDF BibTeX XML Cite \textit{Y.-L. Zhang} and \textit{J.-M. Wang}, Int. J. Control 92, No. 6, 1335--1343 (2019; Zbl 1416.93036) Full Text: DOI
Aouadi, Moncef; Kassraoui, Jihed Exact observability and controllability for a nonsimple elastic rod. (English) Zbl 1416.93025 Appl. Anal. 98, No. 9, 1705-1723 (2019). MSC: 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{M. Aouadi} and \textit{J. Kassraoui}, Appl. Anal. 98, No. 9, 1705--1723 (2019; Zbl 1416.93025) Full Text: DOI
Liu, Ruijuan; Chai, Shugen; Cao, Xiaomin Exact controllability of thermoelastic plate equation with memory. (English) Zbl 1415.93050 Math. Methods Appl. Sci. 42, No. 7, 2369-2378 (2019). MSC: 93B05 93B07 35L75 93C10 93C20 PDF BibTeX XML Cite \textit{R. Liu} et al., Math. Methods Appl. Sci. 42, No. 7, 2369--2378 (2019; Zbl 1415.93050) Full Text: DOI
Natarajan, Vivek; Zhou, Hua-Cheng; Weiss, George; Fridman, Emilia Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations. (English) Zbl 1415.93053 Int. J. Control 92, No. 1, 145-162 (2019). MSC: 93B05 93C10 93C73 93C25 93C15 PDF BibTeX XML Cite \textit{V. Natarajan} et al., Int. J. Control 92, No. 1, 145--162 (2019; Zbl 1415.93053) Full Text: DOI
Yan, Zuomao; Han, Li Optimality of fractional impulsive partial stochastic differential systems with analytic sectorial operators and controls. (English) Zbl 1412.34226 Optimization 68, No. 4, 853-894 (2019). MSC: 34K37 34K30 34K45 34K50 34K35 93B05 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, Optimization 68, No. 4, 853--894 (2019; Zbl 1412.34226) Full Text: DOI
Kumar, Surendra; Rastogi, Shard The solvability and controllability of semilinear coupled wave equation. (English) Zbl 1415.35202 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019). MSC: 35L71 35L53 93B05 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Rastogi}, Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019; Zbl 1415.35202) Full Text: DOI
Coron, Jean-Michel; Nguyen, Hoai-Minh Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. (English) Zbl 1418.35259 SIAM J. Control Optim. 57, No. 2, 1127-1156 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35L50 93C20 93B05 PDF BibTeX XML Cite \textit{J.-M. Coron} and \textit{H.-M. Nguyen}, SIAM J. Control Optim. 57, No. 2, 1127--1156 (2019; Zbl 1418.35259) Full Text: DOI arXiv
Malik, Muslim; Dhayal, Rajesh; Abbas, Syed Exact controllability of a retarded fractional differential equation with non-instantaneous impulses. (English) Zbl 1411.34110 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 1, 53-69 (2019). MSC: 34K50 93B05 47D06 34K37 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{M. Malik} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 1, 53--69 (2019; Zbl 1411.34110) Full Text: Link
Liu, Yu-Xiang Exact controllability of the wave equation with time-dependent and variable coefficients. (English) Zbl 1408.93026 Nonlinear Anal., Real World Appl. 45, 226-238 (2019). MSC: 93B05 93C20 35L05 PDF BibTeX XML Cite \textit{Y.-X. Liu}, Nonlinear Anal., Real World Appl. 45, 226--238 (2019; Zbl 1408.93026) Full Text: DOI
Ravichandran, C.; Valliammal, N.; Nieto, Juan Jose New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. (English) Zbl 1451.93032 J. Franklin Inst. 356, No. 3, 1535-1565 (2019). MSC: 93B05 93C25 93C43 26A33 PDF BibTeX XML Cite \textit{C. Ravichandran} et al., J. Franklin Inst. 356, No. 3, 1535--1565 (2019; Zbl 1451.93032) Full Text: DOI
Lu, Xing Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems. (English) Zbl 1437.35460 Chin. Ann. Math., Ser. B 40, No. 1, 79-96 (2019). MSC: 35L50 35L60 93B05 93B07 PDF BibTeX XML Cite \textit{X. Lu}, Chin. Ann. Math., Ser. B 40, No. 1, 79--96 (2019; Zbl 1437.35460) Full Text: DOI
Faella, Luisa; Monsurrò, Sara; Perugia, Carmen Exact controllability for evolutionary imperfect transmission problems. (English. French summary) Zbl 1406.35031 J. Math. Pures Appl. (9) 122, 235-271 (2019). MSC: 35B27 35Q93 93B05 35L20 PDF BibTeX XML Cite \textit{L. Faella} et al., J. Math. Pures Appl. (9) 122, 235--271 (2019; Zbl 1406.35031) Full Text: DOI
Zhao, Daliang; Liu, Yansheng; Li, Xiaodi Controllability for a class of semilinear fractional evolution systems via resolvent operators. (English) Zbl 06969373 Commun. Pure Appl. Anal. 18, No. 1, 455-478 (2019). MSC: 47D06 93B05 34K30 35R11 PDF BibTeX XML Cite \textit{D. Zhao} et al., Commun. Pure Appl. Anal. 18, No. 1, 455--478 (2019; Zbl 06969373) Full Text: DOI
Shirikyan, Armen Control theory for the Burgers equation: Agrachev-Sarychev approach. (English) Zbl 07300529 Pure Appl. Funct. Anal. 3, No. 1, 219-240 (2018). MSC: 35Q35 93B05 93C20 PDF BibTeX XML Cite \textit{A. Shirikyan}, Pure Appl. Funct. Anal. 3, No. 1, 219--240 (2018; Zbl 07300529) Full Text: Link
Li, Tatsien; Wang, Yue Exact boundary controllability on a planar tree-like network of vibrating strings with dynamical boundary conditions. (English) Zbl 1424.35241 J. Math. Study 51, No. 3, 227-252 (2018). MSC: 35L05 35L72 93B05 PDF BibTeX XML Cite \textit{T. Li} and \textit{Y. Wang}, J. Math. Study 51, No. 3, 227--252 (2018; Zbl 1424.35241) Full Text: DOI
Ahmed, Hamdy M.; Wang, JinRong Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps. (English) Zbl 1409.34005 Bull. Iran. Math. Soc. 44, No. 3, 673-690 (2018). MSC: 34A08 60H10 93B05 60G22 60J75 PDF BibTeX XML Cite \textit{H. M. Ahmed} and \textit{J. Wang}, Bull. Iran. Math. Soc. 44, No. 3, 673--690 (2018; Zbl 1409.34005) Full Text: DOI
Zhao, Xiangqing; Bai, Meng Control and stabilization of high-order KdV equation posed on the periodic domain. (English) Zbl 1424.93021 J. Partial Differ. Equations 31, No. 1, 29-46 (2018). MSC: 93B05 93D15 35Q53 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{M. Bai}, J. Partial Differ. Equations 31, No. 1, 29--46 (2018; Zbl 1424.93021) Full Text: DOI
Duprez, Michel; Olive, Guillaume Compact perturbations of controlled systems. (English) Zbl 1405.93037 Math. Control Relat. Fields 8, No. 2, 397-410 (2018). MSC: 93B05 93B03 93C73 93C05 PDF BibTeX XML Cite \textit{M. Duprez} and \textit{G. Olive}, Math. Control Relat. Fields 8, No. 2, 397--410 (2018; Zbl 1405.93037) Full Text: DOI
Gao, Peng Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. (English) Zbl 1405.35173 Evol. Equ. Control Theory 7, No. 3, 465-499 (2018). MSC: 35Q40 60H15 93B05 93B07 PDF BibTeX XML Cite \textit{P. Gao}, Evol. Equ. Control Theory 7, No. 3, 465--499 (2018; Zbl 1405.35173) Full Text: DOI
Aouadi, Moncef; Moulahi, Taoufik The controllability of a thermoelastic plate problem revisited. (English) Zbl 1405.93033 Evol. Equ. Control Theory 7, No. 1, 1-31 (2018). MSC: 93B05 35B40 PDF BibTeX XML Cite \textit{M. Aouadi} and \textit{T. Moulahi}, Evol. Equ. Control Theory 7, No. 1, 1--31 (2018; Zbl 1405.93033) Full Text: DOI
Nirmalkumar, R.; Murugesu, R. Exact controllability of nonlocal stochastic neutral impulsive differential equations. (English) Zbl 1405.93040 Nonlinear Stud. 25, No. 3, 591-607 (2018). MSC: 93B05 47N70 93E03 93C15 60H10 PDF BibTeX XML Cite \textit{R. Nirmalkumar} and \textit{R. Murugesu}, Nonlinear Stud. 25, No. 3, 591--607 (2018; Zbl 1405.93040) Full Text: Link
Shukla, Anurag; Sukavanam, N.; Pandey, D. N. Controllability of semilinear stochastic control system with finite delay. (English) Zbl 1402.93055 IMA J. Math. Control Inf. 35, No. 2, 427-449 (2018). MSC: 93B05 93E03 93C10 93B03 47N70 PDF BibTeX XML Cite \textit{A. Shukla} et al., IMA J. Math. Control Inf. 35, No. 2, 427--449 (2018; Zbl 1402.93055) Full Text: DOI
Xu, Gen Qi Necessary condition of linear distributed parameter systems with exact controllability. (English) Zbl 1402.93058 Syst. Control Lett. 118, 109-115 (2018). MSC: 93B05 93C05 93C25 PDF BibTeX XML Cite \textit{G. Q. Xu}, Syst. Control Lett. 118, 109--115 (2018; Zbl 1402.93058) Full Text: DOI
Shang, Yunxia; Li, Shumin Control properties for second-order hyperbolic systems in anisotropic cases with applications in inhomogeneous and anisotropic elastodynamic systems. (English) Zbl 1406.35182 SIAM J. Control Optim. 56, No. 6, 4181-4202 (2018). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35L51 74E05 74E10 93B05 93B07 93B52 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{S. Li}, SIAM J. Control Optim. 56, No. 6, 4181--4202 (2018; Zbl 1406.35182) Full Text: DOI
Zhou, Deqin; Mu, Chunlai Control and stabilization of the Rosenau equation posed on a periodic domain. (English) Zbl 1401.93041 J. Syst. Sci. Complex. 31, No. 4, 889-906 (2018). MSC: 93B05 93C20 93D20 93C05 35Q53 PDF BibTeX XML Cite \textit{D. Zhou} and \textit{C. Mu}, J. Syst. Sci. Complex. 31, No. 4, 889--906 (2018; Zbl 1401.93041) Full Text: DOI
Li, Tatsien; Yu, Lei Local exact boundary controllability of entropy solutions to linearly degenerate quasilinear hyperbolic systems of conservation laws. (English) Zbl 1403.93042 ESAIM, Control Optim. Calc. Var. 24, No. 2, 793-810 (2018). MSC: 93B05 35L60 93C05 93C20 PDF BibTeX XML Cite \textit{T. Li} and \textit{L. Yu}, ESAIM, Control Optim. Calc. Var. 24, No. 2, 793--810 (2018; Zbl 1403.93042) Full Text: DOI
He, Yong Exact controllability for wave equations with switching controls. (English) Zbl 1401.93037 Taiwanese J. Math. 22, No. 2, 371-382 (2018). MSC: 93B05 93B07 93C30 PDF BibTeX XML Cite \textit{Y. He}, Taiwanese J. Math. 22, No. 2, 371--382 (2018; Zbl 1401.93037) Full Text: DOI Euclid
Araruna, Fágner Dias; Fernández-Cara, Enrique; da Silva, Luciano Cipriano Hierarchic control for the wave equation. (English) Zbl 1406.35173 J. Optim. Theory Appl. 178, No. 1, 264-288 (2018). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35L05 90C29 93B05 35L71 PDF BibTeX XML Cite \textit{F. D. Araruna} et al., J. Optim. Theory Appl. 178, No. 1, 264--288 (2018; Zbl 1406.35173) Full Text: DOI
Almeida, Adriana; Astudillo Rojas, Maria; Cavalcanti, Marcelo; Zanchetta, Janaina Internal exact controllability and uniform decay rates for a model of dynamical elasticity equations for incompressible materials with a pressure term. (English) Zbl 1413.35078 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 24, 28 p. (2018). MSC: 35B40 35B35 35L99 93D20 PDF BibTeX XML Cite \textit{A. Almeida} et al., Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 24, 28 p. (2018; Zbl 1413.35078) Full Text: DOI
Zhang, Christophe Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control. (English) Zbl 1395.35141 SIAM J. Control Optim. 56, No. 4, 3092-3127 (2018). MSC: 35L53 93B05 93C10 PDF BibTeX XML Cite \textit{C. Zhang}, SIAM J. Control Optim. 56, No. 4, 3092--3127 (2018; Zbl 1395.35141) Full Text: DOI
Cerpa, Eduardo; Crépeau, Emmanuelle On the controllability of the improved Boussinesq equation. (English) Zbl 1417.35113 SIAM J. Control Optim. 56, No. 4, 3035-3049 (2018). Reviewer: Baasansuren Jadamba (Rochester) MSC: 35Q35 93B05 93C10 93C20 35Q93 PDF BibTeX XML Cite \textit{E. Cerpa} and \textit{E. Crépeau}, SIAM J. Control Optim. 56, No. 4, 3035--3049 (2018; Zbl 1417.35113) Full Text: DOI
Yu, Lixin Exact controllability for a kind of linear hyperbolic systems with vertical characteristics. (English) Zbl 1403.35161 Math. Methods Appl. Sci. 41, No. 11, 4337-4346 (2018). Reviewer: Andrei Perjan (Chişinău) MSC: 35L50 93B05 PDF BibTeX XML Cite \textit{L. Yu}, Math. Methods Appl. Sci. 41, No. 11, 4337--4346 (2018; Zbl 1403.35161) Full Text: DOI
Muslim, M.; Kumar, Avadhesh; Sakthivel, R. Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments. (English) Zbl 1397.34132 Math. Methods Appl. Sci. 41, No. 11, 4259-4272 (2018). MSC: 34K35 34K45 93B05 34K30 47N20 PDF BibTeX XML Cite \textit{M. Muslim} et al., Math. Methods Appl. Sci. 41, No. 11, 4259--4272 (2018; Zbl 1397.34132) Full Text: DOI
Kunisch, Karl; Souza, Diego A. On the one-dimensional nonlinear monodomain equations with moving controls. (English. French summary) Zbl 1447.35190 J. Math. Pures Appl. (9) 117, 94-122 (2018). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 35K57 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{K. Kunisch} and \textit{D. A. Souza}, J. Math. Pures Appl. (9) 117, 94--122 (2018; Zbl 1447.35190) Full Text: DOI
Zawiski, Radosław Exact controllability of non-Lipschitz semilinear systems. (English) Zbl 1396.37095 J. Fixed Point Theory Appl. 20, No. 2, Paper No. 67, 23 p. (2018). Reviewer: Christian Fenske (Gießen) MSC: 37N35 37L50 93B05 PDF BibTeX XML Cite \textit{R. Zawiski}, J. Fixed Point Theory Appl. 20, No. 2, Paper No. 67, 23 p. (2018; Zbl 1396.37095) Full Text: DOI
Martin, Philippe; Rosier, Lionel; Rouchon, Pierre Controllability of the 1D Schrödinger equation using flatness. (English) Zbl 1387.93044 Automatica 91, 208-216 (2018). MSC: 93B05 93C20 35Q41 PDF BibTeX XML Cite \textit{P. Martin} et al., Automatica 91, 208--216 (2018; Zbl 1387.93044) Full Text: DOI
Zhang, Yu-Long; Wang, Jun-Min Moment approach to the boundary exact controllability of an active constrained layer beam. (English) Zbl 1387.93047 J. Math. Anal. Appl. 465, No. 1, 643-657 (2018). MSC: 93B05 93C20 74K10 35Q93 35L05 PDF BibTeX XML Cite \textit{Y.-L. Zhang} and \textit{J.-M. Wang}, J. Math. Anal. Appl. 465, No. 1, 643--657 (2018; Zbl 1387.93047) Full Text: DOI
Li, Tatsien; Lu, Xing; Rao, Bopeng Exact boundary synchronization for a coupled system of wave equations with Neumann boundary controls. (English) Zbl 1391.93039 Chin. Ann. Math., Ser. B 39, No. 2, 233-252 (2018). MSC: 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{T. Li} et al., Chin. Ann. Math., Ser. B 39, No. 2, 233--252 (2018; Zbl 1391.93039) Full Text: DOI
Kumar, Avadhesh; Muslim, M.; Sakthivel, R. Controllability of the second-order nonlinear differential equations with non-instantaneous impulses. (English) Zbl 1391.34100 J. Dyn. Control Syst. 24, No. 2, 325-342 (2018). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 34G20 47D09 34H05 92B05 34A37 47N20 PDF BibTeX XML Cite \textit{A. Kumar} et al., J. Dyn. Control Syst. 24, No. 2, 325--342 (2018; Zbl 1391.34100) Full Text: DOI
Liaskos, Konstantinos B.; Stratis, Ioannis G.; Pantelous, Athanasios A. Stochastic degenerate Sobolev equations: well posedness and exact controllability. (English) Zbl 1390.60242 Math. Methods Appl. Sci. 41, No. 3, 1025-1032 (2018). MSC: 60H15 35R60 35K65 PDF BibTeX XML Cite \textit{K. B. Liaskos} et al., Math. Methods Appl. Sci. 41, No. 3, 1025--1032 (2018; Zbl 1390.60242) Full Text: DOI
Avdonin, Sergei; Edward, Julian Exact controllability for string with attached masses. (English) Zbl 1390.93395 SIAM J. Control Optim. 56, No. 2, 945-980 (2018). MSC: 93C20 93B05 70J35 PDF BibTeX XML Cite \textit{S. Avdonin} and \textit{J. Edward}, SIAM J. Control Optim. 56, No. 2, 945--980 (2018; Zbl 1390.93395) Full Text: DOI
Duque, Cosme; Leiva, Hugo; Uzcátegui, Jahnett Controllability of discrete semilinear impulsive systems and applications. (English) Zbl 1416.93029 J. Nonlinear Evol. Equ. Appl. 2017, 49-64 (2017). MSC: 93B05 93C20 93C10 PDF BibTeX XML Cite \textit{C. Duque} et al., J. Nonlinear Evol. Equ. Appl. 2017, 49--64 (2017; Zbl 1416.93029) Full Text: Link
Zhuo, Zhang The exact controllability of Euler-Bernoulli beam systems with small delays in the boundary feedback controls. (English) Zbl 1412.35096 J. Nonlinear Sci. Appl. 10, No. 5, 2778-2787 (2017). MSC: 35J30 35J35 PDF BibTeX XML Cite \textit{Z. Zhuo}, J. Nonlinear Sci. Appl. 10, No. 5, 2778--2787 (2017; Zbl 1412.35096) Full Text: DOI
Muslim, M.; Kumar, Avadhesh; Agarwal, Ravi P. Exact and trajectory controllability of second order nonlinear differential equations with deviated argument. (English) Zbl 1413.34257 Creat. Math. Inform. 26, No. 2, 181-191 (2017). MSC: 34K35 34K30 93B05 47N20 PDF BibTeX XML Cite \textit{M. Muslim} et al., Creat. Math. Inform. 26, No. 2, 181--191 (2017; Zbl 1413.34257)
Goreac, Dan Nonequivalence of controllability properties for piecewise linear Markov switch processes. (English. French summary) Zbl 1381.93024 ESAIM, Proc. Surv. 57, 37-47 (2017). MSC: 93B05 60J75 93E03 93C05 PDF BibTeX XML Cite \textit{D. Goreac}, ESAIM, Proc. Surv. 57, 37--47 (2017; Zbl 1381.93024) Full Text: DOI arXiv
Yang, He; Agarwal, Ravi P.; Liang, Yue Controllability for a class of integro-differential evolution equations involving non-local initial conditions. (English) Zbl 1380.93063 Int. J. Control 90, No. 12, 2567-2574 (2017). MSC: 93B05 93C25 93C10 PDF BibTeX XML Cite \textit{H. Yang} et al., Int. J. Control 90, No. 12, 2567--2574 (2017; Zbl 1380.93063) Full Text: DOI
Muslim, M.; Kumar, Avadhesh; Agarwal, Ravi P. Exact controllability of fractional integro-differential systems of order \(\alpha \in (1, 2]\) with deviated argument. (English) Zbl 1389.34239 An. Univ. Oradea, Fasc. Mat. 24, No. 1, 185-194 (2017). MSC: 34K33 34K30 93B05 34K35 47N20 PDF BibTeX XML Cite \textit{M. Muslim} et al., An. Univ. Oradea, Fasc. Mat. 24, No. 1, 185--194 (2017; Zbl 1389.34239)
Koenig, Armand Non-null-controllability of the Grushin operator in 2D. (Non-contrôlabilité à zéro de l’opérateur de Grushin en dimension 2.) (English. French summary) Zbl 1377.93044 C. R., Math., Acad. Sci. Paris 355, No. 12, 1215-1235 (2017). MSC: 93B05 93C20 93B07 93B60 PDF BibTeX XML Cite \textit{A. Koenig}, C. R., Math., Acad. Sci. Paris 355, No. 12, 1215--1235 (2017; Zbl 1377.93044) Full Text: DOI
Rathinasamy, Poongodi; Rangasamy, Murugesu; Rajendran, Nirmalkumar Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. (English) Zbl 1379.93061 Evol. Equ. Control Theory 6, No. 4, 599-613 (2017). Reviewer: Jerzy Klamka (Gliwice) MSC: 93C25 34A37 47N10 34K45 47N20 34K30 93B05 93B10 PDF BibTeX XML Cite \textit{P. Rathinasamy} et al., Evol. Equ. Control Theory 6, No. 4, 599--613 (2017; Zbl 1379.93061) Full Text: DOI